

IEEE Standard for Test Access Port and
Boundary-Scan Architecture

Sponsored by the
Test Technology Standards Committee

IEEE
3 Park Avenue
New York, NY 10016-5997
USA

13 May 2013

IEEE Computer Society

IEEE Std 1149.1™-2013
(Revision of

IEEE Std 1149.1-2001)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1TM-2013
(Revision of

IEEE Std 1149.1-2001)

IEEE Standard for Test Access Port and
Boundary-Scan Architecture

Sponsor

Test Technology Standards Committee
of the
IEEE Computer Society

Approved 6 February 2013

IEEE-SA Standards Board

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

Abstract: Circuitry that may be built into an integrated circuit to assist in the test, maintenance and
support of assembled printed circuit boards and the test of internal circuits is defined. The circuitry
includes a standard interface through which instructions and test data are communicated. A set of test
features is defined, including a boundary-scan register, such that the component is able to respond to a
minimum set of instructions designed to assist with testing of assembled printed circuit boards. Also, a
language is defined that allows rigorous structural description of the component-specific aspects of such
testability features, and a second language is defined that allows rigorous procedural description of how
the testability features may be used.
Keywords: boundary scan, boundary-scan architecture, Boundary-Scan Description Language (BSDL),
boundary-scan register, circuit boards, circuitry, IEEE 1149.1TM, integrated circuit, printed circuit boards,
Procedural Description Language (PDL), test, test access port (TAP), very high speed integrated circuit
(VHSIC), VHSIC Hardware Description Language (VHDL)

•

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2013 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 13 May 2013. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics
Engineers, Incorporated.

PDF: ISBN 978-0-7381-8263-6 STD98160
Print: ISBN 978-0-7381-8264-3 STDPD98160

IEEE prohibits discrimination, harassment and bullying. For more information, visit http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html.
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the
publisher.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

Notice and Disclaimer of Liability Concerning the Use of IEEE Documents: IEEE Standards documents are developed within the
IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. IEEE
develops its standards through a consensus development process, approved by the American National Standards Institute, which brings
together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of
the Institute and serve without compensation. While IEEE administers the process and establishes rules to promote fairness in the
consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the
soundness of any judgments contained in its standards.

Use of an IEEE Standard is wholly voluntary. IEEE disclaims liability for any personal injury, property or other damage, of any nature
whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or
reliance upon any IEEE Standard document.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and expressly disclaims any express
or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the material
contained in its standards is free from patent infringement. IEEE Standards documents are supplied "AS IS."

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide
other goods and services related to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is
approved and issued is subject to change brought about through developments in the state of the art and comments received from users of
the standard. Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years old and has
not undergone a revision process, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the
present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other services for, or on behalf of,
any person or entity. Nor is IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing
any IEEE Standards document, should rely upon his or her own independent judgment in the exercise of reasonable care in any given
circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE
standard.

Translations: The IEEE consensus development process involves the review of documents in English only. In the event that an IEEE
standard is translated, only the English version published by IEEE should be considered the approved IEEE standard.

Official Statements: A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations
Manual shall not be considered the official position of IEEE or any of its committees and shall not be considered to be, nor be relied
upon as, a formal position of IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on
IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal
position of IEEE.

Comments on Standards: Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of
membership affiliation with IEEE. However, IEEE does not provide consulting information or advice pertaining to IEEE Standards
documents. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate
supporting comments. Since IEEE standards represent a consensus of concerned interests, it is important to ensure that any responses to
comments and questions also receive the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and
Standards Coordinating Committees are not able to provide an instant response to comments or questions except in those cases where the
matter has previously been addressed. Any person who would like to participate in evaluating comments or revisions to an IEEE
standard is welcome to join the relevant IEEE working group at http://standards.ieee.org/develop/wg/.

Comments on standards should be submitted to the following address:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854-4141
USA

Photocopies: Authorization to photocopy portions of any individual standard for internal or personal use is granted by The Institute of
Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for
payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923
USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained
through the Copyright Clearance Center.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

iv
Copyright © 2013 IEEE. All rights reserved.

Notice to users

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the
provisions of any IEEE Standards document does not imply compliance to any applicable regulatory requirements.
Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements.
IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable
laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private uses.
These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and
the promotion of engineering practices and methods. By making this document available for use and adoption by
public authorities and private users, the IEEE does not waive any rights in copyright to this document.

Updating of IEEE documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time by the
issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or
errata. An official IEEE document at any point in time consists of the current edition of the document together with
any amendments, corrigenda, or errata then in effect. In order to determine whether a given document is the current
edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE-
SA Website at http://standards.ieee.org/index.html or contact the IEEE at the address listed previously. For more
information about the IEEE Standards Association or the IEEE standards development process, visit IEEE-SA
Website at http://standards.ieee.org/index.html.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http://standards.ieee.org/
findstds/errata/index.html. Users are encouraged to check this URL for errata periodically.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

v
Copyright © 2013 IEEE. All rights reserved.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered
by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the existence or
validity of any patent rights in connection therewith. If a patent holder or patent applicant has filed a statement of
assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE-SA Website
http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may indicate whether the Submitter is
willing or unwilling to grant licenses under patent rights without compensation or under reasonable rates, with
reasonable terms and conditions that are demonstrably free of any unfair discrimination to applicants desiring to
obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not
responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into
the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions provided in
connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-
discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights,
and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained
from the IEEE Standards Association.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

vi
Copyright © 2013 IEEE. All rights reserved.

Participants

At the time this standard was submitted to the IEEE-SA Standards Board for approval, the P1149.1 Working Group
had the following membership:

C. J. Clark, Chair
Carol Pyron, Vice-Chair
Carl F. Barnhart, Editor

Bill Tuthill, Secretary

John Braden
Bill Bruce
Richard Cornejo
Adam Cron
Wim Driessen
David Dubberke
Ted Eaton
Heiko Ehrenberg

William Eklow
Peter Elias
Joshua Ferry
Jeff Halnon
Dharma Konda
Roland R. Latvala
Adam W. Ley
Sankaran Menon

Kent Ng
Kenneth P. Parker
Francisco Russi
John Seibold
Roger Sowada
Craig Stephan
Brian Turmelle
Hugh Wallace

The following members of the individual balloting committee voted on this standard. Balloters may have voted for
approval, disapproval, or abstention.

Gobinathan Athimolom
Carl F. Barnhart
Hugh Barrass
William Borroz
John Braden
Dennis Brophy
Susan Burgess
Gunnar Carlsson
Vivek Chickermane
C. J. Clark
Richard Cornejo
Adam Cron
Alfred Crouch
Frans G De Jong
Jason Doege
Wim Driessen
David Dubberke
Sourav Dutta
Heiko Ehrenberg
William Eklow
Peter Elias
Joshua Ferry
Chris Gorringe
Prashant Goteti
Robert Gottlieb
J. Grealish

Randall Groves
Jeff Halnon
Peter Harrod
Neil Glenn Jacobson
Rohit Kapur
Dharma Konda
Roland R. Latvala
Philippe LeBourg
Adam W. Ley
Teresa Lopes
Greg Luri
Wayne Manges
Colin Maunder
Ian Mcintosh
Harrison Miles Jr.
Jeffrey Moore
Benoit Nadeau-Dostie
Ion Neag
Kenneth P. Parker
Steve Poehlman
Ulrich Pohl
Irith Pomeranz
John Potter
Carol Pyron
Mike Ricchetti
Gordon Robinson

Andrzej Rucinski
Francisco Russi
Bartien Sayogo
John Seibold
Ozgur Sinanoglu
Roger Sowada
Craig Stephan
Cees Stork
Walter Struppler
Stephen Sunter
Bambang Suparjo
Anthony Suto
Efren Taboada
David Thompson
Brian Turmelle
Bill Tuthill
Louis Ungar
Dmitri Varsanofiev
Srinivasa Vemuru
John Vergis
Tom Waayers
Douglas D. Way
Thomas Williams
Henk Wit
Oren Yuen
Janusz Zalewski

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

vii
Copyright © 2013 IEEE. All rights reserved.

When the IEEE-SA Standards Board approved this standard on 6 February 2013, it had the following membership:

 Richard H. Hulett, Chair
Robert Grow, Past Chair

Konstantinos Karachalios, Secretary

Satish Aggarwal
Masayuki Ariyoshi
Peter Balma
William Bartley
Ted Burse
Clint Chaplin
Wael William Diab
Jean-Philippe Faure

Alexander Gelman
Paul Houzé
Jim Hughes
Young Kyun Kim
Joseph L. Koepfinger*
David J. Law
Thomas Lee
Hung Ling

Oleg Logvinov
Ted Olsen
Gary Robinson
Jon Walter Rosdahl
Mike Seavey
Yatin Trivedi
Phil Winston
Yu Yuan

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Richard DeBlasio, DOE Representative
Michael Janezic, NIST Representative

Don Messina
IEEE Standards Program Manager, Document Development

Kathryn Bennett

IEEE Standards Program Manager, Technical Program Development

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

viii
Copyright © 2013 IEEE. All rights reserved.

Introduction

This introduction is not part of IEEE Std 1149.1-2013, IEEE Standard for Test Access Port and Boundary-Scan
Architecture.

This standard defines a test access port and boundary-scan architecture for digital integrated circuits and for the
digital portions of mixed analog/digital integrated circuits. The facilities defined by the standard seek to provide a
solution to the problem of testing assembled printed circuit boards and other products based on highly complex
digital integrated circuits and high-density surface-mounting assembly techniques. They also provide a means of
accessing and controlling design-for-test features built into the digital integrated circuits themselves. Such features
might, for example, include internal scan paths and self-test functions as well as other features intended to support
service applications in the assembled product.

In addition, two languages are provided to describe both the structure of the test logic and the procedures needed to
use the test logic.

History of the development of this standard

The process of developing this standard began in 1985 when the Joint European Test Action Group (JETAG) was
formed in Europe. During 1986, this group expanded to include members from both Europe and North America and,
as a result, was renamed the Joint Test Action Group (JTAG). Between 1986 and 1988, the JTAG Technical
Subcommittee developed and published a series of proposals for a standardized form of boundary scan. In 1988, the
last of these proposals, JTAG Version 2.0, was offered to the IEEE Testability Bus Standards Committee (P1149)
for inclusion in the standard then under development. The Testability Bus Standards Committee accepted this
approach. It decided that the JTAG proposal should become the basis of a standard within the Testability Bus
family, with the result that the P1149.1 project was initiated. Following these decisions, the JTAG Technical
Subcommittee became the core of the IEEE Working Group that developed this standard.

After the initial approval of this standard in February 1990 and its subsequent publication, the Working Group
immediately began efforts to develop a supplement for the purpose of correction, clarification, and enhancement.
This effort, spurred and guided by interaction between developers and users of the original standard, culminated in
IEEE Std 1149.1aTM-1993, which was approved in June 1993.

The major changes to this standard introduced by IEEE Std 1149.1a-1993 were as follows:

⎯ The addition of two optional instructions, CLAMP and HIGHZ, which standardized the names and
specifications of features often implemented as design-specific features.

⎯ The addition of an optional facility to switch a component from a mode in which it complies to this standard
into one in which it supports another design-for-test approach.

Furthermore, starting with a proposal made by Kenneth P. Parker and Stig Oresjo in 1990, an effort was undertaken
to develop a language to describe components that conform to this standard. This effort concluded in the approval of
IEEE Std 1149.1bTM-1994 in September 1994.

The major change introduced to this standard by IEEE Std 1149.1b-1994 was the addition of Annex B, which
defines the Boundary-Scan Description Language. All other changes were minor and were strictly for clarification.

The 2001 revision was primarily a housekeeping update, designed to incorporate learning from the first 10 years of
the standard’s use into the standard document. The principal changes introduced were as follows:

⎯ To reduce the risk of accidental entry into test mode, the requirement that a binary code for the
EXTEST instruction be {000...0} was removed and use of this binary code for other instructions that result
in entry to test mode was deprecated.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

ix
Copyright © 2013 IEEE. All rights reserved.

⎯ To increase the flexibility with which instructions may be implemented and merged, the implicitly merged
SAMPLE/PRELOAD instruction was redefined as two separate instructions: SAMPLE and PRELOAD.
These instructions can continue to share a single binary code, effectively resulting in a merged
SAMPLE/PRELOAD instruction, but alternatively, they may now share binary codes with other
instructions, provided that no rules applying to any of the merged instructions are violated.

⎯ To enable more efficient implementation of boundary-scan register cells provided at system logic outputs,
the source of data to be captured in such cells in response to the SAMPLE instruction was allowed to be
at the connected system pin. Additionally, three new cell types based on this implementation (BC_8,
BC_9, and BC_10) were added to the standard Boundary-Scan Description Language (BSDL) Package and
Package Body.

⎯ To permit more flexible boundary-scan register cell implementations, sharing of circuitry between the
boundary-scan register and other elements of the test and/or system logic were allowed in limited cases.

⎯ To support more complete description of IC pin drivers with bus keeper circuits, a new value for <disable
result> was defined (KEEPER).

⎯ To track the widespread acceptance of BSDL, the language was made a normative part of this standard and
its use for documentation was mandated.

Additionally, a number of minor changes were made to correct and clarify the language of this standard.

Changes introduced by this revision

First, this version of the standard affirms what had been required in the previous (2001) version. There are only
minor clarifications or relaxations to the rules that are already established. It is expected that components currently
compliant with the previous version of this standard will remain compliant with this one. The one exception is that
the previously deprecated BC_6 boundary-scan cell is no longer supported or defined, and the component supplier
must provide a user-supplied BSDL package defining the BC_6 cell for any component using the
STD_1149_1_2013 standard Package and still using that cell.

Second, while this is a major revision, items introduced in this version are optional and intended to provide test
improvements for the complex components being created today and in the foreseeable future. There are also
significant improvements in documentation capability, including the introduction of a new language to document
test procedures unique to the component.

The major changes, listed in the order in which they appear in this standard, are as follows:

In the standard body:

⎯ A new, optional, test mode persistence controller that can maintain the IEEE 1149.1 test logic in test mode
even if the active instruction does not force test mode. Clause 6 is now split into 6.1 for the TAP controller
and 6.2 for the test mode persistence controller. In support of this new controller, there are three new
instructions: CLAMP_HOLD and TMP_STATUS in 8.20, with the new TMP status test data register in
Clause 16; and CLAMP_RELEASE in 8.20.

⎯ A new, optional ECIDCODE instruction in 8.15 and its electronic chip identification test data register in
Clause 13 to supplement the existing IDCODE and USERCODE instructions and allow for the recovery of
an Electronic Chip Identification value used to identify and track individual integrated circuits.

⎯ A new, optional, component initialization mechanism to provide more flexibility in preparing the component
for test. The INIT_SETUP, INIT_SETUP_CLAMP, and INIT_RUN instructions in 8.17, 8.18, and 8.19, and
their new initialization data and initialization status test data registers in Clause 14 and Clause 15,
respectively. This will allow programmable input/output (I/O) to be set up prior to board or system testing,
as well as any tasks required to put the system logic into a safe state for test.

⎯ A new, optional, IC_RESET instruction in 8.21 and its reset_select test data register in Clause 17 to provide
control of component reset functions through the TAP.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

x
Copyright © 2013 IEEE. All rights reserved.

⎯ In 9.2, an optional standard TAP to test data register interface is recommended, and examples of different
types of test data register cells using this interface are shown. In addition, the concept of register segments is
expanded to allow for segments that may be excluded or included. This is introduced to support power
domains that may be powered down, and yet may have a segment of a test data register within that domain.
However, the capability was kept general.

⎯ In the new 9.4, the rules for defining and controlling the new excludable and selectable segments are
established.

⎯ Boundary-scan register description in Clause 11 has been updated to support:

i) Optional excludable (but not selectable) boundary-scan register segments
ii) Optional observe-only boundary-scan register cells to redundantly capture the signal value on all

digital pins except the TAP pins
iii) Optional observe-only boundary-scan register cells to capture a fault condition on all pins, including

nondigital pins, except the TAP pins

⎯ Documentation requirements in Clause 18 have been updated for the new capabilities.

Note that where rules were removed or moved in this version of this standard, a placeholder was left behind
(“Removed in this version” or “Moved to Permision”) in order to preserve the rule numbering from previous
versions. This is intended to simplify the transition for both users and tool vendors in supporting what is a
significant change.

In Annex B (Boundary Scan Description Language):

⎯ The entire annex was rewritten for:

i) Increased clarity of what was normative versus descriptive text
ii) Increased consistency in presentation

⎯ BSDL is no longer a “proper subset” of VHDL, but it is now “based on” VHDL. See B.4. In particular, new
pin type keywords were introduced in B.8.3 that are not needed in VHDL but give a more accurate
description of each port in BSDL.

⎯ Formal definitions of language elements are included in B.5 instead of reliance on inheritance from VHDL.

⎯ Some changes to the BNF notation used, including definition of all the special character tokens, are in B.6.

⎯ Pin mapping in B.8.7 now allows for documenting that a port is not connected to any device package pin in
a specific mapped device package.

⎯ The boundary-scan register description in B.8.14 introduces new attributes for defining boundary-scan
register segments, and introduces a requirement for documenting the behavior of an undriven input.

⎯ New capabilities are introduced for documenting the structural details of test data registers:

i) Subclause B.8.18 introduces the definition of mnemonics that may be associated with register fields.
ii) Subclause B.8.19 introduces the ability to name fields within a register or segment.
iii) Subclause B.8.20 introduces the ability to define the types of cells used in a test data register (TDR)

field.
iv) Subclause B.8.21 introduces the ability to hierarchically assemble segments into larger segments or

whole registers.
v) Subclause B.8.22 introduces the ability to define constraints on the values to be loaded in a register or

register field.
vi) Subclause B.8.23 introduces the ability to associate a register field or bit to specific ports and other

information, and to associate a power port to other ports.

⎯ The role of a User Defined Package defined in B.10 has been expanded to support logic IP providers who
may need to document test data register segments contained within their IP.

A new annex, Annex C, codifies the Procedural Description Language (PDL), a new language for documenting the
procedural and data requirements for some of the new instructions. As mentioned, this version of the standard
introduces new instructions for configuring complex I/Os prior to entering the EXTEST instruction. As the data
required for initialization could vary for each use of the component on each distinct board or system design, this

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

xi
Copyright © 2013 IEEE. All rights reserved.

created the need for a new language for setting internal TDR register fields in order to configure the I/O. It was
decided to adopt PDL and tailor it to the BSDL register descriptions and IEEE 1149.1 needs.

A new informative annex, Annex D, shows extended examples of BSDL and PDL used together to describe the
structure and the procedures for use of new capabilities.

A new informative annex, Annex E, shows example pseudo-code for the execution of the PDL iApply command,
the most complex of the new commands in PDL.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

xii
Copyright © 2013 IEEE. All rights reserved.

Contents

1. Overview .. 1
1.1 Scope .. 1
1.2 Purpose ... 1
1.3 Document outline ... 5
1.4 Text conventions ... 6
1.5 Logic diagram conventions ... 6

2. Normative references .. 7

3. Definitions, abbreviations, acronyms, and special terms .. 8
3.1 Definitions .. 8
3.2 Abbreviations and acronyms .. 11
3.3 Special terms... 12

4. Test access port (TAP) ... 13
4.1 Connections that form the TAP .. 13
4.2 Test clock input (TCK) ... 13
4.3 Test mode select (TMS) input .. 14
4.4 Test data input (TDI) .. 15
4.5 Test data output (TDO) ... 15
4.6 Test reset input (TRST*) .. 16
4.7 Interconnection of components compatible with this standard ... 17
4.8 Subordination of this standard within a higher level test strategy .. 20

5. Test logic architecture .. 22
5.1 Test logic design ... 22
5.2 Test logic realization .. 23

6. Test logic controllers .. 24
6.1 TAP controller .. 24
6.2 Test mode persistence (TMP) controller... 39

7. Instruction register .. 46
7.1 Design and construction of the instruction register .. 46
7.2 Instruction register operation .. 47

8. Instructions ... 50
8.1 Response of the test logic to instructions .. 50
8.2 Public instructions .. 51
8.3 Private instructions ... 53
8.4 BYPASS instruction ... 53
8.5 Boundary-scan register instructions .. 54
8.6 SAMPLE instruction ... 57
8.7 PRELOAD instruction .. 58
8.8 EXTEST instruction .. 60
8.9 INTEST instruction ... 62
8.10 RUNBIST instruction .. 66
8.11 CLAMP instruction ... 68
8.12 Device identification register instructions .. 70
8.13 IDCODE instruction ... 70
8.14 USERCODE instruction .. 71
8.15 ECIDCODE instruction .. 73
8.16 HIGHZ instruction .. 74

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

xiii
Copyright © 2013 IEEE. All rights reserved.

8.17 Component initialization instructions and procedures .. 76
8.18 INIT_SETUP and INIT_SETUP_CLAMP instructions ... 81
8.19 INIT_RUN instruction ... 82
8.20 CLAMP_HOLD, CLAMP_RELEASE, and TMP_STATUS instructions ... 84
8.21 IC_RESET instruction ... 88

9. Test data registers ... 91
9.1 Provision of test data registers .. 91
9.2 Design and construction of test data registers ... 94
9.3 Operation of test data registers ... 106
9.4 Design and control of test data register segments ... 108

10. Bypass register .. 116
10.1 Design and operation of the bypass register ... 116

11. Boundary-scan register ... 118
11.1 Introduction .. 118
11.2 Register design ... 122
11.3 Register operation ... 124
11.4 General rules regarding cell provision .. 126
11.5 Provision and operation of cells at system logic inputs .. 131
11.6 Provision and operation of cells at system logic outputs .. 138
11.7 Provision and operation of cells at bidirectional system logic pins .. 154
11.8 Redundant cells ... 161
11.9 Special cases ... 163

12. Device identification register .. 166
12.1 Design and operation of the device identification register .. 166
12.2 Manufacturer identity code ... 168
12.3 Part-number code .. 169
12.4 Version code ... 170

13. Electronic chip identification (ECID) register .. 171
13.1 Design and operation of the ECID register ... 171

14. Initialization data register ... 172
14.1 Design and operation of the initialization data register .. 172

15. Initialization status register ... 175
15.1 Design and operation of the initialization status register .. 175

16. TMP status register ... 176
16.1 Design and operation of the TMP status register .. 176

17. Reset selection register ... 178
17.1 Design and operation of the reset selection register ... 178

18. Conformance and documentation requirements ... 183
18.1 Claiming conformance to this standard .. 183
18.2 Prime and second source components .. 184
18.3 Documentation requirements .. 184

Annex A (informative) Example implementation using level-sensitive design techniques 188

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

xiv
Copyright © 2013 IEEE. All rights reserved.

Annex B (normative) Boundary Scan Description Language (BSDL) ... 189
B.1 General information ... 189

B.1.1 Document outline ... 189
B.1.2 Conventions ... 189
B.1.3 BSDL history ... 189

B.2 Purpose of BSDL .. 190
B.3 Scope of BSDL ... 190
B.4 Relationship of BSDL to VHDL .. 191

B.4.1 Specifications ... 191
B.5 Lexical elements of BSDL .. 192

B.5.1 Character set .. 192
B.5.2 BSDL reserved words .. 193
B.5.3 VHDL reserved and predefined words .. 194
B.5.4 Identifiers ... 195
B.5.5 Numeric literals ... 196
B.5.6 Strings .. 197
B.5.7 Information tag .. 198
B.5.8 Comments .. 199

B.6 Syntax definition ... 199
B.6.1 BNF conventions ... 199
B.6.2 Commonly used syntactic elements ... 200

B.7 Components of a BSDL description ... 202
B.7.1 Specifications ... 202
B.7.2 Description ... 203

B.8 Entity description .. 203
B.8.1 Overall syntax of the entity description ... 203
B.8.2 Generic parameter statement .. 204
B.8.3 Logical port description statement ... 205
B.8.4 Standard use statement ... 208
B.8.5 Use statement ... 211
B.8.6 Component conformance statement ... 212
B.8.7 Device package pin mappings ... 213
B.8.8 Grouped port identification .. 216
B.8.9 Scan port identification .. 219
B.8.10 Compliance-enable description .. 220
B.8.11 Instruction register description .. 221
B.8.12 Optional device register description .. 224
B.8.13 Register access description .. 227
B.8.14 Boundary-scan register description .. 229
B.8.15 RUNBIST description .. 245
B.8.16 INTEST description ... 247
B.8.17 System clock requirements attribute .. 249
B.8.18 Register mnemonics description .. 250
B.8.19 Register fields description ... 254
B.8.20 Register field assignment description .. 261
B.8.21 Register assembly description .. 271
B.8.22 Register constraint description ... 288
B.8.23 Register and power port association attributes .. 291
B.8.24 User extensions to BSDL ... 295
B.8.25 Design warning .. 297

B.9 Standard BSDL Package STD_1149_1_2013 .. 298
B.10 User-supplied BSDL packages ... 302

B.10.1 Specifications ... 302
B.10.2 Description ... 306
B.10.3 Examples ... 307

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

xv
Copyright © 2013 IEEE. All rights reserved.

B.11 BSDL example applications ... 308
B.11.1 Typical application of BSDL ... 308
B.11.2 Boundary-scan register description .. 311

B.12 1990 version of BSDL .. 315
B.12.1 1990 Standard VHDL Package STD_1149_1_1990 .. 316
B.12.2 Typical application of BSDL, 1990 version .. 319
B.12.3 Obsolete syntax .. 320
B.12.4 Miscellaneous points on 1990 version ... 321

B.13 1994 version of BSDL .. 321
B.13.1 Standard VHDL Package STD_1149_1_1994 .. 321

B.14 2001 version of BSDL .. 325
B.14.1 Standard VHDL Package STD_1149_1_2001 .. 325

Annex C (normative) Procedural Description Language (PDL) ... 329
C.1 General information ... 329

C.1.1 Purpose ... 329
C.1.2 Dependence on Tool Command Language (Tcl) ... 330
C.1.3 Dependence on Boundary Scan Description Language (BSDL).. 330

C.2 PDL concepts and use model ... 330
C.2.1 Use model introduction .. 330
C.2.2 PDL levels .. 332
C.2.3 PDL procedures ... 333
C.2.4 Read and write with capture-shift-update sequence ... 334
C.2.5 Register state definition ... 334
C.2.6 Level-0 PDL commands .. 336
C.2.7 Specification of names and values ... 339
C.2.8 Retargeting ... 340
C.2.9 Simple PDL Example ... 341

C.3 PDL Level 0 command reference .. 343
C.3.1 Understanding a PDL “string” ... 343
C.3.2 BNF conventions ... 344
C.3.3 PDL lexical elements and common syntax .. 345
C.3.4 PDL File ... 350
C.3.5 Procedure definition commands ... 351
C.3.6 Test setup commands ... 356
C.3.7 Test execution commands .. 360
C.3.8 Flow-control commands .. 367
C.3.9 Optimization commands .. 374
C.3.10 Miscellaneous commands .. 378
C.3.11 Low-level commands ... 379

C.4 PDL Level 1 command reference .. 382
C.4.1 Level-1 PDL operation ... 383
C.4.2 iGet command .. 383
C.4.3 iGetStatus command .. 388

C.5 Example BSDL and PDL for the use model .. 388
C.5.1 BSDL Packages for IP ... 389
C.5.2 BSDL files for components .. 390
C.5.3 PDL files supplied by IP supplier .. 393
C.5.4 PDL files supplied by component supplier .. 394
C.5.5 PDL files coded by test engineer ... 395

Annex D (informative) Integrated examples of BSDL and PDL .. 398
D.1 Initialization example structure and procedures .. 398

D.1.1 Initialization example using register description attributes .. 398
D.1.2 Example PDL for INIT example .. 405

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

xvi
Copyright © 2013 IEEE. All rights reserved.

D.2 Multiple wrapper serial port structure and procedures .. 408
D.2.1 Wrapper serial port structural description .. 408
D.2.2 Wrapper serial port example .. 417

Annex E (informative) Example iApply execution flow .. 420

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

xvii
Copyright © 2013 IEEE. All rights reserved.

Figures

Figure 1-1—Boundary-scan register cell ... 3
Figure 1-2—Boundary-scannable board design .. 4
Figure 1-3—Logic symbology used in this standard ... 6
Figure 4-1—Serial connection using one TMS signal ... 18
Figure 7-2—Instruction register with decoder between shift and update stages. .. 49
Figure 8-1—Simplified view of the boundary-scan register ... 55
Figure 8-2—Example boundary-scan register cell design ... 56
Figure 8-3—Figure used to illustrate boundary-scan instructions ... 56
Figure 8-4—Data flow for the SAMPLE instruction ... 58
Figure 8-5—Data flow for the PRELOAD instruction ... 60
Figure 8-6—Data flow for the EXTEST instruction .. 62
Figure 8-7—Data flow for the INTEST instruction ... 64
Figure 8-8—Control of applied system clock during INTEST... 65
Figure 8-9—Use of TCK as clock for on-chip system logic during INTEST .. 65
Figure 8-10—Use of the HIGHZ instruction ... 75
Figure 8-11—Provision of HIGHZ at a two-state pin.. 76
Figure 8-12—Boundary-scan register control cell with a reset on the update flip-flop R2 ... 87
Figure 9-1—Implementation of the group of test data registers .. 92
Figure 9-2—Construction of multiple test data registers from shared circuitry .. 96
Figure 9-3—Gated-clock boundary-scan register gating ... 97
Figure 9-4—Test data register control gating .. 97
Figure 9-5—Capture-update TDR cell using gated clocks .. 98
Figure 9-6—Capture-update TDR cell with nongated clock and optional reset .. 100
Figure 9-7—Update TDR cell without capture and with nongated clock and optional reset 101
Figure 9-8—Capture TDR cell with nongated clock and without update stage .. 102
Figure 9-9—Shift-only TDR cell with nongated clock and without update stage. .. 102
Figure 9-10—Self-monitoring TDR cell with update stage and nongated clocks ... 104
Figure 9-11—Self-resetting and self-monitoring TDR cell with nongated clocks .. 105
Figure 9-12—Timing of a self-resetting and self-monitoring TDR cell at Update-DR ... 106
Figure 9-13—Example design containing two optional test data registers .. 107
Figure 9-14—Scan control of excludable test data register segments ... 112
Figure 9-15—Scan control of excludable test data register segments with domain control 113
Figure 9-16—Domain POR reset of nested segment-select fields ... 114
Figure 9-17—Hierarchical reset of nested segment-select fields .. 114
Figure 9-18—Selectable segments and selection field .. 115
Figure 9-19—Example segment-select or selection-field cell with ungated clocks .. 115
Figure 10-1—Bypass register gated-clock implementation ... 116
Figure 11-1—Component without boundary scan ... 119
Figure 11-2—Input connections .. 120
Figure 11-3—Connection of an observe-only boundary-scan register cell ... 121
Figure 11-4—Insertion of a control-and-observe boundary-scan register cell .. 121
Figure 11-5—Conceptual view of a control-and-observe boundary-scan register cell .. 122
Figure 11-6—Boundary-scan shift-register design .. 124
Figure 11-7—Component that contains analog circuitry ... 126
Figure 11-8—Placement of boundary-scan register cells .. 128
Figure 11-9—Component with differential inputs and outputs ... 129
Figure 11-10—Conceptual schematic of redundant observe-only cells on differential pins 130
Figure 11-11—Provision of a boundary-scan register cell at a system input .. 131
Figure 11-12—Provision of multiple boundary-scan register cells at one input ... 132
Figure 11-13—Noninversion of data between pin and TDO ... 134

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

xviii
Copyright © 2013 IEEE. All rights reserved.

Figure 11-14—Noninversion of data between TDI and the system logic.. 134
Figure 11-15—Input cell with parallel output register [BC_2] ... 136
Figure 11-16—Input cell without parallel output register [BC_3] .. 136
Figure 11-17—Cell that forces the system logic input to 1 during EXTEST [BC_4] .. 137
Figure 11-18—Observe-only input cell without control [BC_4] ... 137
Figure 11-19—Input cell that supports all instructions [BC_1]... 138
Figure 11-20—Provision of a boundary-scan register cell at a digital system output pin ... 139
Figure 11-21—Provision of boundary-scan register cells at system logic outputs .. 140
Figure 11-22—Provision of cells when one output Is used both as control and data .. 140
Figure 11-23—Noninversion of data between the system logic and TDO .. 142
Figure 11-24—Noninversion of data between TDI and a system output pin .. 143
Figure 11-25—Noninversion of control signal values between the system logic and TDO 144
Figure 11-26—Control of multiple three-state outputs from one signal .. 145
Figure 11-27—Testing board-level bus lines .. 146
Figure 11-28—Testing external logic via the boundary-scan register ... 147
Figure 11-29—Primitive noncompliant output cell design with potential problems ... 147
Figure 11-30—Circuit illustrating potential boundary-scan test problem ... 148
Figure 11-31—Output cell that supports all instructions [BC_1] .. 149
Figure 11-32—Output cell that does not support INTEST [BC_2] .. 149
Figure 11-33—Self-monitoring output cell that supports INTEST [BC_9] ... 151
Figure 11-34—Self-monitoring output cell that does not support INTEST [BC_10] .. 151
Figure 11-35—Boundary-scan register cells at a three-state output—Example 1 [BC_1, control and data] 152
Figure 11-36—Boundary-scan register cells at a three-state output—Example 2 [BC_2, control and data] 153
Figure 11-37—Boundary-scan register cells at a bidirectional pin—Example 1 [BC_1, control] 155
Figure 11-38—Boundary-scan register cells at a bidirectional pin—Example 2 [BC_2 control; BC_7 data] 156
Figure 11-39—Deprecated boundary-scan register cells at a bidirectional pin [BC_2 control; BC_6 data] 158
Figure 11-40—Boundary-scan register cells at an open-collector bidirectional pin [BC_4, input; BC_2, output] ... 159
Figure 11-41—Boundary-scan register cell at an open-collector bidirectional pin [BC_8] 160
Figure 11-42—Boundary-scan register cells for use at a bidirectional pin where INTEST is not provided

[BC_2, control; BC_8, data] ... 161
Figure 11-43—Cell that should not be included in the boundary-scan register ... 163
Figure 11-44—Input pins used only to control output pins—Case A ... 164
Figure 11-45—Input pins used only to control output pins—Case B .. 164
Figure 11-46—Noncompliant use of a single cell for output control and data .. 165
Figure 11-47—Boundary-scan register cells at a three-state pin where output control is from a system pin

[BC_5, control; BC_1, data] ... 165
Figure 12-1—Structure of the device identification code .. 166
Figure 12-2—Device identification register gated-clock cell design... 167
Figure 16-1—Example TMP status register (nongated clocks) ... 177
Figure 17-1—Reset selection register overview .. 178
Figure 17-2—Minimal reset selection register example .. 181
Figure 18-1—Measuring setup and hold timing .. 187
Figure 18-2—Measuring propagation delay .. 187
Figure B-1—Components of a BSDL description ... 202
Figure B-2—Example use of nonboundary-scan port-types .. 208
Figure B-3—Example of unconnected pin types ... 216
Figure B-4—Cell design corresponding to Figure 11-19 and Figure 11-31 .. 230
Figure B-5—Symbolic representation of a boundary-scan register cell .. 230
Figure B-6—Symbolic representation of a boundary-scan register cell without an update stage 231
Figure B-7—Cell on an input, which pulls to a logic 1 ... 243
Figure B-8—Illustration of use of <input spec> for an IC .. 243
Figure B-9—Illustration of use of fault detection boundary cells for an IC .. 244
Figure B-10—Simple local reset structure .. 270
Figure B-11—Simple selectable register segment structure .. 280

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

xix
Copyright © 2013 IEEE. All rights reserved.

Figure B-12—Illustrative component power control structure .. 283
Figure B-13—Simple wrapper serial port ... 285
Figure B-14—Three wrappers in parallel .. 287
Figure B-15—Boundary-scan register cell showing possible capture sources .. 306
Figure B-16—Texas Instruments SN74BCT8374 ... 309
Figure B-17—Component that illustrates several OBSERVE_ONLY and INTERNAL cells 312
Figure B-18—Component that illustrates several merged cells .. 314
Figure C-1—PDL example board .. 331
Figure C-2—PDL example detail .. 332
Figure C-3—PDL scan frame .. 335
Figure C-4—Data flow during an iApply command ... 336
Figure C-5—iMerge example .. 375
Figure C-6—Example circuit board .. 389
Figure D-1—Hard SerDes IP defined in a package ... 399
Figure D-2—Simple wrapper serial port ... 408
Figure D-3—Three wrappers with WSC gating logic ... 411
Figure D-4—WSP example for interconnect testing ... 412
Figure D-5—Three wrappers with WSC gating logic and SEGSEL ... 415

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

xx
Copyright © 2013 IEEE. All rights reserved.

Tables

Table 6-1—Use of controller states for different test types ... 29
Table 6-2—Test logic operation in each controller state ... 33
Table 6-3—State assignments for example TAP controller .. 36
Table 7-1—Instruction register operation in each controller state ... 47
Table 8-1—Typical initialization sequence, deferred test mode ... 79
Table 8-2—Including boundary-scan segments in mission mode ... 80
Table 8-3—Typical initialization sequence, immediate test mode .. 80
Table 8-4—Including boundary-scan segments in test mode .. 81
Table 8-5—I/O pin behavior for TMP controller states .. 86
Table 9-1—Recommended TDR interface for design specific TDRs ... 95
Table 9-2—Naming of test data registers that share circuitry ... 96
Table 11-1—Routing of signals in cells at system logic inputs ... 132
Table 11-2—Mode signal generation for the example cells in Figure 11-15 and Figure 11-16 136
Table 11-3—Mode signal generation for the example cell in Figure 11-19 .. 138
Table 11-4—Routing of signals in cells at system logic outputs ... 142
Table 11-5—Test for driver B ... 146
Table 11-6—Mode signal generation for the example cells in Figure 11-31, Figure 11-35, Figure 11-37, and

Figure 11-47 ... 149
Table 11-7—Mode signal generation for the example cells in Figure 11-32, Figure 11-34, and Figure 11-40 150
Table 11-8—Mode signal generation for the example cell in Figure 11-33 .. 151
Table 11-9—Mode signal generation for the example cell in Figure 11-36 .. 154
Table 11-10—Mode signal generation for the example cells in Figure 11-38 .. 157
Table 11-11—Mode signal generation for the deprecated example cells in Figure 11-39 .. 159
Table 11-12—Mode signal generation for the example cells in Figure 11-41 and Figure 11-42 160
Table 17-1—Logic hazards of dual transitions of reset-enable and reset-control pairs ... 182
Table 18-1—Public instructions .. 183
Table B-1—Scope of BSDL .. 191
Table B-2—Pin types .. 206
Table B-3—List of cells defined in the Standard BSDL Package and relevant figure numbers 229
Table B-4—Function element values and meanings ... 238
Table B-5—Constraint expression operators ... 290
Table B-6—Unit value definitions .. 293
Table B-7—Cell context element values and meanings .. 303
Table B-8—Data source element values and meanings ... 304
Table B-9—Compliant capture sources for <cell context> of INPUT, CLOCK, and BIDIR_IN 304
Table B-10—Compliant capture sources for <cell context> of OUTPUT2, OUTPUT3, and BIDIR_OUT 304
Table B-11—Compliant capture sources for <cell context> of CONTROL and CONTROLR 304
Table B-12—Compliant capture sources for <cell context> of INTERNAL .. 305
Table B-13—Compliant capture sources for <cell context> of OBSERVE_ONLY ... 305
Table C-1—PDL Level-0 commands .. 337
Table C-2—Handling PDL procedure hierarchy ... 341
Table C-3—PDL Level-1 commands .. 383

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

1
Copyright © 2013 IEEE. All rights reserved.

IEEE Standard for Test Access Port and
Boundary-Scan Architecture

IMPORTANT NOTICE: IEEE standards documents are not intended to ensure safety, health, or environmental
protection, or ensure against interference with or from other devices or networks. Implementers of IEEE
standards documents are responsible for determining and complying with all appropriate safety, security,
environmental, health, and interference protection practices and all applicable laws and regulations.

This IEEE document is made available for use subject to important notices and legal disclaimers.
These notices and disclaimers appear in all publications containing this document and may
be found under the heading “Important Notice” or “Important Notices and Disclaimers
Concerning IEEE Documents.” They can also be obtained on request from IEEE or viewed at
http://standards.ieee.org/IPR/disclaimers.html.

1. Overview

1.1 Scope

This standard defines test logic that can be included in an integrated circuit to provide standardized approaches to:

⎯ Testing the interconnections between integrated circuits once they have been assembled onto a printed
circuit board or other substrate

⎯ Testing the integrated circuit itself

⎯ Observing or modifying circuit activity during the component’s normal operation

The test logic consists of a boundary-scan register and other building blocks and is accessed through a test access
port (TAP).

1.2 Purpose

1.2.1 Overview of the operation of this standard

This subclause provides a general overview of the operation of a component compatible with this standard and
provides a background to the detailed discussion in later clauses.

The circuitry defined by this standard allows test instructions (which take control of the component outputs and
observe the component inputs) and associated test data to be fed into a component and, subsequently, allows the
results of execution of such instructions to be read out. All information (instructions, test data, and test results) is
communicated in a serial format.

The sequence of operations would be controlled by a bus master, which could be either an automatic test equipment
(ATE) or a component that interfaces to a higher level test bus as a part of a complete system maintenance
architecture. Control is achieved through signals applied to the test mode select (TMS) and test clock (TCK) inputs
of the various components connected to the bus master. Starting from an initial state in which the test circuitry
defined by this standard is inactive, a typical sequence of operations would be as follows.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

2
Copyright © 2013 IEEE. All rights reserved.

The first steps would be, in general, to load serially into the component the instruction binary code for the particular
operation to be performed. The test logic defined by this standard is designed such that the serial movement of
instruction information is not apparent to those circuit blocks whose operation is controlled by the instruction. The
instruction applied to these blocks changes only on completion of the shifting (instruction load) process.

Once the instruction has been loaded, the selected test circuitry is configured to respond. In some cases, however, it
is necessary to load data into the selected test circuitry before a meaningful response can be made. Such data are
loaded into the component serially in a manner analogous to the process used previously to load the instruction.
Note that the movement of test data has no effect on the instruction present in the test circuitry.

After execution of the test instruction, based where necessary on supplied data, the results of the test can be
examined by shifting data out of the component to or through the bus master.

Note that in cases where the same test operation is to be repeated but with different data, new test data can be shifted
into the component while the test results are shifted out. There is no need for the instruction to be reloaded.

Operation of the test circuitry may proceed by loading and executing several further instructions in a manner similar
to that described and would conclude by returning control from the test circuitry to system circuitry. Note that the
state of the system logic may be indeterminate, and care is required in returning to system operation.

1.2.2 Use of this standard to test an assembled product

This subclause outlines the use of the boundary-scan circuitry defined by this standard during the process of testing
an assembled product such as a printed circuit board.

The test problem for any product constructed from a collection of components can be decomposed into three goals:

a) To confirm that each component performs its required function

b) To confirm that the components are interconnected in the correct manner

c) To confirm that the components in the product interact correctly and that the product performs its intended
function

This approach can be applied to a board constructed from integrated circuits, to a system constructed from printed
circuit boards, or to a complex integrated circuit constructed from a set of simpler functional modules. To simplify
the discussion, this description henceforth will concentrate on the case of an assembled printed circuit board
constructed from a collection of digital integrated circuits.

At the board level, the second goal [goal b)] may be achieved using in-circuit test techniques; the first and third
goals [goal a) and goal c)] require a functional test. However in-circuit test techniques have significant limitations
when viewed against evolving surface-mount interconnection technology, for example, the difficulty of making
reliable contact to miniaturized features of the printed circuit board using a bed-of-nails fixture. How, then, might
these three test goals be achieved if test access becomes limited to the normal circuit connections, plus a relatively
small number of special-purpose test connections?

Considering goal a), it is clear that the vendor of an integrated circuit used in the board-level design will have an
established test methodology for that component. The components could be tested on a proprietary ATE system or
by using a self-test procedure embedded in the design. Information on the test methodology adopted is typically not
available to the component purchaser. Even where self-test modes of operation are known to exist, they may not be
documented and therefore are not available to the component user. Alternative sources of test data for the board test
engineer may be the component test libraries supplied with in-circuit test systems or the test programs developed by
component users for incoming inspection of delivered devices.

Wherever the test data for a component originates, the next step is to use it once the component has been assembled
onto the printed circuit board. If access is limited to the normal connections of the assembled circuit, this task may
be far from simple. This is particularly true if the surrounding components are complex or if the board designer has

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

3
Copyright © 2013 IEEE. All rights reserved.

tied some of the components’ connections to fixed logic levels or has left component pins unconnected. Even for
slow speed tests, it will not normally be possible to test the component in the same way that it was tested in isolation
unless an in-circuit test is achievable.

To help ensure that built-in test facilities can be used or that preexisting test patterns can be applied, a framework is
needed that can be used to convey test data to or from the boundaries of individual components so that they can be
tested as if they were freestanding. This framework will also allow access to and control of built-in test facilities of
components. A boundary scan coupled with a test access bus provides such a framework.

The objective of this standard is to define a boundary-scan architecture that can be adopted as a standard feature of
integrated circuit designs, thus, allowing the required test framework to be created on assembled printed circuit
boards and other products.

1.2.3 What is a boundary scan?

The boundary-scan technique involves the inclusion of a shift-register stage (contained in a boundary-scan register
cell) adjacent to each component pin so that signals at component boundaries can be controlled and observed using
scan testing principles.

Figure 1-1 illustrates an example implementation for a boundary-scan register cell that could be used for an input or
output connection to an integrated circuit. If it is used for an input, data can either be loaded into the scan register
from the input pin through the signal-in port or be driven from the register through the Signal-out port of the cell
into the core of the component design, depending on the control signals applied to the multiplexers. Similarly, if it is
used for an an output, data can either be loaded into the scan register from the core of the component or be driven
from the register to an output pin. As will be discussed in detail in Clause 11, the second flip-flop (controlled by
input Clock B) is provided to hold the signal value driven out of the cell while new data are shifted into the cell
using input Clock A. This flip-flop is not required in all cases but is included in Figure 1-1 to simplify the
discussion.

Figure 1-1—Boundary-scan register cell

The boundary-scan register cells for the pins of a component are interconnected to form a shift-register chain around
the border of the design, and this path is provided with serial input and output connections and appropriate clock and
control signals. Within a product assembled from several integrated circuits, the boundary-scan registers for the
individual components could be connected in series to form a single path through the complete design, as illustrated
in Figure 1-2. Alternatively, a board design could contain several independent boundary-scan paths.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

4
Copyright © 2013 IEEE. All rights reserved.

Figure 1-2—Boundary-scannable board design

If all components used to construct a circuit have a boundary-scan register, then the resulting serial path through the
complete design can be used in two ways:

a) To allow the interconnections between the various components to be tested, test data can be shifted into all
the boundary-scan register cells associated with component output pins and loaded in parallel through the
component interconnections into those cells associated with input pins.

b) To allow the components on the board to be tested, the boundary-scan register can be used as a means of
isolating system logic from stimuli received from surrounding components while an internal self-test is
performed. Alternatively, if the boundary-scan register is suitably designed, it can permit a limited slow-
speed static test of the system logic because it allows delivery of test data to the component and examination
of the test results.

These tests allow the first two goals discussed earlier to be achieved through the use of the boundary-scan register.
In effect, tests applied using the register can detect many of the faults that in-circuit testers currently address, but
without the need for extensive bed-of-nails access. The third goal—to test the operation of the complete product
functionally—remains and can be achieved either using a functional (through the pins) ATE system or using a
system-level self-test, for example.

Note also that by parallel loading the cells at both the inputs and outputs of a component and shifting out the results,
the boundary-scan register provides a means of “sampling” the data flowing through a component without
interfering with the behavior of the component or the assembled board. This mode of operation is valuable for
design debugging and fault diagnosis because it permits examination of connections not normally accessible to the
test system.

1.2.4 Use of this standard to achieve other test goals

In addition to its application in testing printed circuit assemblies and other products containing multiple components,
the test logic defined by this standard can be used to provide access to a wide range of design-for-test features built

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

5
Copyright © 2013 IEEE. All rights reserved.

into the components themselves. Such features might include internal scan paths, self-test functions [e.g., memory
built-in self test (MBIST) or logic built-in self-test (Logic BIST)], or other support functions.

Design-for-test features such as these can be accessed and controlled using the data path between the serial test data
pins of the TAP defined by this standard. Instructions that cause internal reconfiguration of the component’s system
logic such that the test operation is enabled may be shifted into the component through the TAP.

1.3 Document outline

Circuit designs such as that defined by this standard are more easily understood if their specifications are
accompanied by general descriptive material that places the details of the various parts of the design in perspective
and provides examples of implementation. Clause 1 therefore contains an overview of the application of this
standard to the testing of the digital portions of an electronic product consisting of many integrated circuits.

Subsequent clauses of this document contain the specifications for particular features of this standard. Two classes
of material are contained in these clauses.

1.3.1 Specifications

Material titled “Specifications” contain the rules, recommendations, and permissions that define this standard:

a) Rules specify the mandatory aspects of this standard. Rules contain the word shall.

b) Recommendations indicate preferred practice for designs that seek to conform to this standard.
Recommendations contain the word should.

c) Permissions show how optional features may be introduced into a design that seeks to conform to this
standard. These features will extend the application of the test circuitry defined by this standard. Permissions
contain the word may.

1.3.2 Descriptions

Material not contained in “Specifications” is descriptive material that illustrates the need for the features being
specified or their application. This material includes schematics that illustrate a possible implementation of the
specifications in this standard. The descriptive material also discusses design decisions made during the
development of this standard.

CAUTION

The descriptive material contained in this standard is for illustrative purposes only and does not define a preferred
implementation. Examples are provided throughout this standard to illustrate possible circuit implementations.
Where discrepancies between examples and specifications may occur, the specifications always take precedence.
Readers should exercise caution when using these examples in their specific applications. In particular, it is
emphasized that the examples are designed to communicate effectively the meaning of this standard. As such,
they are logically correct; however, as always, a particular implementation may not operate properly with respect
to timing and other parametric characteristics. One example of this concern is that the example TAP Controller
implementation depicted in Figure 6-5 reasonably assumes a significantly greater delay in the flip-flop sourcing
signal A, for instance, than in the inverter sourcing TCK*. It is possible to design a circuit where this assumption
is violated, causing a critical race to occur that would invalidate the behavior of the TAP controller. Therefore, it
is highly recommended that implementations be fully verified for compliance under required operating
conditions.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

6
Copyright © 2013 IEEE. All rights reserved.

1.4 Text conventions

The following conventions are used in this standard:

a) The rules, recommendations, and permissions in “Specifications” are contained in a single alphabetically
indexed list. References to each rule, recommendation, or permission are shown in the form:

 15.1.1 c) 2)
 | | |
 Subclause number | |
 Index |
 Option (if any)

b) Instruction and state names defined in this standard are shown in italic type in the text.

c) Names of states and signals that control the test data registers defined by this standard contain the characters
DR, while those that control the instruction register contain the characters IR.

d) Names for signals that are active in their low state have an asterisk as the final character, e.g., TRST*.

e) A positive logic convention is used; i.e., a logic 1 signal is conveyed as the more positive of the two voltages
used for logic signals.

1.5 Logic diagram conventions

During the different iterations of this standard, logic diagram figures have been added in various styles with
differing logic symbols. Figure 1-3 shows the symbologies currently used for the common combinational logic
elements. Symbols for storage elements (generally edge-sensitive flip-flops) are reasonably consistent, although pin
names on the element may vary from figure to figure.

Figure 1-3—Logic symbology used in this standard

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

7
Copyright © 2013 IEEE. All rights reserved.

2. Normative references

The following referenced documents are indispensable for the application of this standard (i.e., they must be
understood and used, so each referenced document is cited in text and its relationship to this document is explained).
For dated references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments or corrigenda) applies.

EIA/JEP106, JEDEC Publication 106, Standard Manufacturer’s Identification Code.1

IEEE Std 1076, IEEE Standard VHDL Language Reference Manual.2, 3

IEEE Std 1451.0, IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions,
Communication Protocols, and Transducer Electronic Data Sheet (TEDS) Formats.

The following referenced documents provide extensions to this standard and should be referenced when dealing with
analog, capacitively coupled, and differential inputs and outputs.

IEEE Std 1149.4, IEEE Standard for a Mixed-Signal Test Bus.

IEEE Std 1149.6, IEEE Standard for Boundary-Scan Testing of Advanced Digital Networks.

IEEE Std 1149.8.1, IEEE Standard for Boundary-Scan-Based Stimulus of Interconnections to Passive and/or Active
Components.

1 EIA publications are available from Global Engineering Documents (http://global.ihs.com/)
2 IEEE publications are available from The Institute of Electrical and Electronics Engineers (http://standards.ieee.org/).
3 The IEEE standards or products referred to in this clause are trademarks of The Institute of Electrical and Electronics Engineers, Inc.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

8
Copyright © 2013 IEEE. All rights reserved.

3. Definitions, abbreviations, acronyms, and special terms

For the purposes of this document, the following terms and definitions apply. The IEEE Standards Dictionary
Online should be consulted for terms not defined in this clause.4

3.1 Definitions

active: When associated with a logic level (e.g., active-low), this term identifies the logic level to which a signal
shall be set to cause the defined action to occur. When referring to an output driver (e.g., an active drive), this term
describes the state in which the driver is capable of determining the voltage of the network to which it is connected.

bidirectional pin: A component pin that can either drive or receive signals from external connections.

blind interrogation: The act of discovering the identity of an unknown component, or discovering the basic
construction of a chain of unknown components, by reading out data that are deterministically set by the devices in
the chain when reset. For example, devices may have a documented identification (ID) code, which is selected for
scan by the default instruction in such devices, so that a user can identify each unknown component in the chain and
the user’s position within the chain.

capture: Load a value into a data register or the instruction register as a consequence of entry into the Capture-DR
or Capture-IR controller state, respectively.

chip: Typically mounted on a board or some other package with other components. The more general term
“component” is normally used in this standard for a compliant object as there may be multiple integrated circuits in
a package, even when they behave as a single object. Syn.: integrated circuit (IC).

chip-on-board testing: A test of a component after it has been assembled onto a printed circuit board or other
substrate. For example, the facilities defined by this standard may be used.

clock: A signal where transitions between the low and high logic levels (or vice versa) are used to indicate when a
stored-state device, such as a flip-flop or latch, may perform an operation.

component: An active or passive electronic part. For the sake of this standard, this usually refers to an integrated
circuit, although it could include non-integrated-circuit devices mounted on a board. See also: chip.

deprecate: To discourage the use of configurations or modes of operation that might reduce reliability or create
problems in usage. Syn.: disapprove, discourage, disparage.

falling edge: A transition from a high to a low logic level. In positive logic, a change from logic 1 to logic 0. Events
that are specified to occur on the rising (falling) edge of a signal should be completed within a fixed (frequency-
independent) delay specified by the component supplier.

field: In reference to a register or register segment, a logical set of bits within a defined register or segment, which
may be addressed or treated as a unit for specific purposes. Contrast: segment.

hierarchy: Objects may be contained (used) in other objects in a tree-type arrangement with no loops; that is, no
circular references. The containing (outer, higher) object is referred to as the parent, and the contained (inner, lower)
object is referred to as the child, and they are said to be in a parent-to-child relationship. In this standard, only user
Packages and Test Data Registers have hierarchy. Packages may “use” (refer to) other packages. Test data registers

4 The IEEE Standards Dictionary Online subscription is available at http://www.ieee.org/portal/innovate/products/standard/
standards_dictionary.html.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

9
Copyright © 2013 IEEE. All rights reserved.

may be composed of segments and fields, where segments may be composed of other segments and fields. Fields
may not contain other objects. See also: instance and instantiation.

high: The higher of the two voltages used to convey a single bit of information. For positive logic, a logic 1.

inactive: When referring to an output driver (e.g., an inactive drive), this term describes the state in which the driver
is not capable of determining the voltage of the network to which it is connected.

input pin: A component pin that receives signals from an external connection.

instance and instantiation: These terms refer to the hierarchical inclusion of an object within another object. For
the normative purpose of this standard, these terms are used in the documentation of Test Data Registers, which may
be composed of segments and fields, and of segments that may be composed of other segments and fields. A single
field or segment definition is an object that may be used multiple times, and each use is termed an instance of that
object. An instantiation is the statement that creates and names an instance of a child object within the definition of
the parent object. (Similar terminology is used when discussing “instances” or “instantiations” of components on a
board.) See also: hierarchy.

instruction: A binary data word shifted serially into the test logic in order to define its subsequent operation.

integrated circuit (IC): A collection of transistors, resistors, and capacitors and their interconnections constructed
to perform specific functions on a single thin slice of a semiconductor crystal.

least significant bit (LSB): The digit in a binary number representing the lowest numerical value. For shift-
registers, the bit located nearest to the serial output, or the first bit to be shifted out. The least significant bit of a
binary word or shift-register is numbered 0.

level-sensitive scan design (LSSD): A variant of the scan design technique that results in race-free, testable digital
electronic circuits.

low: The lower of the two voltages used to convey a single bit of information. For positive logic, a logic 0.

most significant bit (MSB): The digit in a binary number representing the greatest numerical value. For shift-
registers, the bit farthest from the serial output, or the last bit to be shifted out. Logic values expressed in binary
form are shown with the most significant bit on the left.

nonclock: A signal where the transitions between the low and high logic levels do not themselves cause operation of
stored-state devices. The logic level is important only at the time of a transition on a clock signal.

no-connect: A signal of the component, which is brought to an input–output pad of the die but not connected to a
package pin due, for instance, to a constrained pin-count for the package.

output pin: A component pin that drives signals onto external connections.

pin: The point at which connection is made between the integrated circuit and the substrate on which it and other
components are mounted (e.g., the printed circuit board). For packaged components, this would be the package pin;
for components mounted directly on the substrate, this would be the bonding pad. The actual form of connection
(bonding wire, landing pad, solder ball, or metal pin inserted into a via) is not material to the definition.

prime source: In the event that several vendors offer pin-for-pin compatible components, the prime source is the
vendor that introduced the component type. Contrast: second source.

private: An optional feature intended solely for use by the component manufacturer. In the context of this standard,
an instruction can be defined as private in the Boundary-Scan Description Language (BSDL). Contrast: public.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

10
Copyright © 2013 IEEE. All rights reserved.

power-up reset: A reset of test or system logic that occurs when the power supply goes from OFF to ON. This can be
achieved by design of latches that causes them to always power up in a specific state, or by an ON-component or
OFF-component circuit that generates an asynchronous reset signal that stays active for some nontrivial time after the
power supply has reached its operating voltage. Syn.: power-on reset (POR).

public: A design-specific feature, documented in the component data sheet or in the Boundary-Scan Description
Language (BSDL), that may be used by purchasers of the component. In the context of this standard, any instruction
not defined as private is public. Contrast: private.

register: Most often a Test Data Register, which is accessed by one or more specific instructions. (See Clause 9.)

reset: The establishment of an initial logic condition that can be either logic 0 or logic 1, as determined by the
context.

rising edge: A transition from a low to a high logic level. In positive logic, a change from logic 0 to logic 1. Events
that are specified to occur on the rising (falling) edge of a signal should be completed within a fixed (frequency-
independent) delay, specified by the component supplier.

sample: To capture the value of a signal at a specific moment in time, such as defined by a clock edge.

scan design: A design technique that introduces shift-register paths into digital electronic circuitry, providing
controllability and observability in deeply embedded regions of circuity and thereby improving testability.

scan path: The shift-register path through a circuit designed using the scan design technique.

second source: In the event that several vendors offer pin-for-pin compatible components, second-source suppliers
are vendors of the component other than the prime source.

segment: A set of contiguous (in terms of the scan chain) register bits obeying the rules for Test Data Registers and
from which a Test Data Register may be assembled. Contrast: field. (See Clause 9.)

selected test data register: A test data register is selected when it is required to operate by an instruction supplied
to the test logic.

signature: A result of a technique for compressing a sequence of logic values output from a circuit under test into a
small number of bits of data (the signature) that, when compared with stored known-good data, will indicate the
presence or absence of faults in the circuit.

stand-alone testing: A test of a component performed before it is assembled onto a board or other substrate, for
example, using automatic test equipment (ATE).

stuck-at fault: A failure in a logic circuit that causes a signal connection to be fixed at 0 or 1 regardless of the
operation of the circuitry that drives it.

system: Pertaining to the nontest function of the circuit. Contrast: test logic.

system logic: Any item of logic that is dedicated to realizing the nontest function of the component or is at the time
of interest configured to achieve some aspect of the nontest function.

system pin: A component pin that feeds, or is fed from, the on-chip system logic and carries a digital signal. This
term does not include analog signals, voltage references, or power sources.

test logic: Any item of logic that is a dedicated part of the test logic architecture or is at the time of interest
configured as part of the test logic architecture.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

11
Copyright © 2013 IEEE. All rights reserved.

test mode: The state of a component in which the component’s test logic interferes with the flow of signals to and
from the system logic. In addition, the system logic may be controlled as needed to prevent an undesired response to
system inputs, excessive heating, and so on.

three-state pin: A component output pin where the drive may be either active or inactive (for example, at high
impedance).

update: Transfer a logic value from the shift-register stage of a data register cell or an instruction register cell into
the latched parallel output stage of the cell as a consequence of the falling edge of the test clock input in the Update-
DR or Update-IR controller state, respectively.

3.2 Abbreviations and acronyms

ASIC application-specific integrated circuit
ATE automatic test equipment
ATPG automatic test pattern generation
BIST built-in self-test
BNF Backus-Naur form
BSDL Boundary-Scan Description Language (see Annex B)
 or a file containing BSDL statements
CMOS complementary metal-oxide semiconductor
DC direct current
ECID electronic chip identification
ECL emitter coupled logic
IC integrated circuit
I/O input or output
IP intellectual property, commonly used to refer to a reusable design element
IR infrared
LSB least significant bit
LSSD level-sensitive scan design
LVDS low-voltage differential signaling
MEMBIST memory built-in self-test
MSB most significant bit
PDL Procedural Description Language (see Annex C)
 or a file containing PDL statements
PGA pin-grid array
PLL phase-locked loop
POR power-on reset
PRBS pseudo-random binary sequence
RAM random access memory
SOC system-on-a-chip
TAP test access port (see Clause 4)
TCK test clock input (see 4.2)
Tcl Tool Command Language (see Annex C)
 or a file containing Tcl statements
TDI test data input (see 4.4)
TDO test data outputs (see 4.5)
TDR test data register (see Clause 9)
TEDS tranducer electronic data sheet
TMP test mode persistence (see 6.2)
TMS test mode select (see 4.3)
TRST* test reset (see 4.6)
TTL transistor–transistor logic
UUT unit under test
VHDL VHSIC Description Language

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

12
Copyright © 2013 IEEE. All rights reserved.

VHSIC very high speed integrated circuit
WBR wrapper boundary register
WBY wrapper bypass
WDR wrapper data register
WIR wrapper instruction register
WSC wrapper serial control
WSI wrapper scan in
WSO wrapper scan out
WSP wrapper serial port

3.3 Special terms

design specific: For the purpose of this standard, a test-logic element, permitted by and conforming to the rules of
this standard, added to a specific component implementation in addition to the elements required or defined by this
standard.

redundant: When applied to an element of the test logic, and in particular to boundary-scan register cells, implies
that the element could be omitted from the component without jeopardizing compliance with this standard.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

13
Copyright © 2013 IEEE. All rights reserved.

4. Test access port (TAP)

The TAP is a general-purpose port (i.e., a group of component inputs and outputs) that can provide access to many
test support functions built into a component, including the test logic defined by this standard. It is composed as a
minimum of the three input connections and one output connection required by the test logic defined by this
standard. An optional fourth input connection provides for asynchronous initialization of the test logic defined by
this standard.

4.1 Connections that form the TAP

4.1.1 Specifications

Rules

a) The TAP shall include the following connections (defined in 4.2 through 4.5): TCK, TMS, TDI, and TDO.

b) Where the TAP controller state would be indeterminate after power-up without external control, a TRST*
input shall be provided as defined in 4.6 (see also 6.1.3).

NOTE—This requires the TRST* connection unless either the logic is capable of establishing the Test-Logic-Reset state
at power up or an on-chip POR circuit is provided. See 6.1.3 for use of an on-chip POR circuit.5

c) All TAP inputs and outputs shall be dedicated connections to the component (i.e., the pins used shall not be
used for any other purpose) as long as the component is in a state compliant with this standard (defined in
4.8).

4.1.2 Description

Dedicated TAP connections are required to allow access to the full range of mandatory features of this standard.

4.2 Test clock input (TCK)

The test clock input (TCK) provides the clock for the test logic defined by this standard.

4.2.1 Specifications

Rules

a) Stored-state devices contained in the test logic shall retain their state indefinitely when the signal applied to
TCK is stopped at 0.

Recommendations

b) Since TCK inputs for many components may be controlled from a single driver, the load presented by TCK
should be as small as possible.

5 Notes in text, tables, and figures of a standard are given for information only and do not contain requirements needed to implement this
standard.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

14
Copyright © 2013 IEEE. All rights reserved.

Permissions

c) Stored-state devices contained in the test logic may retain their state indefinitely when the signal applied to
TCK is stopped at 1.

4.2.2 Description

The dedicated TCK input is included so that the serial test data path between components can be used independently
of component-specific system clocks, which may vary significantly in frequency from one component to the next. It
also permits shifting of test data concurrently with normal system operation of the component. The latter facility is
required to support the use of the TAP and test data registers in a design for on-line system monitoring. The
provision of an independent clock helps ensure that test data can be moved to or from a component without
changing the state of the on-chip system logic. The independent clock is also essential if boundary-scan registers are
to be usable for board interconnect testing in all circumstances—including cases where system clock signals are
derived in one component for use in others.

While TCK will in many cases be driven by a free-running clock with a nominal 50% duty cycle, there may be
situations where the clock needs to stop for a period. One example is when an ATE needs to fetch test data from
backup memory (e.g., disc) since some test systems are unable to keep the clock running during such an operation.
This standard requires that TCK can be stopped at 0 indefinitely without causing any change to the state of the test
logic. While the TCK signal is stopped at 0, stored-state devices are required to retain their state so that the test logic
may continue its operation when clock operation restarts. Optionally, a component also may allow TCK to be
stopped at 1 for an indefinite period.

Many parts of the test logic perform operations in response to the rising or falling edge of TCK, indicated by the use
of the phrase “on the rising (falling) edge of TCK.” These operations have to be completed within a fixed delay after
the occurrence of the relevant change at TCK, and this delay has to be specified by the component supplier.
Therefore, the phrase “on the rising (falling) edge of TCK” should be interpreted as “within a specified delay after
the rising (falling) edge of TCK.”

NOTE—In many applications, the TCK signal applied to components that conform to this standard will have a duty cycle close
to 50% (i.e., the periods that the clock spends at 0 and 1 will be equal) at a given frequency. It is expected that all propagation
delays will be such that correct operation is achieved under these circumstances (50% duty cycle at a given TCK frequency),
particularly when data are being transferred between TDO of one component and TDI of another.

4.3 Test mode select (TMS) input

The value of the signal present at TMS at the time of a rising edge at TCK determines the next state of the TAP
controller, the circuit that controls test operations.

4.3.1 Specifications

Rules

a) The signal presented at TMS shall be sampled by the test logic on the rising edge of TCK.

b) The design of the circuitry fed from TMS shall be such that an undriven input produces a logical response
identical to the application of a logic 1.

Recommendations

c) Since the TMS inputs for many components may be controlled from a single driver, the load presented by
TMS should be as small as possible.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

15
Copyright © 2013 IEEE. All rights reserved.

4.3.2 Description

Rule b) of 4.3.1 is included so that the TAP controller moves as quickly as possible into the Test-Logic-Reset
controller state when the TMS pin is not driven by an external source. For example, an off-board test controller
might not have been connected or there might be an open-circuit on a newly assembled printed circuit board. This
helps in ensuring that normal operation of the complete design can continue without interference from the test logic
(see 6.1.3). For TTL and CMOS technology designs, the rule may be met by including a pull-up resistor in the
component’s TMS input circuitry.

Signal values presented at TMS are captured by the test logic on the rising edge of TCK. It is expected that the bus
master (ATE, bus controller, etc.) will change the signal driven to the TMS inputs of connected components on the
falling edge of TCK. The waveforms shown elsewhere in this standard reflect this expectation.

4.4 Test data input (TDI)

Serial test instructions and data are received by the test logic at TDI.

4.4.1 Specifications

Rules

a) The signal presented at TDI shall be sampled into the test logic on the rising edge of TCK.

b) The design of the circuitry fed from TDI shall be such that an undriven input produces a logical response
identical to the application of a logic 1.

c) When data are being shifted from TDI toward TDO, test data received at TDI shall appear without inversion
at TDO after a number of rising and falling edges of TCK determined by the length of the instruction or test
data register selected.

4.4.2 Description

The data pins (TDI and TDO) provide for serial movement of test data through the circuit. The requirement for data
to be propagated from TDI to TDO without inversion is included to simplify the operation of components
compatible with this standard linked on a printed circuit board.

Values presented at TDI are clocked into the selected register (instruction or test data) on a rising edge of TCK. It is
expected that the bus master (ATE, bus controller, etc.) will change the signal driven to the TDI input of the first
component on a serial board-level path on the falling edge of TCK. The waveforms shown elsewhere in this
standard reflect this expectation.

Rule b) of 4.4.1 is included so that open-circuit faults in the board-level serial test data path cause a defined logic
value to be shifted into the test logic. Note that when this constant value is shifted into the instruction register, the
bypass register will be selected (as will be discussed further in 8.4). For TTL and CMOS technology designs, this
rule may be met by inclusion of a pull-up resistor in the component’s TDI input circuitry.

4.5 Test data output (TDO)

TDO is the serial output for test instructions and data from the test logic defined in this standard.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

16
Copyright © 2013 IEEE. All rights reserved.

4.5.1 Specifications

Rules

a) Changes in the state of the signal driven through TDO shall occur only on the falling edge of either TCK or
the optional TRST*.

b) The TDO driver shall be set to its inactive drive state except when the shifting of data is in progress (see
6.1.2).

NOTE—Valid states for this signal are high (1), low (0), and undriven (Z).

4.5.2 Description

To help ensure a race-free operation, changes on TAP inputs (TMS and TDI) are clocked into the test logic defined
by this standard on the rising edge of TCK while changes at the TAP output (TDO) occur on the falling edge of
TCK. Similarly, for test logic able to drive or receive signals from system pins (e.g., the boundary-scan register),
signals driven out of the component from the test logic change state on the falling edge of TCK, while those entering
the test logic are clocked in on the rising edge (as will be discussed in 9.3.2).

The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK. In the
illustrations given in this document, edge-operated circuit designs are generally used. For an edge-operated
implementation, note that the TDO output changes shall be delayed until the falling edge of TCK, which can be
achieved by including a flip-flop clocked by the falling edge of TCK in the TDO output buffer. Where the registers
are constructed from master and slave latches controlled by non-overlapping clocks, the retiming required by Rule a)
of 4.5.1 is an inherent feature of the design.

The ability of TDO to switch between active and inactive drive is required to allow parallel, rather than serial,
connection of board-level test data paths in cases where this is required. In TTL or CMOS technologies, for
example, this requirement may be met through use of a three-state output buffer.

4.6 Test reset input (TRST*)

The optional TRST* input provides for asynchronous initialization, principally at power-up, of the TAP controller
(see 6.1.3), the test mode persistence (TMP) controller (see 6.2.3), and possibly other test logic. It has a broader
effect than simply moving the TAP controller state machine to the Test-Logic-Reset state. TRST* is required when
the test logic does not power-up in a known and controlled state, either because of the nature of the underlying
technology or because there is no on-chip power-up reset generator.

4.6.1 Specifications

Rules

a) If TRST* is included in the TAP, the TAP controller and TMP controller shall be asynchronously reset to
the Test-Logic-Reset and Persistence-Off controller states, respectively, when a logic 0 is applied to TRST*
(see 6.1.3).

NOTE 1—As a result of this event, all other test logic in the component is asynchronously reset to the state required in
the Test-Logic-Reset controller state.

b) While compliance is enabled and TRST* is included in the TAP, then the design of the circuitry fed from
that input shall be such that an undriven TRST* input produces a logical response identical to the application
of a logic 1.

NOTE 2—The logical response can only be detected and only needs to be present while the TAP is in IEEE 1149.1-
compliant operation. See 4.8 for details.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

17
Copyright © 2013 IEEE. All rights reserved.

c) TRST* shall not be used to initialize any system logic within the component.

d) The TRST* input shall be included if on-chip circuitry does not force a reset of the test logic upon power-
up.

NOTE 3—See 6.1.3 for further information.

Recommendations

e) To help ensure deterministic operation of the test logic, TMS should be held at 1 while the signal applied at
TRST* changes from 0 to 1.

4.6.2 Description

Initialization of the TAP controller in turn causes asynchronous initialization of other test logic included in the
design, as discussed in the subsequent clauses of this standard.

Rule b) of 4.6.1 is included to help ensure that, in the case of an unterminated TRST* input, the test logic operation
can proceed under control of signals applied at the TMS and TCK inputs. For TTL or CMOS compatible designs,
this rule may be met by inclusion of a pull-up resistor in the TRST* input circuitry of the component.

Rule c) of 4.6.1 allows the test logic to be reset independently of the on-chip system logic, and to be independently
disabled using methods as shown in Figure 4-5.

Recommendation e) of 4.6.1 is included to allow the test logic to respond predictably when the signal applied to
TRST* changes from 0 to 1. If rising edges occur simultaneously at TRST* and TCK when a logic 0 is applied to
TMS, a race could occur, and the TAP controller could either remain in the Test-Logic-Reset controller state or enter
the Run-Test/Idle controller state.

4.7 Interconnection of components compatible with this standard

4.7.1 Specifications

Permissions

a) The TAP input and output connections may be interconnected at the board level in a manner appropriate to
the assembled product.

4.7.2 Description

Figure 4-1 through Figure 4-4 illustrate four alternative board-level interconnections of components conforming to
this standard.

In each example, the test bus may be controlled either by an ATE system or by a component that provides an
interface to a test bus at the next level of product assembly (for example, at the board/backplane interface). In this
standard, the device that controls the board-level test bus is referred to as the bus master.

Note that the minimum configuration without TRST* (shown in Figure 4-1) contains:

⎯ Two broadcast signals (TMS and TCK) driven by the testability bus master to all slaves in parallel

⎯ A serial path formed by a daisy-chain connection of the serial test data pins (TDI and TDO)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

18
Copyright © 2013 IEEE. All rights reserved.

Figure 4-1—Serial connection using one TMS signal

Figure 4-2—Serial/parallel connection using two TMS signals

The hybrid serial/parallel connection shown in Figure 4-2 uses a pair of coordinated TMS signals (TMS1 and
TMS2) to scan data through only one serial path at a given time. This configuration makes use of the three-state
feature of the TDO output pin where only the components that are scanning data have TDO in the active drive state.

Figure 4-3 shows the four components connected to give four separate serial paths through the complete board
design. These paths have separate TDI and TDO signals, but they can be controlled from common TCK and TMS
signals.

Figure 4-3—Multiple independent paths with common TMS and TCK signals

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

19
Copyright © 2013 IEEE. All rights reserved.

When choosing a configuration for the board-level interconnection of components conforming to this standard, it is
necessary to consider the capability of test equipment and test pattern generators. It is fully expected that any test
equipment and/or test pattern generators that intend to support a test methodology based on the boundary-scan
architecture defined by this standard would be able to test the board-level configuration of
Figure 4-1 since the degenerate form of this configuration is a single conformant component. On the other hand,
some test equipment and/or test pattern generators may not be able to test the board-level configurations of
Figure 4-2 and Figure 4-3.

Figure 4-4 illustrates the board-level interconnections when the optional TRST* pin is present. TRST* is further
connected to one of the three alternatives as shown in Figure 4-5.

Figure 4-4—Serial connection using one TMS and TRST*

Figure 4-5—Three examples supporting board-level TRST*

Figure 4-5 illustrates three examples of properly connecting TRST* at the board level. Figure 4-5(A) shows a
minimal implementation of connecting the TRST* through a resistor to ground. Illustrated inside the dashed box is
an optional buffer, which may be used to reliably drive TRST* to logic 0, and to eliminate any current path through
the pull-up in the IC receiver and the pull-down resister on the board. Figure 4-5(B) does not support an external bus
master connection on TRST*, but it should provide an access point on the board (shown by the stub on the TRST*
net) for the ATE. A contact pad is shown. Figure 4-5(C) shows a combination of test bus master and on-board
power-up-reset generator. Figure 4-5(B) and Figure 4-5(C) illustrate methods to support TRST* in low-power
environments. The “power-up reset generator” in Figure 4-5 is any circuit without a TAP and that can hold its output
low until power is stable and then drive its output to a logic high.

Power-up
reset

generator
(0 1)

Power-up
reset

generator
(0 1)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

20
Copyright © 2013 IEEE. All rights reserved.

Figure 4-6—Examples of incorrect board-level TRST* connections

Figure 4-6 illustrates three methods, which incorrectly connect TRST* at the board level. Do not implement a
TRST* tied to a pull-up or a pull-up on the input of a buffer driving TRST*as shown in Figure 4-6(A). Do not leave
TRST* unconnected, as in Figure 4-6(B). Do not tie TRST* to ground or ground the input of a buffer driving
TRST*, as in Figure 4-6(C). In Figure 4-6(A) and Figure 4-6(B), there is no guarantee that a logic 0 will be applied
to TRST*, so there is a possibility of the test logic interfering with normal system operation. In Figure 4-6(C), the
test logic specified by this standard is continuously reset and disabled.

4.8 Subordination of this standard within a higher level test strategy

While the test logic specified by this standard has been designed to be extensible to meet the particular needs of
individual designers or companies (for example, by the flexibility of the instruction register), occasions may arise
when it will be desirable to terminate compliance with this standard by a component temporarily and enable
complementary test functionality. One example would be a component using LSSD for use during “stand-alone”
component testing, which cannot be simultaneously operated with the test functionality defined by this standard
(which is required to support testing of boards onto which the components implementing the two testing techniques
will be assembled).

This subclause defines how compliance with this standard may be “switched on” or “switched off.” The rules
require the change of test functionality to be under the control of signals applied at one or more component pins.
Compliance has to be effected by a single logic pattern applied at these pins, not by a sequence of such patterns.

4.8.1 Specifications

Rules

a) If a component is to be designed having both:

1) Test functionality compliant with this standard and

2) Other test functionality that is not to be controlled via the test circuitry and the means of control
defined in this standard,

then compliance with this standard shall be enabled/disabled by one or more steady-state logic patterns
(called “compliance-enable patterns”) applied at a fixed set of component inputs (called “compliance-enable
inputs.”)

NOTE 1—The steady-state combinational logic pattern may be chosen from a set of such “compliance-enable” patterns,
all of which have an equivalent effect [see permission h) of 4.8.1].

b) Any one of the compliance-enable patterns, when applied to the compliance-enable inputs without regard to
preceding patterns on these inputs, shall cause the component to be fully compliant with this standard.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

21
Copyright © 2013 IEEE. All rights reserved.

c) Once compliance with this standard is established by the application of a compliance-enable pattern at the
compliance-enable inputs, compliance to this standard shall be maintained continuously until the logic
pattern applied at the compliance-enable inputs ceases to be a compliance-enable pattern.

NOTE 2—This rule implies that transition between compliance-enable patterns must produce no untoward effects on
compliance. Limiting the number of compliance-enable patterns is one way to prevent problems from arising.

NOTE 3—The rules in other subclauses of this standard apply only when compliance is enabled. Therefore, where
compliance-enable inputs are provided, each rule should be considered to be prefaced by “When compliance to this
standard is enabled.” For example, rule c) of 4.1.1 should be read as stipulating that the TAP pins are dedicated
connections and may not be used for any other purpose while compliance to this standard is enabled. When compliance
is disabled, the TAP connections may be reused—for example, to provide controls for an alternative test mode of
component operation.

NOTE 4—The event of enabling compliance with this standard by changing the logic pattern applied at the compliance-
enable inputs of a component need not have an effect on the component equivalent to that of power-up of the
component.

d) Compliance-enable inputs shall be dedicated inputs to the component and shall not be used for any other
purpose.

Recommendations

e) The number of compliance-enable inputs provided on a component should be minimized.

Permissions

f) A component may have zero, one, or more compliance-enable inputs.

g) If a component with compliance-enable input(s) has a TRST* line included in its TAP implementation, the
design of the component may require that the TRST* input be driven low at the time of application of a
compliance-enable pattern in order to achieve reset of the relevant test logic concurrent with the operation of
that test logic.

h) A component may have several compliance-enable patterns, all of which have an equivalent effect.

i) The value applied at the compliance-enable inputs may be changed from one compliance-enable pattern to
another while the test logic is active.

4.8.2 Description

If compliance-enable inputs are provided, there shall exist at least one logic pattern that, when applied at the
compliance-enable inputs, will result in the component becoming fully compliant with this standard. This pattern
must be applied continuously while the test logic is active. Where multiple patterns are provided that will each result
in the component becoming fully compliant with this standard, it is permitted to change patterns while the test logic
is active as long as such pattern changes cannot cause momentary loss of compliance. Loss of compliance in the
middle of a test could make testing impossible.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

22
Copyright © 2013 IEEE. All rights reserved.

5. Test logic architecture

This clause defines the top-level design of the test logic accessed through the TAP. Detailed design requirements for
the various blocks contained within the test logic design are contained in the subsequent clauses of this standard.

5.1 Test logic design

5.1.1 Specifications

Rules

a) The following elements shall be contained in the test logic architecture:

1) A TAP controller (see 6.1)

2) An instruction register (see Clause 7)

3) A group of test data registers (see Clause 9)

b) The instruction and test data registers shall be separate shift-register based paths that are connected in
parallel and have a common serial data input and a common serial data output connected to the TAP TDI
and TDO signals, respectively.

c) The selection between the alternative instruction and test data register paths between TDI and TDO shall be
made under the control of the TAP controller, as defined in 6.1.2.

Permissions

d) The test logic architecture may also include a test mode persistence controller element as defined in 6.2.

5.1.2 Description

A conceptual view of the top-level design of the test logic architecture defined by this standard is shown in
Figure 5-1. This figure, and the others included in the descriptive material contained in this standard, are examples
intended only to illustrate a possible embodiment of this standard. These figures do not indicate a preferred
implementation.

Key features of the design are:

⎯ The TAP controller receives TCK and interprets the signals on TMS. The TAP controller generates clock or
control signals or both as required for the instruction and test data registers and for other parts of the
architecture. The specification for the TAP controller is contained in 6.1.

⎯ The TAP controller controls the operation (reset, shift, capture, update) while instruction decoding provides
the context of the operation (i.e., to which register and associated test logic the action applies).

⎯ The instruction register allows the instruction to be shifted into the design. The instruction is used to select
the test to be performed or the test data register to be accessed or both. The specification for the instruction
register is contained in Clause 7.

⎯ The instruction register is never undefined and always selects a single test data register to connect between
TDI and TDO.

⎯ The group of test data registers. The group of test data registers shall include a bypass and a boundary-scan
register. It also may include any of the optional standard test data registers: the device identification,
initialization data, initialization status, TMP control, and reset selection registers; and further optional design
specific test data registers. A circuit controlled by instruction decoding selects the test data register to drive
the output TDO. Further information on the structure of the group of test data registers is contained in
Clause 9.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

23
Copyright © 2013 IEEE. All rights reserved.

⎯ An optional test mode persistence controller receives TCK and some decodes of the instruction register, and
modifies some control signals generated by the TAP controller. It is intended to allow the component to be
held in a test mode, and its specification is contained in 6.2.

Figure 5-1—Conceptual schematic of the on-chip test logic

Note that, depending on the style of implementation of the test logic defined by this standard, circuitry may be
required, in the output stage shown in Figure 5-1, to retime the signal passing through it to occur on the falling edge
of TCK.

5.2 Test logic realization

5.2.1 Specifications

Rules

a) The TAP controller, the optional TMP controller, the instruction register, and the associated circuitry
necessary for control of the instruction and test data registers shall be dedicated test logic (i.e., these test
logic blocks shall not perform any system function).

b) If test access is required to a test data register without causing any interference to the operation of the on-
chip system logic, then the circuitry used to construct that test data register shall also be dedicated test logic.

5.2.2 Description

While the example implementations contained in this standard show the various test data registers to be separate
physical entities, circuitry may be shared between the test data registers provided that the rules contained in this
standard are met. For example, this would allow the device identification register and the boundary-scan register to
share shift-register stages; in which case, the requirements of this standard would be met by operating the common
circuitry in two different modes—the device identification register mode and the boundary-scan register mode.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

24
Copyright © 2013 IEEE. All rights reserved.

6. Test logic controllers

The test logic controllers are finite state machines that control the sequence of operations of the circuitry defined by
this standard.

The mandatory TAP controller is a synchronous finite state machine that responds to changes at the TMS and TCK
signals of the TAP, controls the behavior of the test logic, and maintains synchronization across all components on a
test scan chain to permit shifting, capturing, and updating of data. It is described in 6.1.

The optional TMP controller is a synchronous finite state machine that responds to specific instructions and can
force the component to remain in its test mode regardless of the currently active instruction. It is described in 6.2.

6.1 TAP controller

6.1.1 TAP controller state diagram

6.1.1.1 Specifications

Rules

a) The state diagram for the TAP controller shall be as shown in Figure 6-1.

NOTE—The value shown adjacent to each state transition in this figure represents the signal present at TMS at the time of a
rising edge at TCK.

Figure 6-1—TAP controller state diagram

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

25
Copyright © 2013 IEEE. All rights reserved.

b) All state transitions of the TAP controller shall occur based on the value of TMS at the time of a rising edge
of TCK.

c) Actions of the test logic (instruction register, test data registers, etc.) shall occur on either the rising or the
falling edge of TCK in each controller state as shown in Figure 6-2.

Figure 6-2—Timing of actions in a controller state

6.1.1.2 Description

The behavior of the TAP controller and other test logic in each of the controller states is briefly described as follows.
Rules governing the behavior of the test logic defined by this standard in each controller state are contained in later
clauses of this standard.

Test-Logic-Reset

If the optional TMP controller is either not provided or in the Persistence-Off state, the test logic is placed in a
known state so that either normal operation of the on-chip system logic (i.e., in response to stimuli received through
the system pins only) can continue unhindered. This is primarily achieved by initializing the instruction register to
contain the IDCODE instruction or, if the optional device identification register is not provided, the BYPASS
instruction (see 7.2). If the TMP controller is provided and is in the Persistence-On state, the component may be
held in test mode in anticipation of further tests.

This state has no direct effect on system logic. During a power-up sequence, where the TAP remains in this state, or
no instructions defined as interfering with flow of signals between the system logic and the I/O are made active, the
component will perform its designed function. However, if one or more instructions have been executed that
interfere with the flow of signals to and from the system logic (such as EXTEST), then the system logic may be in an
indeterminate state, and reconnecting the pins may result in unpredictable behavior.

No matter what the original state of the controller, it will enter Test-Logic-Reset when TMS is held high for at least
five rising edges of TCK. The controller remains in this state while TMS is high. If the controller should leave the
Test-Logic-Reset controller state as a result of erroneous signal values on the TMS or TCK signals (for example, a
glitch due to external interference), it will return to the Test-Logic-Reset state after three to five rising edges of TCK
with the TMS line at the intended high logic level. The intended operation of the test logic is such that no
disturbance is caused to on-chip system logic operation as the result of such an error. On leaving the Test-Logic-
Reset controller state, the controller moves into the Run-Test/Idle controller state where no action will occur because
the current instruction has been set to select operation of the device identification or bypass register (see 7.2). The
test logic is also inactive in the Select-DR-Scan and Select-IR-Scan controller states.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

26
Copyright © 2013 IEEE. All rights reserved.

Note that the TAP controller will also be forced to the Test-Logic-Reset controller state by applying a low logic level
at TRST*, if such is provided, or at power-up (see 6.1.3).

Run-Test/Idle

A controller state between scan operations. Once entered, the controller will remain in the Run-Test/Idle state as
long as TMS is held low. When TMS is high and a rising edge is applied at TCK, the controller moves to the Select-
DR-Scan state.

In the Run-Test/Idle controller state, activity in selected test logic occurs only when certain instructions are present.
For example, the RUNBIST instruction causes a self-test of the on-chip system logic to execute in this state (see
8.10). Self-tests selected by instructions other than RUNBIST also may be designed to execute while the controller is
in this state.

For instructions that do not cause functions to execute in the Run-Test/Idle controller state, time spent in this state
constitutes a delay (i.e., Idle) and all test data registers selected by the current instruction shall retain their previous
state.

The instruction does not change while the TAP controller is in this state.

Select-DR-Scan

This is a temporary controller state (i.e., the controller exits this state on the next rising edge of TCK) in which all
test data registers selected by the current instruction retain their previous state.

If TMS is held low and a rising edge is applied to TCK when the controller is in this state, the controller moves into
the Capture-DR state and a scan sequence for the selected test data register is initiated. If TMS is held high and a
rising edge is applied to TCK, the controller moves on to the Select-IR-Scan state.

The instruction does not change while the TAP controller is in this state.

Select-IR-Scan

This is a temporary controller state in which all test data registers selected by the current instruction retain their
previous state.

If TMS is held low and a rising edge is applied to TCK when the controller is in this state, then the controller moves
into the Capture-IR state and a scan sequence for the instruction register is initiated. If TMS is held high and a rising
edge is applied to TCK, the controller returns to the Test-Logic-Reset state.

The instruction does not change while the TAP controller is in this state.

Capture-DR

This is a temporary controller state in which data may be parallel-loaded into the shift-capture path of test data
registers selected by the current instruction on the rising edge of TCK that causes the TAP controller to exit this
state. If a test data register selected by the current instruction does not have a parallel input, or if capturing is not
required for the selected test, the register retains its previous state unchanged.

The instruction does not change while the TAP controller is in this state.

When the TAP controller is in this state and a rising edge is applied to TCK, the controller enters either the Exit1-
DR state if TMS is held at 1 or the Shift-DR state if TMS is held at 0.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

27
Copyright © 2013 IEEE. All rights reserved.

Shift-DR

In this controller state, the test data register connected between TDI and TDO as a result of the current instruction
shifts data from TDI, one stage toward its serial output, and to TDO on each rising edge of TCK. Test data registers
that are selected by the current instruction but are not placed in the serial path retain their previous state unchanged.

The instruction does not change while the TAP controller is in this state.

When the TAP controller is in this state and a rising edge is applied to TCK, the controller either enters the Exit1-
DR state if TMS is held at 1 or remains in the Shift-DR state if TMS is held at 0. The last shift of the test data
register occurs on this same rising edge.

Exit1-DR

This is a temporary controller state. If TMS is held high, a rising edge applied to TCK while in this state causes the
controller to enter the Update-DR state, which terminates the scanning process. If TMS is held low and a rising edge
is applied to TCK, the controller enters the Pause-DR state.

All test data registers selected by the current instruction retain their previous state unchanged.

The instruction does not change while the TAP controller is in this state.

Pause-DR

This controller state allows shifting of the test data register in the serial path between TDI and TDO to be
temporarily halted. All test data registers selected by the current instruction retain their previous state unchanged.

The controller remains in this state while TMS is low. When TMS goes high and a rising edge is applied to TCK,
the controller moves on to the Exit2-DR state.

The instruction does not change while the TAP controller is in this state.

Exit2-DR

This is a temporary controller state. If TMS is held high and a rising edge is applied to TCK while in this state, the
scanning process terminates and the TAP controller enters the Update-DR controller state. If TMS is held low and a
rising edge is applied to TCK, the controller enters the Shift-DR state.

All test data registers selected by the current instruction retain their previous state unchanged.

The instruction does not change while the TAP controller is in this state.

Update-DR

This is a temporary controller state. Some test data registers may be provided with a latched parallel output to
prevent changes at the parallel output while data are shifted in the associated shift-capture path in response to certain
instructions (e.g., EXTEST, INTEST, and RUNBIST). Data are latched onto the parallel output of these test data
registers from the shift-capture path on the falling edge of TCK in the Update-DR controller state. The data held at
the latched parallel output should not change other than in this controller state unless operation during the execution
of a self-test is required (e.g., during the Run-Test/Idle controller state in response to a design-specific public
instruction).

All shift-capture paths in test data registers selected by the current instruction retain their previous state unchanged.

The instruction does not change while the TAP controller is in this state.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

28
Copyright © 2013 IEEE. All rights reserved.

When the TAP controller is in this state and a rising edge is applied to TCK, the controller enters either the Select-
DR-Scan state if TMS is held at 1 or the Run-Test/Idle state if TMS is held at 0.

Capture-IR

This is a temporary controller state in which a pattern of fixed logic values is parallel-loaded into specific bits of the
instruction register shift-capture path on the rising edge of TCK that causes the TAP controller to exit this state. In
addition, design-specific data may be parallel-loaded into shift-capture path that are not required to be set to fixed
values (see Clause 7).

Test data registers selected by the current instruction retain their previous state. The instruction does not change
while the TAP controller is in this state.

When the TAP controller is in this state and a rising edge is applied to TCK, the controller enters either the Exit1-IR
state if TMS is held at 1 or the Shift-IR state if TMS is held at 0.

Shift-IR

In this controller state, the shift-register contained in the instruction register is connected between TDI and TDO and
shifts data from TDI, one stage toward its serial output, and to TDO on each rising edge of TCK.

Test data registers selected by the current instruction retain their previous state. The instruction does not change
while the TAP controller is in this state.

When the TAP controller is in this state and a rising edge is applied to TCK, the controller either enters the Exit1-IR
state if TMS is held at 1 or remains in the Shift-IR state if TMS is held at 0. The last shift of the instruction register
occurs on this same rising edge.

Exit1-IR

This is a temporary controller state. If TMS is held high, a rising edge applied to TCK while in this state causes the
controller to enter the Update-IR state, which terminates the scanning process. If TMS is held low and a rising edge
is applied to TCK, the controller enters the Pause-IR state.

Test data registers selected by the current instruction retain their previous state. The instruction does not change
while the TAP controller is in this state and the instruction register retains its state.

Pause-IR

This controller state allows shifting of the instruction register to be halted temporarily.

Test data registers selected by the current instruction retain their previous state. The instruction does not change
while the TAP controller is in this state and the instruction register retains its state.

The controller remains in this state while TMS is low. When TMS goes high and a rising edge is applied to TCK,
the controller moves on to the Exit2-IR state.

Exit2-IR

This is a temporary controller state. If TMS is held high and a rising edge is applied to TCK while in this state,
termination of the scanning process results, and the TAP controller enters the Update-IR controller state. If TMS is
held low and a rising edge is applied to TCK, the controller enters the Shift-IR state.

Test data registers selected by the current instruction retain their previous state. The instruction does not change
while the TAP controller is in this state and the instruction register retains its state.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

29
Copyright © 2013 IEEE. All rights reserved.

Update-IR

This is a temporary controller state in which the bits in the instruction register shift-capture path are latched onto the
parallel output on the falling edge of TCK in this controller state. Once the new value has been latched, it becomes
the current instruction.

Test data registers selected by the current instruction retain their previous state.

When the TAP controller is in this state and a rising edge is applied to TCK, the controller enters the Select-DR-
Scan state if TMS is held at 1 or the Run-Test/Idle state if TMS is held at 0.

General

The Pause-DR and Pause-IR controller states are included so that shifting of data through the test data or instruction
register can be halted temporarily. For example, this might be necessary to allow an ATE system to reload its
memory from disc during application of a long test sequence.

The TAP controller states include the three basic actions required for testing: stimulus application (Update-DR),
execution (Run-Test/Idle), and response capture (Capture-DR). However, not all these actions are required for every
type of test. Table 6-1 lists the actions required for key types of test supported by this standard.

Table 6-1—Use of controller states for different test types

Test type Action required in this controller state
 Update-DR Run-Test/Idle Capture-DR
Boundary-scan external test (e.g., EXTEST) Yes No Yes
Boundary-scan internal test (e.g., INTEST) Maybe No Yes
Boundary-scan PRELOAD Yes No Maybe
Boundary-scan SAMPLE Maybe No Yes
Boundary-scan INIT_SETUP, INIT_SETUP_CLAMP Yes No Maybe
Boundary-scan INIT_RUN No Maybe Yes
Internally controlled built-in tests (e.g. RUNBIST) No Yes Maybe
Internal scan test (i.e., a design-specific
PUBLIC instruction)

Maybe No Yes

In Table 6-1, an entry of “Yes” or “No” indicates that the rules for that instruction require or do not require specific
actions. An entry of “Maybe” indicates that the rules provide a choice and one choice will require action and another
choice will not.

For scan testing, the stimulus is made available for use at the end of shifting or, if a parallel output latch is included,
by updating the parallel output in the Update-DR controller state. The results of the test are captured into the test
data register during the Capture-DR controller state.

For internally controlled self-testing circuit designs, the starting values of the registers are available at the end of
shifting and no parallel output latch is required. The registers should operate under control of the internal test logic
during Run-Test/Idle. Assuming the result is already contained in a test data register, no action is required during the
Capture-DR controller state.

For an internal scan test, the target register consists of a serial concatenation of storage elements that support the
normal system operation of the component. The construction of such a register is beyond the scope of this standard,
and parallel output latches may or may not be present in a given implementation.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

30
Copyright © 2013 IEEE. All rights reserved.

6.1.2 TAP controller operation

6.1.2.1 Specifications

Rules

a) The TAP controller shall change state only in response to the following events:

1) A rising edge of TCK

2) A transition to logic 0 at the TRST* input (if provided)

3) Power-up of the integrated circuit containing the TAP

b) The TAP controller shall generate signals to control the operation of the test data registers, instruction
registers, and associated circuitry as defined in this standard (Figure 6-3 and Figure 6-4).

NOTE 1—In Figure 6-3 and Figure 6-4, the assumption is made that the signals applied to TMS and TDI change state on
the falling edge of TCK. The time at which these signals change state is not defined by this standard, but it should be
such that the setup and hold requirements of TMS and TDI are met. It is further assumed that the design includes the
optional device identification register. Therefore, the figures show the IDCODE instruction being set onto the output of
the instruction register in the Test-Logic-Reset controller state. If the device identification register is not included in the
design, the output of the instruction register will be set to the BYPASS instruction in the Test-Logic-Reset controller state.

c) The TDO output buffer and the circuitry that selects the register output fed to TDO shall be controlled as
shown in Table 6-2.

d) Changes at TDO defined in Table 6-2 shall occur on the falling edge of TCK after entry into the state.
NOTE 2—The TDO driver is actually active from the first falling edge of TCK in the TAP controller state shown to the
first falling edge of TCK after leaving the TAP controller state shown. In other words, the TDO is enabled for a period
one-half TCK cycle behind the actual TAP controller state.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

31
Copyright © 2013 IEEE. All rights reserved.

Figure 6-3—Test logic operation: instruction scan

T
C

K

T
M

S

T
A

P
 C

o
nt

ro
lle

r
S

ta
te

T
D

I

P
ar

al
le

l I
np

ut
 to

 I
R

IR
 S

hi
ft

R
eg

is
te

r

P
ar

a
lle

l O
ut

p
ut

 o
f I

R

P
ar

a
lle

l I
np

ut
 t

o
T

D
R

T
D

R
 S

hi
ft

R
eg

is
te

r

T
D

O
Test-Logic-Reset

Run-Test/Idle

Select-DR-Scan

Select-IR-Scan

Capture-IR

(T
im

e)

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Shift-IR

Exit1-IR

Update-IR

Run-Test/Idle

ID
C

O
D

E
N

ew
 In

st
ru

ct
io

n

T
D

O
 In

ac
tiv

e

T
D

O
 D

at
a

O
ut

(f

ro
m

 In
st

ru
ct

io
n

re
gi

st
er

)

P
ar

al
le

l O
ut

pu
t

of
 T

D
R

O
ld

 D
at

a

D
on

’t
ca

re
 o

r
u

nd
ef

in
ed

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

32
Copyright © 2013 IEEE. All rights reserved.

Figure 6-4—Test logic operation: data scan

Test-Logic-Reset
T

C
K

T
M

S

T
A

P
 C

on
tr

ol
le

r
S

ta
te

T
D

I

P
ar

a
lle

l I
np

u
t t

o
IR

IR
 S

hi
ft

R
eg

is
te

r

P
ar

a
lle

l O
ut

pu
t o

f
IR

P
ar

al
le

l I
np

ut
 to

 T
D

R

T
D

R
 S

hi
ft

R
eg

is
te

r

T
D

O
Run-Test/Idle

Select-DR-Scan

Capture-DR

(T
im

e)

Shift-DR

Exit1-DR

Exit1-DR

Run-Test/Idle

C
ur

re
nt

 In
st

ru
ct

io
n

ID
C

O
D

E

T
D

O
 In

ac
tiv

e

T
D

O
 D

a
ta

 O
u

t
(f

ro
m

 s
e

le
ct

ed

te
st

 d
a

ta
 r

eg
is

te
r)

D
on

’t
ca

re
 o

r
un

de
fin

ed

P
ar

al
le

l O
ut

p
ut

 o
f T

D
R

O
ld

 D
at

a

Pause-DR

Exit2-DR

Shift-DR

Update-DR

Select-IR-Scan

Select-IR-Scan

N
ew

 D
at

a

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

33
Copyright © 2013 IEEE. All rights reserved.

Table 6-2—Test logic operation in each controller state

Controller State Register Selected to Drive TDO TDO Driver
Test-Logic-Reset Undefined Inactive
Run-Test/Idle Undefined Inactive
Select-DR-Scan Undefined Inactive
Select-IR-Scan Undefined Inactive
Capture-IR Undefined Inactive
Shift-IR Instruction Active
Exit1-IR Undefined Inactive
Pause-IR Undefined Inactive
Exit2-IR Undefined Inactive
Update-IR Undefined Inactive
Capture-DR Undefined Inactive
Shift-DR Test data Active
Exit1-DR Undefined Inactive
Pause-DR Undefined Inactive
Exit2-DR Undefined Inactive
Update-DR Undefined Inactive

6.1.2.2 Description

An example of a circuit that meets the requirements is shown in Figure 6-5 and Figure 6-6. This circuit generates a
range of clock and control signals required not only to control the selection between the alternative instruction and
test data register paths and the activity of TDO (as defined in Table 6-2), but also to control the example
implementations of other items of test logic that are contained in this standard.

The circuit in Figure 6-5 generates the various control signals used by the example circuits illustrated elsewhere in
this standard. Note that the Select signal would be used to control the multiplexer shown in Figure 5-1 and that the
Enable signal would be used for three-state control of the TDO output. These control signals support both TDR
clocking styles: gated clock and free-running clock with data wrap-back. Gated clocks Clock-DR and Update-DR
and state decode Shift-DR support the gated clock style. State decodes Shift-DR, Capture-DR, and Update-DR state
support the free-running clock style. The state decodes Shift-DR and Capture-DR are both delayed to the falling
TCK edge so that they are valid when TCK rises.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

34
Copyright © 2013 IEEE. All rights reserved.

Figure 6-5—TAP controller implementation—state registers and output logic

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

35
Copyright © 2013 IEEE. All rights reserved.

Figure 6-6—TAP controller implementation—next state logic

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

36
Copyright © 2013 IEEE. All rights reserved.

The assignment of controller states in the example implementation is given in Table 6-3.

Table 6-3—State assignments for example TAP controller

The Boolean equations for the next state logic in Figure 6-5 and Figure 6-6 are as follows:

 ND := DC* + DB + T*CB* + D*CB*A*
 NC := CB* + CA + TB*
 NB := T*BA* + T*C* + T*D*B + T*D*A* + TCB* + TDCA
 NA := T*C*A + TB* + TA* + TDC

where
 T = value present at TMS

Figure 6-7 shows the operation of this controller implementation through instruction and test data register scan
cycles.

Controller State DCBA (hex)

Test-Logic-Reset F

Exit2-DR 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

Exit1-DR

Shift-DR

Pause-DR

Select-IR-Scan

Update-DR

Capture-DR

Select-DR-Scan

Exit1-IR

Shift-IR

Pause-IR

Run-Test/Idle

Exit2-IR

Update-IR

Capture-IR

Test-Logic-
Reset F1

Run-Test-Idle
C0

Shift-DR
2

0

Select-DR-Scan
7

Capture-DR
6

Exit1-DR
1

Pause-DR
3 0

Exit2-DR
0

Update-DR
5

0

0

1

0

1

1

0

1

1

1 0

1

Shift-IR
A

0

Select-IR-Scan
4

Capture-IR
E

Exit1-IR
9

Pause-IR
B

0

Exit2-IR
8

Update-IR
D

0

0

1

0

1

1

1

1

1 0

1

0

0

1

Instruction ColumnData Column

State diagram annotated with
hex entries from Table 6-3

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

37
Copyright © 2013 IEEE. All rights reserved.

Figure 6-7—Operation of the example TAP controller

T
C

K

T
M

S

T
D

I/
T

D
O

S
ta

te
 (

he
x)

R
es

et
*

C
lo

ck
 IR

S
hi

ft
IR

U
pd

at
e

IR

C
lo

ck
 D

R

S
h

ift
 D

R

U
pd

at
e

D
R

S
el

ec
t

E
na

bl
e

C
7

4
E

A
9

B
A

8
9

D
C

7
6

2
1

3
0

2
1

5
C

7
4

F
F

C
ap

tu
re

 D
R

U
pd

at
e

D
R

st
at

e

C
a

pt
ur

e
IR

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

38
Copyright © 2013 IEEE. All rights reserved.

6.1.3 TAP controller initialization

6.1.3.1 Specifications

Rules

a) The TAP controller shall be forced into the Test-Logic-Reset controller state at power-up either by use of the
TRST* signal or as a result of circuitry built into the test logic or both.

NOTE—If the TAP controller is to be reset at power-up using TRST*, the design of the assembled system has to apply a
logic 0 to TRST* when power is applied. Similarly, where the TAP controller is to be reset using TRST* after enabling
of compliance to this standard as described in 4.8, the design of the assembled system has to apply a logic 0 to TRST*
when compliance is enabled.

b) The TAP controller shall not be initialized by operation of any system input, such as a system reset.

c) Where a dedicated reset pin (TRST*) is provided to allow initialization of the TAP controller, initialization
shall occur asynchronously (without dependence on TCK or any other clock) when the TRST* input
changes to the low logic level.

d) Where the TAP controller is initialized at power-up by operation of circuitry built into the test logic, the
result shall be equivalent to that which would be achieved by application of a logic 0 to a TRST* input.

6.1.3.2 Description

In a board design that contains multi-sourced nets, provisions have to be made to help ensure that at power-up any
period of contention between drivers on the bus is kept within limits that cause no damage to the components on the
board. Therefore, when boundary-scan circuitry is inserted between the on-chip system logic and package pins, it
becomes essential that shortly after power-up, the test circuitry enters a state where output drivers are controlled by
the system circuitry, i.e., the Test-Logic-Reset TAP controller state and the Persistence-Off TMP controller state (see
6.2.1).

NOTE—Clause 11 contains rules that define required behavior of the boundary-scan register during power-up.

While the TAP controller will synchronously enter the Test-Logic-Reset controller state after five rising edges at
TCK with TMS held high, the worst-case time taken to reach this state may exceed that at which damage could
occur. Furthermore, it cannot be guaranteed that the clock will be running at the time at which power is applied to
the board. Therefore, the “reset at power-up” requirement is included, and its use is intended to be only for power-
up. In this standard, the term “TAP_POR*” and a signal named TAP_POR* in example implementation figures are
used to refer to whatever mechanism is used to reset the TAP (and other test components required to be reset at
power-up).

The requirement can be met in a variety of ways, for example, by inclusion of a power-up reset generator within the
integrated circuit, or by asymmetric design of the latches or registers used to construct the TAP controller. It also
could be met by inclusion of a dedicated TRST* pin for the TAP controller. However, a system reset cannot also be
used to initialize the TAP controller since this would compromise the ability to test system interconnections at the
board level using the boundary-scan circuitry. In some systems, it also may be possible to use the independence of
the system and test resets to allow sampling and examination of data after a system failure. This would require that
the test logic be reset before re-initialization of the on-chip system logic.

Where a power-up reset facility is provided within the component, this can be used to initialize both the system and
the test logic, for example, as shown in Figure 6-8.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

39
Copyright © 2013 IEEE. All rights reserved.

Figure 6-8—Example implementation of the power-up reset for on-chip system
and test logic

6.2 Test mode persistence (TMP) controller

The optional test mode persistence (TMP) controller provides a means to place and hold the component in test
mode, enabling on-chip tests and on-chip assisted external board- or system-level functional tests while on a board
or in a system. For the purpose of this standard, test mode means that the component pins are controlled from the
boundary-scan register, and the system logic is held in a safe state, as needed, while performing tests. Note that if all
of the on-chip system logic is in a reset state, then the ability to perform on-chip tests will not be achieved and it is
the responsibility of the component designer to determine the proper way to protect the component during the
Persistence-On state while allowing any desired design-specific tests to proceed.

This capability may also be used to prevent a component from attempting to return to functional operation when a
non-test mode instruction, such as BYPASS or PRELOAD, is inserted between test mode instructions such as
EXTEST or RUNBIST.

During board or system test, the TMP controller provides control over which components are in test mode and
which are not, independent of the active instruction. Such control may keep an integrated circuit, board, or system
safe until the circuit under test is either powered down or a proper reset sequence can be performed to safely bring
the integrated circuit, board, or system out of test and to make it ready for other operations.

When the optional TMP controller is implemented, the TAP_POR* reset and the Test-Logic_Reset TAP controller
reset are not equivalent. The TMP controller will keep the component in test mode even when the Test-Logic-Reset
state is entered by the TAP controller state machine transitioning, and it may prevent the reset of selected parts of
the test logic. Assertion of TAP-POR* will always reset both the TAP controller state machine and the TMP
controller state machine, thereby resetting all of the test logic and placing the component back in functional mode.

The resources required to implement the optional TMP controller include a simple state machine (see
Figure 6-9), the three instructions CLAMP_HOLD, CLAMP_RELEASE, and TMP_STATUS (see 8.20), and a 2 bit
TMP status register (see Clause 16).

6.2.1 TMP controller state diagram

6.2.1.1 Specifications

Rules

a) The state diagram for the TMP controller shall be as shown in Figure 6-9.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

40
Copyright © 2013 IEEE. All rights reserved.

Figure 6-9—Persistence controller state diagram

b) The TMP controller shall change state only in response to the following events:

1) Any rising edge of TCK when either the CLAMP_HOLD or the CLAMP_RELEASE instruction is
active (see 8.20)

2) A transition to logic 0 at the TRST* input (if provided, see Figure 6-8)

3) On-chip reset at power-up (i.e., POR; if provided, see Figure 6-8)

4) The rising edge of TCK when the bypass-escape bit of the TMP status register is asserted (it contains a
1), and the BYPASS instruction is in the Instruction Register and the TAP controller is in the Update-IR
TAP controller state (the transition is labeled “BYPASS-Escape” in Figure 6-9).

NOTE 1—Either the IDCODE instruction or the BYPASS instruction is forced into the Instruction register by entering
the Test-Logic-Reset TAP controller state according to rule e) and rule f) in 7.2.1. This is not a condition for resetting the
TMP controller state since the TAP controller state does not pass through Update-IR.

NOTE 2—Any opcode specifically identified to be BYPASS, or any that defaults to BYPASS, will satisfy this “BYPASS-
Escape” option.

NOTE 3—The TMP status register is selected for scanning by the CLAMP_HOLD instruction. See 8.20 for the
instruction definition and Clause 16 for the register definition.

c) The state of the TMP controller shall not be altered by the operation of any system input, including a system
reset input.

Recommendations

d) When the TMP controller is provided, the opcodes for the BYPASS instruction should include the all 0s
opcode in addition to the required all 1s opcode.

6.2.1.2 Description

The optional TMP controller element allows the state of the signals driven from component pins to be determined
from the boundary-scan register (and from the effects of the initialization instructions, when provided) while any
other instruction that would normally return the control of the pins to the system logic is active.

In addition, the optional TMP controller element allows the state of inputs to the system logic to be determined from
the boundary-scan register where control-and-observe boundary cells are provided (see 11.5). Other inputs to the

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

41
Copyright © 2013 IEEE. All rights reserved.

system logic will still reflect the value received from the external logic, and the component designer can provide
control of such inputs if they could adversely affect the system logic or alter a test to be run in the component.

The TMP controller has two states: Persistence-Off and Persistence-On, as shown in Figure 6-9. Either the TRST*
or on-chip Power-On Reset (POR) transitions must be provided, and they are asynchronous (un-clocked) events. The
other transitions are synchronous and occur on the rising edge of TCK. The “BYPASS-Escape” transition is taken
only when all of the following are true:

⎯ The TAP controller state is Update-IR.

⎯ The BYPASS instruction is the new instruction.

⎯ The bypass-escape bit of the TMP status register is set to its default value of 1.

Note that this assumes a half-TCK cycle for decoding the BYPASS instruction once it is loaded into the IR update
latches. The device designer is responsible for ensuring that the design meets timing requirements.

The TMP status register bypass-escape bit allows a component to escape the test mode if setting the TMP controller
to Persistence-On state were to break the TDI/TDO path of the scan chains and prevent loading the
CLAMP_RELEASE instruction. A broken scan chain will normally act as either stuck-at 0 or stuck-at 1, and if these
are both (all 0s and all 1s) encoded as the BYPASS instruction, then performing an instruction register scan and
update would force the TMP controller to the Persistence-Off state if the TMP status register bypass-escape bit were
in its default state of 1. This will occur any time that an opcode that decodes to the BYPASS instruction is in the
instruction register and the TAP controller is in the Update-IR state. This may be referred to as a “BYPASS-
Escape.”

Figure 6-10 illustrates a possible TMP controller design that meets the requirements of this clause. For an example
design of the TMP status register, see Figure 6-1.

Figure 6-10—Test mode persistence (TMP) controller example design

Figure 6-10 also shows the generation of the CHReset* signal from the TAP Reset* signal (see Figure 6-5). The
CHReset* signal will be used by all resettable boundary-scan register control cells when the TMP controller is
provided. It also may be selected for use by design-specific test data registers. Figure 6-8 shows the generation of
the TAP_POR* signal, an input to the TAP controller, from the TRST* or on-chip power-up reset generation circuit.

A prime use of the TMP controller is to override the various mode controls for the boundary-scan cells. Since there
are multiple mode signals (Mode1 through Mode7) defined in the tables in Clause 11, the effect of the TMP
controller on the mode signals is shown in those tables instead of in Figure 6-10.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

42
Copyright © 2013 IEEE. All rights reserved.

6.2.2 TMP controller operation

6.2.2.1 Specifications

Rules

a) When an instruction is active that causes the component pins to be controlled by the test logic, the TMP
controller state shall not alter the behavior of the instruction.

NOTE 1—For the instructions defined in this standard, this includes EXTEST, INTEST, RUNBIST, CLAMP, HIGHZ,
INIT_RUN, and the two instructions: CLAMP_HOLD and CLAMP_RELEASE.

b) When a design-specific instruction is active that is normally defined as interfering with the flow of signals
through the component pins to and from the system logic, then the TMP controller state of Persistence-Off
shall not alter the behavior of the instruction.

c) When any instruction is active that is normally defined as not interfering with the flow of signals through the
component pins to and from the system logic, then the TMP controller state of Persistence-On shall cause
the state of signals driven from all system output pins provided with boundary cells in any included
boundary-scan register segments (see 9.4) to be controlled by the data in those cells.

NOTE 2—The affected instructions defined in this standard include BYPASS, IDCODE, USERCODE, PRELOAD,
SAMPLE, INIT_SETUP, and IC_RESET.

d) When the TMP controller state is Persistence-On, the TAP controller state of Test-Logic-Reset shall reset
the Instruction Register as required in rule e) of 7.2.1, but it shall not reset any of the test logic controlling
the component pins, including boundary-scan register cells, the results of the initialization instructions, and
the state of any cells controlling excludable boundary register segments (see 9.4).

e) When the TMP controller state is Persistence-On, the boundary cells and the on-chip system logic shall be
controlled such that damage or other undesired conditions cannot occur as a result of signals received at the
system input or system clock input pins.

NOTE 3—If, during the Persistence-On state, some input activity could cause unsafe states internal to the device, then
appropriate portions of the on-chip system logic can be placed in a reset or “hold” state.

Permissions

f) While a design-specific instruction or group of design-specific instructions is active that requires use of
specific I/O pins, then the instruction decode or a decode of the associated test data register may override the
signal or signals placing those specific I/O in test mode when the TMP controller is in the Persistence-On
state.

6.2.2.2 Description

The optional TMP controller will hold the device in the test mode (that is, the I/O controlled by the boundary-scan
register) and, as needed, hold the system logic in a safe state for performing tests. This state is maintained
independent of any instruction that will be executed while it is set, giving the test engineer greater flexibility and
control of the multiple, sequential test processes that may be defined at various packaging levels. This capability is
specifically provided for components with design-specific test data registers (TDRs) controlling internal tests and
ICs that support initialization, but it should be useful in many other situations. This controller enables safe use of on-
chip test capabilities when the IC is in-system by preventing the I/O from being reconnected to system logic that
may be in an indeterminate state. This controller also reduces unnecessary reloading of the initialization data and
boundary-scan register between IEEE 1149.1-based board tests.

One implication of the TMP controller is that the component designer cannot rely on the I/O being in functional
mode when executing a design-specific instruction, even if that instruction is defined to leave the I/O in functional

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

43
Copyright © 2013 IEEE. All rights reserved.

mode. On-chip, design-specific test functions such as a pseudo-random binary sequence (PRBS) type of built-in test
may require specific pins to be functional even if the remaining I/O pins are in test mode while the PRBS is
executed. In that case, permission f) of this clause allows the IC designer to override the “mode” signals to the
appropriate boundary-scan cells while such a design-specific instruction and test are active, so that the pins needed
are forced to functional mode regardless of the presence or state of the TMP controller. When the design-specific
instruction or group of instructions are no longer active, the override must be removed.

A second implication of the TMP controller is that the IC designer has an additional option for resetting TDRs. In
addition to POR or TRST* (whichever is used to reset the TAP) and the TAP Reset* decode of the Test-Logic-Reset
(TLR) TAP controller state, there is a copy of Reset* called CHReset* (see Figure 6-10) that has been gated with the
TMP controller state. If this signal is used, the TDR will not reset in the TAP controller TLR state if the TMP
controller is in the Persistence-On state.

The TMP controller preserves the content and effect of the initialization data, boundary, and possibly other test data
registers when the Test-Logic-Reset TAP controller state is entered. In large part, this preservation of data is to
prevent the I/O of the component from changing. This also reduces the need to reload these registers when resets are
encountered.

The TMP controller Persistence-On state also requires that the internal logic, now disconnected from the I/O, be
maintained in a safe state, just as with CLAMP and any standard instruction that forces the test mode. Board testing
using this standard can leave a complex IC’s internal logic in an unpredictable and potentially destructive condition.
Entering the Test-Logic-Reset state in between board tests may not be sufficient to restore the component back to a
safe or functional mode. The TMP controller enables the test engineer to set persistence prior to board testing and
then subsequently release the component back into functional mode in a controlled manner independent of other
instructions executed in the meantime.

The effect of the TMP controller on the I/O pin behavior during the standard instructions is shown in Table 8-5.

Design-specific TDRs may access one or more on-chip test IP blocks such as BIST engines and system monitors.
The instructions, which are used to select these target TDRs, are responsible for setting the pins to either a functional
mode or a test mode. This requires the designer to partition on-chip test functions onto individually distinct TDRs,
one or more associated with an instruction that forces test mode, and one or more for functional mode, or provide
two instructions for the same TDR, one of which forces test mode and the other does not. Once made, there is no
flexibility in these assignments. Selections were made by the component designer based on the IP block’s purpose
and how the pins should behave during manufacturing testing. However, some test IP blocks require the I/O mode to
be set based on the environment the IC is in. For instance, for a particular test, the I/O may need to be in functional
mode on an IC tester but in test mode when the IC is soldered in a system. Figure 6-11 shows an example IC with
four on-chip IP blocks on a single design-specific TDR.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

44
Copyright © 2013 IEEE. All rights reserved.

Figure 6-11—Example IC, which benefits from test mode persistence

On-chip logic BIST functions will often have the effect of causing some or all of the mission mode I/O to toggle as
the BIST sequences are executed. The I/O are shared between the BIST and mission mode. This may be very
desirable when the IC is on the IC ATE. Figure 6-11 illustrates a component where both the Logic BIST and the
Memory BIST may cause one or more shared I/O to change from a system input to an output during BIST. Such on-
chip test IP blocks may intentionally use the I/O for streaming failure data over shared functional pins on the IC
tester, but that could be undesirable for an in-system IC test where those pins are connected to other components. If
the other component was a signal source not controlled during test, then allowing BIST to control the pin would
create a potential conflict, an example of an obstacle that a test generation program must avoid. The TMP controller
gives the test engineer the ability to put the component into test mode and avoid the potential conflict or other
obstacle.

In another example, the component designer may have placed, say, a voltage monitor on the same TDR as other
functions that would normally require test mode, but the instruction selecting this TDR is not a test mode instruction
to allow monitoring of the voltage during system operation. The TMP controller would allow the test engineer to put
the component into test mode as needed, while allowing mission mode operation of the monitor.

On-chip tests could also be affected by glitching or undefined system reset signals, which drive into the IC logic
during testing in the system. Using the TMP controller to put the component I/O into test mode can block such
resets.

In addition to maintaining the component in a test state between tests, or between a test and a controlled reset
process, the TMP controller allows the system test engineer to put the component into test mode or mission mode, as
needed, during system tests. This simplifies the component designer’s task when incorporating built-in tests and
enhances testing in ways that are not always anticipated.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

45
Copyright © 2013 IEEE. All rights reserved.

6.2.3 TMP controller initialization

6.2.3.1 Specifications

Rules

a) If a dedicated test reset pin (TRST*) is provided to initialize the TAP controller, then TRST* shall also force
the TMP controller to the Persistence-Off state.

b) If the TAP controller is initialized at power-up by operation of circuitry built into the test logic (POR), then
the same logic shall also force the TMP controller to the Persistence-Off state.

6.2.3.2 Description

The TMP controller must be reset at power-up by the same mechanism used to initialize the TAP controller: either
an on-chip Power-On-Reset circuit or the TAP TRST* port.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

46
Copyright © 2013 IEEE. All rights reserved.

7. Instruction register

The instruction register allows an instruction to be shifted into the design. The instruction is used to select the test to
be performed or the test data register to be accessed or both. As will be discussed in Clause 8, a number of
mandatory and optional instructions are defined by this standard. Further design-specific instructions can be added
to extend the test logic functionality built into a component.

Optionally, the instruction register allows examination of design-specific information generated within the
component.

This clause contains the design requirements for the instruction register.

7.1 Design and construction of the instruction register

The instruction register is a shift-register-based design that has an optional parallel input for register cells other than
the two nearest to the serial output. The instruction shifted into the register is latched during the Update-IR TAP
controller state.

7.1.1 Specifications

Rules

a) The instruction register shall include at least two shift-register-based cells capable of holding instruction
data.

b) The instruction shifted into the instruction register shall be latched such that changes in the effect of an
instruction occur only in the Update-IR and Test-Logic-Reset TAP controller states (see 7.2).

c) There shall be no inversion of data between the serial input and the serial output of the instruction register.

d) The two least significant instruction register cells (i.e., those nearest the serial output) shall load a fixed
binary “01” pattern (the 1 into the least significant bit location) in the Capture-IR TAP controller state (see
7.2).

Recommendations

e) Where the parallel inputs of instruction register cells are not required to load design-specific information,
then these cells should be designed to load fixed logic values (0 or 1) in the Capture-IR TAP controller state.

Permissions

f) Parallel inputs may be provided to instruction register cells (other than the two least significant cells) to
permit capture of design-specific information in the Capture-IR TAP controller state.

7.1.2 Description

The parallel output from the instruction register is latched so the test logic is protected from the transient data
patterns that will occur in its shift-register stages as new instruction data are entered. The latched parallel output is
controlled such that it can change state only in the Update-IR and Test-Logic-Reset controller states. The timing and
nature of these changes are discussed in detail in 7.2.

The minimum size (two instruction register cells) is necessary to meet rules stated elsewhere in this standard:

⎯ The instruction register must allow selection of the bypass register.

⎯ The instruction register must allow access to the boundary-scan register in at least three configurations
(EXTEST, PRELOAD, and SAMPLE—see 8.2).

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

47
Copyright © 2013 IEEE. All rights reserved.

It is permissible [see permission h) of 8.1.1] for instructions to share binary codes provided that none of the rules
that specify the merged instructions is violated. In earlier editions of this standard, SAMPLE and PRELOAD were
specified as a merged instruction—SAMPLE/PRELOAD—such that the four instructions mandated by this
standard—BYPASS, EXTEST, PRELOAD, and SAMPLE—could be implemented using three binary codes, leaving
the fourth achievable with a minimum 2 bit instruction register available for implementation of an optional
instruction.

In addition, fault isolation of the board-level serial test data path shall be supported. This is achieved by loading a
constant binary “01” pattern into the least significant bits of the instruction register at the start of the instruction-scan
cycle.

The inclusion of the optional design-specific data inputs to the instruction register allows key data signals within the
device to be examined at the start of testing, with future test actions potentially depending on the design-specific
information gathered. Where the parallel inputs to instruction register cells are not used for design-specific
information, it is recommended that these cells be designed to load a fixed logic value (0 or 1) during the Capture-IR
TAP controller state and that that value be documented in the BSDL to enhance component debug.

7.2 Instruction register operation

7.2.1 Specifications

Rules

a) The behavior of the instruction register in each TAP controller state shall be as defined in Table 7-1.

b) This rule is moved to rule e) in 8.1.1 in this version of the standard.

c) All operations of shift-register stages shall occur on the rising edge of TCK after entry into a controller state.

Table 7-1—Instruction register operation in each controller state

Controller state Shift-Register stage Parallel output
Test-Logic-Reset Undefined Reset to the IDCODE (or

BYPASS) instruction
Capture-IR Load 01 into bits closest to TDO and, optionally, design-specific

data or fixed values into other bits closer to TDI
Retain last state

Shift-IR Shift toward serial output Retain last state
Exit1-IR
Exit2-IR
Pause-IR

Retain last state Retain last state

Update-IR Retain last state Load from shift-register
All other states Undefined Retain last state

d) The data present at the parallel output of the instruction register shall be latched from the shift-register stage
on the falling edge of TCK in the Update-IR controller state.

e) After entry into the Test-Logic-Reset controller state as a result of the clocked operation of the TAP
controller, the IDCODE instruction (or, if there is no device identification register, the BYPASS instruction)
shall be latched onto the instruction register output on the falling edge of TCK.

f) If the TRST* input is provided and a low signal is applied to the input, the latched instruction shall change
asynchronously to IDCODE (or, if no device identification register is provided, to BYPASS).

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

48
Copyright © 2013 IEEE. All rights reserved.

7.2.2 Description

NOTE—The parallel output flip-flop in this figure is provided with a reset input. To meet rule e) and rule f) of 7.2.1), some or all
instruction register cells will require use of a set, rather than a reset, input.

Figure 7-1—Instruction register cell (gated clock)

Figure 7-1 shows an implementation of an instruction register cell that satisfies these requirements and operates in
response to the signals generated by the example TAP controller design contained in 6.1.2:

⎯ The clock input (Clock-IR) to the register in the serial path is applied only during the Capture-IR and Shift-
IR TAP controller states. The clock input (Update-IR) to the hold register is applied only during the Update-
IR TAP controller state.

⎯ The parallel output (labeled Instruction bit) is updated at the end of the instruction-scan cycle during the
Update-IR controller state. This must occur on the falling edge of TCK because a change in the latched
instruction can result in a change at system output pins due to the operation of the boundary-scan register.
Such changes must occur on the falling edge of TCK as defined in Clause 11. Note that in Figure 7-1, an
edge-triggered flip-flop is provided adjacent to the shift-register stage to meet this requirement. Alternative
implementations, for example, where a level-operated latch is used or the storage element follows (rather
than precedes) the instruction decoding logic (see Figure 7-2), are permissible.

⎯ The parallel output is reset in the Test-Logic-Reset controller state as a result of a logic 0 received at the
Reset* input of the cell. Referring to Figure 6-5 and Figure 6-6, notice that a low Reset* signal will be
generated on the falling edge of TCK after entry into the Test-Logic-Reset controller state under control of
TMS and TCK (TRST* held at 1). The parallel output of the instruction register will change on the falling
edge of TCK, as is the case in the Update-IR controller state. In contrast, when a logic 0 is applied to
TRST*, Reset* consequently is asserted (low) (see Figure 6-5) and the change at the parallel output occurs
immediately, irrespective of the state of TMS or TCK. Note that some cells will need to be designed such
that the parallel output is set high during this controller state so that the value of the IDCODE (or BYPASS)
instruction is loaded onto the complete register’s outputs as required by rule e) of 7.2.1.

⎯ Application of a 0 at TRST* causes the parallel output to be asynchronously set low. Again, some cells may
need to be designed to be set high by TRST* such that the value of the IDCODE (or BYPASS) instruction is
forced onto the register’s outputs.

Note that the parallel data inputs to the two least significant stages (instruction register stages 0 and 1) must be tied
to fixed logic levels (1 for the least significant bit, 0 for the next-least significant bit).

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

49
Copyright © 2013 IEEE. All rights reserved.

Figure 7-2—Instruction register with decoder between shift and update stages

Figure 7-2 illustrates a common implementation of the instruction register and its decoding. The advantage is that
the instruction decodes are now updated by a clock and are therefore glitch-free. The number of update flops or
latches is now the same as the number of instructions, not the number of instruction register bits. Note that
“Instruction 1” is set “on” by the “Reset*” signal; this would be the mandatory BYPASS or IDCODE instruction
decode.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

50
Copyright © 2013 IEEE. All rights reserved.

8. Instructions

The instruction register allows instructions to be entered serially into the test logic during an instruction-register
scan cycle. This clause defines the minimum range of instructions that must be supplied and the operations that
occur in response to those instructions. Optional instructions and the resulting operation of the test logic are also
defined, together with the requirements for extensions to the instruction set defined in this standard.

8.1 Response of the test logic to instructions

8.1.1 Specifications

Rules

a) Each instruction shall completely define the set of test data register(s) that operate or (where required)
interact with the on-chip system logic while the instruction is active.

b) Test data registers that are not part of the set that may operate as defined by the active instruction shall be
controlled such that they do not interfere with the operation of the on-chip system logic or the defined set of
test data registers.

c) Each instruction shall select a single serial test data register path to be enabled to shift data between TDI and
TDO in the Shift-DR controller state (as defined in Table 6-2).

d) Instruction binary codes that are not otherwise required to provide control of test logic shall be equivalent to
the BYPASS instruction (see 8.4).

e) All test logic responses to an active instruction shall terminate when a different instruction is transferred to
the parallel output of the instruction register (i.e., in the Update-IR or Test-Logic-Reset controller states)
unless the new instruction supports the same test logic response.

Recommendations

f) Use of the binary code {000…0} should be avoided for instructions that disrupt normal (i.e., nontest)
operation of the component.

NOTE—Earlier editions of this standard mandated that a binary code for the EXTEST instruction be {000...0} (i.e., a
logic 0 is loaded into every instruction register cell). While use of this binary code for EXTEST or other test mode
instruction is neither mandated nor prohibited, it could create problems for a system. A stuck-at-zero fault condition at a
component’s TDI pin could result in unexpected selection of EXTEST and consequent removal of the component from
normal service.

Permissions

g) The mode of operation of a test data register may be defined by a combination of the active instruction and
further control information contained in test data registers.

h) Two or more instructions may share a single binary code provided that all of the rules for the separate
instructions are met.

8.1.2 Description

An instruction is considered to be active from the time it is transferred to the parallel outputs of the instruction
register until a different instruction is transferred to the parallel outputs of the instruction register. Such a transfer
may take place in either the Update-IR or the Test-Logic-Reset TAP controller states. The active instruction is
decoded in order to achieve two key functions.

First, an instruction selects the serial test data register path that is used to shift data between TDI and TDO during
data register scanning. Note that a particular instruction may result in a single test data register being connected

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

51
Copyright © 2013 IEEE. All rights reserved.

between TDI and TDO or in several test data registers being serially interconnected between TDI and TDO,
although in that case the set of serially concatenated test data registers must be given a unique name (for an example,
see 9.2).

Second, each instruction defines the set of test data registers that may be used while the instruction is active. Other
test data registers should be controlled such that they cannot interfere with the operation of the on-chip system logic
or other test data registers. Several registers may be set into test modes simultaneously (for an example, see 9.2).

Rule d) of 8.1.1 requires that every pattern of 1s and 0s that can be shifted into the instruction register produces a
defined response and, in particular, that a test data register is connected between TDI and TDO for every possible
instruction binary code.

Rule e) and permission g) of 8.1.1 require that the operation of the test logic is determined only by the controller
states, the current instruction, and data currently in operating test data registers. The intent is that there is no
possibility that a sequential process resulting from any prior instruction (e.g., execution of an internal self-test)
might interfere with subsequent instructions once the prior instruction is removed. The circuit under test may not be
in a known state if a new instruction is loaded before the previous one has run to completion.

Note that there may be more than one instruction that assumes a specific test logic response, and these may succeed
each other without causing the response to terminate. A simple example would be instructions that cause the I/O to
be controlled by the boundary-scan register (EXTEST, CLAMP, etc.) These may succeed each other without any
visible effect on the I/O. In the same way, a sequential test process may be initiated by one instruction and
monitored by another without terminating the process when the monitoring instruction is made active.

Rule e) of 8.1.1 also implies that there is no memory in the instruction decoder, that the decoding of the instruction
register is strictly static (combinatorial).

Permission h) of 8.1.1 allows for the merging of instructions to operate under a single binary code when their
respective behaviors are not mutually exclusive. A prime example of such merging would be a sharing of a single
binary code between SAMPLE and PRELOAD. The resulting merged behavior, which could be called
SAMPLE/PRELOAD, would be fully equivalent to that mandated in earlier editions of this standard.

8.2 Public instructions

8.2.1 Specifications

Rules

a) Public instructions shall be available for use by purchasers of a component.

b) The following public instructions shall be provided in all components claiming conformance to this
standard: BYPASS, SAMPLE, PRELOAD, and EXTEST (see 8.4 through 8.8, respectively).

c) If the optional device identification register is included in a component, the IDCODE instruction shall be
provided.

d) If the optional device identification register is included in a user-programmable component that does not
allow the programming via the test logic defined by this standard, then the USERCODE instruction shall be
provided.

e) The binary codes for the BYPASS instruction shall be as defined in 8.4.

Recommendations

f) The following instructions should be supported:

1) IDCODE

2) CLAMP and HIGHZ

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

52
Copyright © 2013 IEEE. All rights reserved.

3) IC_RESET

4) CLAMP_HOLD, CLAMP_RELEASE, and TMP_STATUS

g) If a component has programmable I/O, it should additionally support INIT_SETUP, INIT_SETUP_CLAMP,
and INIT_RUN, as needed.

Permissions

h) A design may offer public instructions in addition to those defined in this standard to give the device
purchaser access to design-specific features.

i) Where binary codes for public instructions are not defined by this standard, they may be assigned as
required for the particular design.

8.2.2 Description

The public instructions provide the component purchaser with access to test features (e.g., go/no-go self-test testing
of the component) and to board interconnect test via the boundary-scan register. The purchaser expects that the
results of such tests will be independent of the variant of the component installed in a particular board, of the source
of the component, etc. An exception, of course, is when the test results are intended to distinguish the variant, etc.,
as would be the case if the IDCODE instruction were used (see 8.13).

In addition to the mandatory instructions, which may be sufficient for a very simple component, a number of
instructions are recommended. In general, these instructions allow more sophisticated control of the component
during board and system tests, and support reuse of internal tests that are controlled or at least initialized from the
test logic in board and system test environments.

The IDCODE instruction is mandatory if the device identification register is included, but both are recommended.
This register allows test software to identify variants of the component and adjust the tests accordingly. (See 8.13.)

CLAMP and HIGHZ are recommended to give the test engineers the ability to isolate components on the board or
system being tested, and to give the test equipment control of board nets without the risk of damage inherent in
overdriving active signals. (See 8.11 and 8.16.)

IC_RESET instruction is mandatory if the reset selection register is included, and is recommended to give the tester
programmable control, possibly with greater resolution than supported by the component reset inputs, of the resets
and related signals such as the power controls in the component. The reset nets on a board may not be accessible by
the test equipment in a board or system environment. (See 8.21.)

The CLAMP_HOLD, CLAMP_RELEASE, and TMP_STATUS instructions are mandatory if the TMP controller and
TMP status register are included, and are recommended to provide an additional and highly valuable means for test
engineers to hold a component in the test mode of operation, to help avoid spurious system operation in the test
environment, and to isolate the component during board and system tests. (See 6.2 and 8.20.)

The INIT_SETUP and INIT_SETUP_CLAMP instructions are mandatory if the initialization data register is
provided, and the INIT_RUN instruction is mandatory if the initialization status register is provided. All are
recommended, as appropriate for the specific design, to prepare a component for board test where a simple power-up
reset is inadequate. They allow initializing programmable I/O so that they are configured correctly for interconnect
test at the board level, and other initializations (such as shutting down clock distribution or bypassing a Phase-
Locked Loop) to put the component system logic into a safe state for board test, as needed. (See 8.17.)

The binary code of an instruction is the sequence of data bits shifted serially into the instruction register from TDI
during the Shift-IR controller state.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

53
Copyright © 2013 IEEE. All rights reserved.

8.3 Private instructions

8.3.1 Specifications

Rules

a) If private instructions are utilized in a component, the vendor shall clearly identify any instruction binary
codes that, if selected, could cause damaging operation of the component by designating the instruction as
private in the BSDL.

Permissions

b) The public instructions may be supplemented with private instructions intended solely for the use of the
component manufacturer.

c) The operation of private instructions may be undocumented.

8.3.2 Description

Private instructions allow the component manufacturer to use the TAP and test logic to gain access to test features
embedded in the design for design verification, production testing, or fault diagnosis, which are not intended for use
once the component is placed on a board or in a system. The component manufacturer may require tests performed
using these features to give results that differ between variants of the component, for example, that would render
documentation and use by component purchasers difficult.

Also, some instructions may even cause a component to operate in a manner that could be potentially destructive of
this or other components on a board or in a system. For example, if an instruction causes component inputs to
become outputs for test data, etc., then damage may result if the instruction is selected while the component is
surrounded by other components on an assembled board. The vendor must therefore clearly identify as private any
instruction binary codes that may cause dangerous operation if used by the component purchaser.

8.4 BYPASS instruction

The bypass register contains a single shift-register stage and is used to provide a minimum-length serial path
between the TDI and the TDO pins of a component when no test operation of that component is required. This
allows more rapid movement of test data to and from other components on a board that are required to perform test
operations.

8.4.1 Specifications

Rules

a) Each component shall provide a BYPASS instruction.

b) A binary code for the BYPASS instruction shall be {111...1} (i.e., a logic 1 entered into every instruction
register cell).

c) The BYPASS instruction shall select the bypass register to be connected for serial access between TDI and
TDO in the Shift-DR controller state.

d) When the BYPASS instruction is selected, all test data registers that can operate in either system or test
modes shall perform their system function.

e) When the BYPASS instruction is selected, then:

1) If the TMP controller is either not provided or in the Persistence-Off state, the operation of the test
logic other than the optional reset selection register and its associated logic (shown in
Clause 17) shall have no effect on the operation of the on-chip system logic or on the flow of signals
between the system pins and the on-chip system logic.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

54
Copyright © 2013 IEEE. All rights reserved.

2) If the TMP controller is provided and in the Persistence-On state, then the state of all signals driven
from system output pins shall be completely defined by the data held in the boundary-scan register.

Permissions

f) The BYPASS instruction may have binary codes in addition to that defined in rule b) of 8.4.1.

Recommendations

g) A binary code for the BYPASS instruction should be {000...0} (i.e., a logic 0 entered into every instruction
register cell).

8.4.2 Description

The BYPASS instruction can be entered by holding TDI at a constant high value and completing an instruction-scan
cycle. The demands on the host test system consequently are reduced in cases where access is required, say, to only
component number 57 on a 100 component board. In this case, the overall instruction pattern that shall be shifted
into the design consists of a background of 1s with a small field of specific instruction data.

Note also that, since the TDI input is designed such that when it is not terminated it behaves as though a high signal
were being applied, an open-circuit fault in the serial board-level test data path will cause the bypass register to be
selected after an instruction-scan cycle. Therefore, no unwanted interference with the operation of the on-chip
system logic can occur.

Where no device identification register is provided in a component, then the BYPASS instruction is forced into the
latches at the parallel outputs of the instruction register during the Test-Logic-Reset controller state. This means that
after a reset, a complete serial path through either the bypass or the device identification register is established.

A consideration for usage is that if BYPASS is operated in some components while test mode instructions (e.g.,
EXTEST) are operated in others, the normal system-logic operation of those components that are operating BYPASS
may conflict with the test operation of the others. Therefore, careful analysis of interactions is necessary.

A further consideration is that if the TMP controller is provided, scanning in any instruction value that decodes to
the BYPASS instruction will cause the TMP controller to revert to the Persistence-Off state. Use of the CLAMP
instruction instead when the TMP controller is in the Persistence-On state will avoid this.

8.5 Boundary-scan register instructions

As discussed in Clause 1, the boundary-scan register is composed of cells connected between the on-chip system
logic and the component’s system input and output pins. This subclause is included to provide an overview of the
structure and operation of the boundary-scan register that will assist the reader in understanding the specifications
for the mandatory and optional instructions that make use of the boundary-scan register.

Design requirements for the boundary-scan register instructions are contained in 8.6 to 8.11. General requirements
for the design of TDRs are contained in Clause 9, and additional specific requirements for the design of the
boundary-scan register and boundary-scan register cells are contained in Clause 11.

8.5.1 Overview of the operation of the boundary-scan register

The boundary-scan register is a shift-register-based structure that includes a variety of different cell designs matched
onto the requirements of the particular component. Different cell designs are used according to the type of system
pin concerned (input, output, three-state, bidirectional) and according to the set of boundary-scan instructions
supported.

A simplified view of a boundary-scan register is shown in Figure 8-1.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

55
Copyright © 2013 IEEE. All rights reserved.

Figure 8-1—Simplified view of the boundary-scan register

An example implementation for a cell that could be used in each location shown in Figure 8-1 is given in
Figure 8-2.

The connections labeled PI, PO, SI, and SO in Figure 8-2 are connected to adjacent cells, the on-chip system logic,
and the system pins as shown in Figure 8-1. Like all the cells shown in this standard, the cell shown in Figure 8-2 is
designed to respond to the Clock-DR, Shift-DR, and Update-DR signals generated by the example TAP controller
implementation shown in Figure 6-5 and Figure 6-6. The Mode input shall be controlled according to the type of pin
connected to the cell (input, output, etc.) and the specific instruction selected.

Use of this cell design, with appropriate signals supplied to the Mode input of each cell, will result in a component
that supports the SAMPLE, PRELOAD, EXTEST, and INTEST instructions. As will be discussed in Clause 11, other
cell designs are possible that meet the requirements of this standard for different sets of instructions. For example, in
Figure 8-2:

⎯ R2 may be either a flip-flop (as shown) or a latch.

⎯ R2 is optional for cells that feed data from a system pin to the on-chip system logic, e.g., the cells at system
input pins. The lower input to M2 would, in such cases, be fed directly from the output of R1.

⎯ If the INTEST instruction were not supported, R2 and M2 could be omitted from cells that feed data from a
system pin to the on-chip system logic. The input labeled PI then would be connected directly to the output
labeled PO.

System
Logic

From TDI To TDO

System
Input

System
2-State
Output

System
3-State
Output

System
Bidirectional

Pin

SI
PI PO

SO

SI
PI PO

SO SO
PI PO

SI

SO
PI PO

SI

SO
PI PO

SI

SO
PI PO

SI

SO
PI PO

SI

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

56
Copyright © 2013 IEEE. All rights reserved.

Figure 8-2—Example boundary-scan register cell design

8.5.2 Specifications for boundary-scan register instructions

The specifications for boundary-scan instructions given in the following subclauses of this clause define:

a) Whether the instruction is mandatory or optional.

b) Which test data registers can be connected in the serial path between TDI and TDO.

c) The restrictions (if any) on the choice of binary codes for each instruction (i.e., the patterns of 1s and 0s that,
when shifted into the instruction register, cause the instruction to be selected).

d) The flow of data among the component’s system pins, the boundary-scan register cells, and the on-chip system
logic.

The specifications are supported by descriptive text that includes a version of Figure 8-3 that shows one input and
one output for a component. The solid bold lines in later copies of this figure show the mandatory data flows for
each instruction.

Figure 8-3—Figure used to illustrate boundary-scan instructions

0

1

G1

1D
C1

1D
C1

0

1

G1

Mode

UpdateBSRClockBSR

ShiftDR SO

SI

PI PO
M1

M2

R1 R2

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

57
Copyright © 2013 IEEE. All rights reserved.

8.6 SAMPLE instruction

The mandatory SAMPLE instruction allows a snapshot of the normal operation of the component to be taken and
examined.

8.6.1 Specifications

Rules

a) Each component shall provide a SAMPLE instruction.

b) The SAMPLE instruction shall select only the boundary-scan register to be connected for serial access
between TDI and TDO in the Shift-DR controller state (i.e., no other test data register may be connected in
series with the boundary-scan register).

c) When the SAMPLE instruction is selected, then:

1) If the TMP controller is either not provided or in the Persistence-Off state, the operation of the test
logic other than the optional reset selection register and its associated logic (shown in
Clause 17) shall have no effect on the operation of the on-chip system logic or on the flow of signals
between the system pins and the on-chip system logic.

2) If the TMP controller is provided and in the Persistence-On state, then the state of all signals driven
from system output pins shall be completely defined by the data held in the boundary-scan register.

d) When the SAMPLE instruction is selected, the states of all signals flowing from the on-chip system logic or
through system pins (input or output) shall be loaded into the boundary-scan register on the rising edge of
TCK in the Capture-DR controller state.

NOTE⎯The intent of this rule is to specify when the loading action should occur. Detailed specifications for the choices
of signal values to be loaded are provided in rule f) of 11.5.1 and rule h) of 11.6.1, respectively, for system logic inputs
and system logic outputs.

Recommendations

e) Where each of SAMPLE and PRELOAD implements the functionality of the other, they should share a
common binary value(s).

Permissions

f) When the SAMPLE instruction is selected, parallel output registers/latches included in boundary-scan
register cells may load the data held in the associated shift-register stage on the falling edge of TCK in the
Update-DR controller state.

g) The binary value(s) for the SAMPLE instruction may be selected by the component designer.

8.6.2 Description

The SAMPLE instruction allows a snapshot to be taken of the states of the component’s input and output signals
without interfering with the normal operation of the assembled board. The snapshot is taken on the rising edge of
TCK in the Capture-DR controller state, and the data can then be viewed by shifting through the component’s TDO
output. Note that, depending on the configuration of components on a board, the SAMPLE instruction may not
capture correct data prior to the completion of any initialization using the optional initialization instructions.

Example applications of the SAMPLE capability are:

⎯ To provide an analog to the guided-probing process performed on an assembled board during functional test
diagnosis, but without the need for physical contact.

⎯ Verification of the interaction between components during normal functional operation.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

58
Copyright © 2013 IEEE. All rights reserved.

Figure 8-4—Data flow for the SAMPLE instruction

The flow of data for the SAMPLE instruction is shown in Figure 8-4. As can be seen, SAMPLE can be used without
causing interference to the normal operation of the on-chip system logic. Data received at system input pins is
supplied without modification to the on-chip system logic; data from the on-chip system logic is driven without
modification through the system output pins; etc. For the example boundary-scan register cell design given in
Figure 8-2, this is achieved by holding the Mode input at 0 when the SAMPLE instruction is selected.

NOTE 1⎯ At output pins, the signal samples may be either that output from the component or that output from the on-chip
system logic.

NOTE 2⎯A component may be designed such that the SAMPLE and PRELOAD instructions are combined by assigning the
same binary code to both. While SAMPLE captures data into the boundary-scan register and allows this to be shifted out through
TDO for examination, a specific use of data shifted in at TDI is not mandated. In contrast, PRELOAD shifts data into the
boundary-scan register through TDI such that it can be loaded into the register’s parallel output registers/latches in advance of
selecting an instruction (such as EXTEST) that supplies the data held in these registers/latches to the component’s output pins.
The data captured into the boundary-scan register before shifting is not defined. The mutual exclusivity of these behaviors
permits the instructions to be merged where desired [see permission h) of 8.1.1, permission f) of 8.6.1, and permission f) of
8.7.1]. Furthermore, where SAMPLE and PRELOAD instructions are merged in this fashion, by moving the TAP controller
through the state sequence Capture-DR → Exit1-DR → Update-DR while the merged SAMPLE/PRELOAD instruction is
selected, the state of the signals flowing into and out of the on-chip system logic at the time of sampling can be loaded onto the
latched parallel output of the boundary-scan shift register.

8.7 PRELOAD instruction

The mandatory PRELOAD instruction allows data values to be loaded onto the latched parallel outputs of the
boundary-scan shift register before selection of the other boundary-scan test instructions.

8.7.1 Specifications

Rules

a) Each component shall provide a PRELOAD instruction.

b) The PRELOAD instruction shall select only the boundary-scan register to be connected for serial access
between TDI and TDO in the Shift-DR controller state (i.e., no other test data register may be connected in
series with the boundary-scan register).

c) When the PRELOAD instruction is selected, then:

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

59
Copyright © 2013 IEEE. All rights reserved.

1) If the TMP controller is either not provided or in the Persistence-Off state, the operation of the test
logic other than the optional reset selection register and its associated logic (shown in
Clause 17) shall have no effect on the operation of the on-chip system logic or on the flow of signals
between the system pins and the on-chip system logic.

2) If the TMP controller is provided and in the Persistence-On state, then the state of all signals driven
from system output pins shall be completely defined by the data held in the boundary-scan register.

d) When the PRELOAD instruction is selected, parallel output registers/latches included in boundary-scan
register cells shall load the data held in the associated shift-register stage on the falling edge of TCK in the
Update-DR controller state.

Recommendations

e) Where SAMPLE and PRELOAD each implement the functionality of the other, they should share a common
binary value(s).

Permissions

f) When the PRELOAD instruction is selected, the states of all signals flowing through system pins (input or
output) may be loaded into the boundary-scan register on the rising edge of TCK in the Capture-DR
controller state.

g) The binary value(s) for the PRELOAD instruction may be selected by the component designer.

8.7.2 Description

The PRELOAD instruction allows scanning of the boundary-scan register without causing interference to the normal
operation of the on-chip system logic. It thus allows an initial data pattern to be placed at the latched parallel outputs
of boundary-scan register cells (e.g., as provided in the cells connected to system output pins) before the selection of
another boundary-scan test operation. For example, before the selection of the EXTEST instruction, data can be
loaded onto the latched parallel outputs using PRELOAD. As soon as the EXTEST instruction has been transferred to
the parallel output of the instruction register, the preloaded data are driven through the system output pins. Known
data, consistent at the board level, is thereby driven immediately when the EXTEST instruction is entered; without
performing a PRELOAD instruction first, indeterminate data would be driven from the system output pins until the
first scan sequence had been completed.

The flow of data for the PRELOAD instruction is shown in Figure 8-5. Data received at system input pins are
supplied without modification to the on-chip system logic; data from the on-chip system logic is driven without
modification through the system output pins; etc. For the example boundary-scan register cell design given in
Figure 8-2, this is achieved by holding the Mode input at 0 when the PRELOAD instruction is selected.

NOTE⎯A component may be designed such that the SAMPLE and PRELOAD instructions are combined by assigning the same
binary code to both. While SAMPLE captures data into the boundary-scan register and allows this to be shifted out through TDO
for examination, a specific use of data shifted in at TDI is not mandated. In contrast, PRELOAD shifts data into the boundary-
scan register through TDI such that it can be loaded into the register’s parallel output registers/latches in advance of selecting an
instruction (such as EXTEST) that supplies the data held in these registers/latches to the component’s output pins. The data
captured into the boundary-scan register before shifting is not defined. The mutual exclusivity of these behaviors permits the
instructions to be merged where desired [see permission h) of 8.1.1, permission f) of 8.6.1, and permission f) of 8.7.1].
Furthermore, where SAMPLE and PRELOAD instructions are merged in this fashion, by moving the TAP controller through the
state sequence Capture-DR → Exit1-DR → Update-DR while the merged SAMPLE/PRELOAD instruction is selected, the state of
the signals flowing into and out of the on-chip system logic at the time of sampling can be loaded onto the latched parallel output
of the boundary-scan shift register.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

60
Copyright © 2013 IEEE. All rights reserved.

Figure 8-5—Data flow for the PRELOAD instruction

8.8 EXTEST instruction

The mandatory EXTEST instruction allows testing of off-chip circuitry and board-level interconnections. Data
typically would be loaded onto the latched parallel outputs of boundary-scan shift-register stages using the
PRELOAD instruction before selection of the EXTEST instruction.

NOTE—After use of the EXTEST instruction, the on-chip system logic may be in an indeterminate state that will persist until a
system reset is applied. Therefore, the on-chip system logic may need to be reset on return to normal (i.e., nontest) operation.

8.8.1 Specifications

Rules

a) Each component shall provide an EXTEST instruction.

b) The EXTEST instruction shall select only the boundary-scan register to be connected for serial access
between TDI and TDO in the Shift-DR controller state (i.e., no other test data register may be connected in
series with the boundary-scan register).

c) While the EXTEST instruction is selected, the on-chip system logic shall be controlled such that it cannot be
damaged as a result of signals received at the system input or system clock input pins.

NOTE 1—This might be achieved by placing the on-chip system logic in a reset or “hold” state while the EXTEST
instruction is selected.

d) When the EXTEST instruction is selected, the state of all signals driven from system output pins controlled
by the boundary-scan register or included boundary-scan register segments:

1) Shall be defined by the data held in the boundary-scan register

2) Shall change only on the falling edge of TCK in the Update-DR controller state

3) For system output pins controlled by excluded boundary-scan register segments, shall be defined by
the system logic

e) When the EXTEST instruction is selected, the state of all signals received at system input pins shall be
loaded into the boundary-scan register on the rising edge of TCK in the Capture-DR controller state.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

61
Copyright © 2013 IEEE. All rights reserved.

Recommendations

f) The data loaded into boundary-scan register cells located at system output pins (two-state, three-state, or
bidirectional) in the Capture-DR controller state when the EXTEST instruction is selected should be
independent of the operation of the on-chip system logic.

g) A value should be defined for each boundary-scan register cell that, when the EXTEST instruction is
selected, will permit all component outputs to be overdriven simultaneously for an indefinite period without
risk of damage to the component.

NOTE 2—This is easily achieved if all outputs can be set to an inactive drive state by previous use of the PRELOAD
instruction.

Permissions

h) The binary value(s) for the EXTEST instruction may be selected by the component designer.

8.8.2 Description

The EXTEST instruction allows circuitry external to the component package—typically the board interconnect—to
be tested. Boundary-scan register cells at output pins are used to apply test stimuli, while those at input pins capture
test results. Note that, depending on the configuration of components on a board, the EXTEST instruction may not
capture correct data prior to the completion of any initialization using the optional initialization instructions.

This instruction also allows testing of blocks of components that do not themselves incorporate boundary-scan
registers. The flow of data through the boundary-scan register cells in this configuration is shown in Figure 8-6. For
example, at input pins, data are first captured into the shift-register path and then shifted out of the component for
examination; at output pins, data shifted into the component are applied to the external interconnection.

Typically, the first test stimulus to be applied using the EXTEST instruction will be shifted into the boundary-scan
register using the PRELOAD instruction. Thus, when the change to the EXTEST instruction takes place in the
Update-IR controller state, known data will be driven immediately from the component onto its external
connections. The stimuli for the next test will be shifted in while the results from the current test are shifted out.
That is, the two shift operations are overlapped. Note that while the results from the final test are shifted out, a
determinate set of data must be shifted in that will leave the board in a consistent state at the end of the shifting
process. This can be achieved by again shifting the stimuli for test N (or indeed any other test) into the boundary-
scan register, or by shifting in a “safe” state.

The EXTEST instruction also allows component outputs to be set to a state that minimizes the risk of damage when
overdriven during in-circuit testing [see recommendation g) in 8.8.1]. Such testing may be used where not all
components on an assembled board are testable via boundary scan.

Note that the boundary-scan register cells located at input pins may optionally be designed to allow signals to be
driven into the on-chip system logic when the EXTEST instruction is selected. This allows the component designer
to define values to be established at the system logic inputs, preventing incorrect operation in response to noise
signals arriving from the board-level interconnect. The values driven may be constant for the duration that EXTEST
is selected (e.g., by including a blocking gate at the input to the system logic) or may be loaded serially through the
boundary-scan register, as shown in Figure 8-6.

Recommendation f) of 8.8.1, where followed, helps ensure that data shifted out of the component in response to the
EXTEST instruction is not altered by the presence of faults in the on-chip system logic. This simplifies diagnosis
since any errors in the output bit stream will most likely be caused only by faults in off-chip circuitry, in board-level
interconnections, or in the boundary-scan registers used to apply the test.

While the EXTEST instruction is selected, the on-chip system logic may receive input signals that differ significantly
from those expected during normal (nontest) operation. Rule c) of 8.8.1 places the responsibility for correct handling

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

62
Copyright © 2013 IEEE. All rights reserved.

of this situation on the component designer. If the on-chip system logic can tolerate any permutation of input signals
that is received, then no specific design changes are required to meet this rule. (An example here would be the case
where the on-chip system logic is entirely combinational.) However, for some components, there may be input
sequences that could place the on-chip system logic in a state where damage may result. In these cases, it is the
responsibility of the designer to prevent the on-chip system logic from processing these input sequences while the
EXTEST instruction is selected. As noted, this may be achieved by placing the on-chip system logic into a reset or
“hold” state.

Alternatively, the data held in the boundary-scan register may be presented to the on-chip system logic while the
EXTEST instruction is selected. Note that where this is the case, rule e) of 11.3.1 prohibits the imposition of any
restriction on the logic values that may be driven to the on-chip system logic.

Note that while earlier editions of this standard mandated that a binary code for EXTEST be {000…0}, the use of
this binary code for EXTEST and all other test mode instructions has been deprecated [see recommendation f) of
8.1.1 and the associated NOTE].

Figure 8-6—Data flow for the EXTEST instruction

8.9 INTEST instruction

The optional INTEST instruction is one of two instructions (the other is RUNBIST) defined by this standard that
allow testing of the on-chip system logic while the component is assembled on the board. Using the INTEST
instruction, test stimuli are shifted into the boundary-scan register one at a time and applied to the on-chip system
logic. The test results are captured into the boundary-scan register and are examined by subsequent shifting. Data
typically would be loaded onto the latched parallel outputs of boundary-scan shift-register stages using the
PRELOAD instruction before selection of the INTEST instruction.

The following rules apply where the INTEST instruction is provided.

NOTE—After use of the INTEST instruction, the on-chip system logic may be in an indeterminate state that will persist until a
system reset is applied. Therefore, the on-chip system logic may need to be reset on return to normal (i.e., nontest) operation.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

63
Copyright © 2013 IEEE. All rights reserved.

8.9.1 Specifications

Rules

a) The INTEST instruction shall select only the boundary-scan register to be connected for serial access
between TDI and TDO in the Shift-DR controller state (i.e., no other test data register may be connected in
series with the boundary-scan register).

b) The on-chip system logic shall be capable of single-step operation while the INTEST instruction is selected.

c) When the INTEST instruction is selected, all system outputs from the component shall be defined as follows:

1) The state of all signals driven from system output pins controlled by the boundary-scan register or
included boundary-scan register segments shall be defined by the data held in the boundary-scan
register and shall change only on the falling edge of TCK in the Update-DR controller state, and
system output pins controlled by excluded boundary-scan register segments shall be defined by the
system logic.

2) All outputs from the component (including those that are two-state outputs) except any outputs that are
powered-down shall be placed in an inactive drive state (e.g., high-impedance) on selection of the
INTEST instruction.

d) When the INTEST instruction is selected, the state of all nonclock signals driven into the system logic from
the boundary-scan register shall be completely defined by the data held in the register.

e) When the INTEST instruction is selected, the state of all signals output from the system logic to the
boundary-scan register shall be loaded into the register on the rising edge of TCK in the Capture-DR
controller state.

Recommendations

f) For boundary-scan register cells located at system input pins (clock or nonclock) or at bidirectional pins
configured as inputs, the data loaded in the Capture-DR controller state when the INTEST instruction is
selected should be independent of the operation of off-chip circuitry or board-level interconnections.

g) The number of system clocks used for the INTEST instruction should be minimized, or where practical, TCK
should be used in lieu of any system clocks.

Permissions

h) The binary value(s) for the INTEST instruction may be selected by the component designer.

8.9.2 Description

The INTEST instruction allows static (slow-speed) testing of the on-chip system logic, with each test pattern and
response being shifted through the boundary-scan register. The INTEST instruction requires that the on-chip system
logic can be operated in a single-step mode, where the circuitry moves one step forward in its operation each time
shifting of the boundary-scan register is completed.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

64
Copyright © 2013 IEEE. All rights reserved.

Figure 8-7—Data flow for the INTEST instruction

The flow of data through the boundary-scan register cells while the instruction is selected is shown by the bold paths
in Figure 8-7. The topmost bold path through the cell at the output pin is that taken by the results of the test of the
on-chip system logic; the lowermost path is that taken by the data to be held at the pin while the test is applied. Note
that, for each test, the latched parallel output of the boundary-scan register cell at the system output pin is updated
from data shifted in before the state of the shift-register is overwritten with the test response.

While the INTEST instruction is selected, the boundary-scan register assumes the role of the ATE system used for
stand-alone component testing. Cells at nonclock system input pins are used to apply the test stimulus, while those at
system output pins capture the response. Stimuli and responses are moved into and out of the circuit by shifting the
boundary-scan register. Note that this requires that the boundary-scan register cells located at system input pins are
able to drive signals into the on-chip system logic.

Typically, the on-chip system logic will receive a sequence of clock events between application of the stimulus and
capture of the response such that single-step operation is achieved. The specification of boundary-scan register cells
for system clock input pins allows the clocks for the on-chip system logic to be obtained in several ways while the
INTEST instruction is selected. The following are offered as examples:

a) The signals received at system clock pins can be fed directly to the on-chip system logic as during normal
operation of the component. Where this option is selected, the component shall be designed so that precisely
one single step of operation of the on-chip system logic occurs while, at least, a specified minimum number
of TCK cycles are applied during the Run-Test/Idle controller state. The component shall be designed so that
only one single step of operation is performed whether or not more than the specified minimum number of
TCK cycles is applied while the TAP controller is in the Run-Test/Idle controller state. This may, for
example, require that clock signals coming into the component be gated before application to the on-chip
system logic. In this way, operation of the on-chip system logic can be inhibited while test data are shifted
through the boundary-scan register. Figure 8-8 illustrates how the system clock applied to the component
should be controlled during testing of the on-chip system logic using the INTEST instruction.

While Figure 8-8 illustrates a situation in which the system clock is a single positive-going pulse, rule b) of
8.9.1 can be generalized to apply to components that employ multiple clock cycles for each step of operation
or that have several clock input pins at which multiphase clock signals are received. Note that, while
Figure 8-8 shows entry into the Run-Test/Idle controller state from the Update-DR controller state, clock
pulses also would be applied to the on-chip system logic if the Run-Test/Idle controller state were entered
from the Update-IR controller state.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

65
Copyright © 2013 IEEE. All rights reserved.

Figure 8-8—Control of applied system clock during INTEST

b) The on-chip system logic can be supplied with clock signals derived from TCK in the Run-Test/Idle
controller state. In all other controller states, the clocks should not change state. Figure 8-9 shows a derived
clock signal where the on-chip system logic responds to rising clock edges, for example.

Figure 8-9—Use of TCK as clock for on-chip system logic during INTEST

c) Circuitry may be built into the component that, on entry into the Run-Test/Idle controller state, allows the
on-chip system logic to complete one step of operation. For example, if the component were a
microprocessor, it would be permitted to complete a single processing cycle, for example, by internal
generation of a pulse on the hold signal. In this case, the clock(s) applied at the system clock pin(s) during
the test could be free-running.

d) Clock signals can be shifted in via the boundary-scan path in the same manner in which nonclock signals for
the on-chip system logic are supplied. Note that this will require the boundary-scan register to be shifted for
each distinct clock signal state (e.g., twice for a single-phase clock).

NOTE—This may be a hazard-prone operation for certain circuit designs.

While the INTEST instruction is selected, the state of system output pins is determined by the test logic. There are
two options. First, the pin state may be determined by the data held in the boundary-scan register, shifted onto the
latched parallel outputs of the register during each pass through the scan sequence for the register. If there are
excluded segments, then the state of system output pins controlled by excluded boundary-scan register segments will
be defined by the system logic. Second, every system output pin may be forced to an inactive drive state (e.g., high-
impedance). If an output is in a powered-down domain, then it remains powered-down. This supplies surrounding
components on an assembled board with predictable signal levels while the on-chip system logic test is in progress.
Typically, a consistent set of data values would be shifted into the appropriate stages of the boundary-scan register
using the PRELOAD instruction before the selection of the INTEST instruction. This data pattern is then reloaded
each time a new INTEST test pattern is shifted into the boundary-scan register.

Recommendation f) of 8.9.1, where followed, helps ensure that data shifted out of the component in response to the
INTEST instruction is not altered by the presence of faults in off-chip system logic, board-level interconnections,
and so on. This simplifies diagnosis since any errors in the output bit stream can be caused only by faults in the on-
chip system logic or in the boundary-scan register.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

66
Copyright © 2013 IEEE. All rights reserved.

8.10 RUNBIST instruction

The optional RUNBIST instruction causes execution of a self-contained self-test of the component. Use of the
instruction allows a component user to determine the health of the component without the need to load complex data
patterns and without the need for single-step operation (as required for the INTEST instruction). While the RUNBIST
instruction is selected, the state of all system output pins is determined by the test logic. There are two options. First,
the pin state may be determined by the data held in the boundary-scan register, shifted onto the latched parallel
outputs of the register during each pass through the scan sequence for the register. Second, every system output pin
may be forced to an inactive drive state (e.g., high-impedance).

The following rules apply where the RUNBIST instruction is provided.

NOTE—After use of the RUNBIST instruction, the on-chip system logic may be in an indeterminate state that will persist until a
system reset is applied. Therefore, the on-chip system logic may need to be reset on return to normal (i.e., nontest) operation.

8.10.1 Specifications

Rules

a) When the RUNBIST instruction is selected, the test data register into which the results of the self-test(s) will
be loaded shall be connected for serial access between TDI and TDO in the Shift-DR controller state.

b) Self-test mode(s) of operation accessed through the RUNBIST instruction shall execute only in the Run-
Test/Idle controller state.

c) Where a test data register is required to be initialized before execution of the self-test, this shall occur at the
start of the self-test without any requirement to shift data into the component (i.e., there shall be no
requirement to enter seed values into any test data register).

NOTE—As per rule k1) in this subclause, the boundary-scan register may (optionally) need to be initialized to define the
state of signals driven from system output pins. However, this value should not be used as a seed for the self-test
operation since it may be dependent on the board design.

d) A duration shall be specified for the test executed in response to the RUNBIST instruction (e.g., a number of
rising edges of TCK or the system clock).

e) The result of the self-test(s) executed in response to the RUNBIST instruction shall be loaded into the test
data register connected between TDI and TDO no later than the rising edge of TCK in the Capture-DR
controller state.

f) After the specified minimum duration, the test result observed by loading and shifting of the test data
register selected by the RUNBIST instruction shall be constant regardless of when the Capture-DR controller
state is entered.

g) Use of the RUNBIST instruction shall give the same result in all versions of a component.

h) Data shifted out of a component after completion of execution of a self-test accessed using the RUNBIST
instruction shall be independent of the operation of off-chip circuitry or board-level interconnections.

i) All stages of the test data register selected by the RUNBIST instruction shall be set to determinate logic
states (0 or 1) no later than the rising edge of TCK in the Capture-DR controller state.

j) The component shall be designed such that results of self-tests executed in response to the RUNBIST
instruction are not affected by signals received at nonclock system input pins.

k) When the RUNBIST instruction is selected, all system outputs from the component shall be defined as
follows:

1) The state of all signals driven from system output pins controlled by the boundary-scan register or
included boundary-scan register segments shall be defined by the data held in the boundary-scan
register and shall change only on the falling edge of TCK in the Update-DR controller state, and
system output pins controlled by excluded boundary-scan register segments shall be defined by the
system logic.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

67
Copyright © 2013 IEEE. All rights reserved.

2) All outputs from the component (including those that are two-state outputs) except any outputs that are
powered-down shall be placed in an inactive drive state (e.g., high-impedance) on selection of the
RUNBIST instruction.

l) The states of the parallel output registers or latches in boundary-scan register cells located at system output
pins (two-state, three-state, or bidirectional) shall not change while the RUNBIST instruction is selected,
unless the associated pin has been placed in an inactive drive state (e.g., high-impedance) as defined in rule
k2) in this subclause.

Recommendations

m) Removed for this version of the standard.

Permissions

n) The binary value(s) for the RUNBIST instruction may be selected by the component designer.

o) Where a component includes multiple self-test functions, these may be executed either concurrently or in a
sequence determined by the component manufacturer in response to the RUNBIST instruction. In the latter
case, all sequencing should be taken care of within the component itself without requiring the alteration of
the instruction register contents.

p) Additional public instructions may be provided to give a component user access to individual self-test
functions within a component.

q) The test data register connected between TDI and TDO when the RUNBIST instruction is selected may be
the boundary-scan register.

r) While the RUNBIST instruction is selected, the boundary-scan register may act as a pattern generator or
signature compactor in the Run-Test/Idle controller state provided rule l) of this subclause is met.

8.10.2 Description

The RUNBIST instruction provides the component purchaser with a means of running a self-test function within the
component as a result of a single instruction. This permits all components on a board that offer the RUNBIST
instruction to execute their self-tests concurrently, providing a rapid health check for the assembled board. Note,
however, that the component manufacturer can include further private or public instructions to give access to
individual self-test functions one at a time or to self-test functions that are not invoked by the RUNBIST instruction.

The sequence of steps required for completion of the execution of RUNBIST can be defined as:

a) (Optional) initialization of the boundary-scan register (for example, via PRELOAD). This is required if the
pin state during BIST is to be determined by the data in the latched parallel outputs of the register.

b) Initiate BIST: scan the RUNBIST instruction into the instruction register.

c) Execute BIST: cause the TAP controller to remain in its Run-Test/Idle controller state for the duration
required for completion of the execution of BIST.

d) Evaluate BIST results: bring the TAP controller to the Shift-DR controller state and scan out the test results
(e.g., a signature) from the register connected to TDI and TDO by the RUNBIST instruction.

While the test is proceeding, the test logic defines the outputs from the component. As for the INTEST instruction,
two options are available:

⎯ The pin state may be determined by the data held in the boundary-scan register.

⎯ Every system output pin may be forced to an inactive drive state (e.g., high-impedance).

Where the former option is selected, the data values driven through the system output pins are fixed at the time the
RUNBIST instruction is selected, based on data held in the boundary-scan register at that time. (These data may have
been preloaded using the PRELOAD instruction.) The boundary-scan register is controlled such that the data held in

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

68
Copyright © 2013 IEEE. All rights reserved.

the latched parallel outputs of cells that feed system output pins does not change while the RUNBIST instruction is
selected. Referring to Figure 8-2, this might, for example, be achieved by holding the Update-DR signal at 0 while
the RUNBIST instruction is selected. The Mode signal would be held at 1. If there are excluded segments in the
boundary-scan register, then the output pins associated with those segments will be controlled by the system logic.

Boundary-scan register cells also may be used to hold programmed signal values at inputs to the on-chip system
logic while the self-test is executing (again, as shown in Figure 8-7). Alternatively, boundary-scan register cells
located at nonclock system logic inputs can be designed to act as a source of self-test data for the on-chip system
logic. Similarly, boundary-scan register cells located at system logic outputs can act as compactors for the results of
the self-test.

The specification of boundary-scan register cells for system clock input pins allows the clocks for the on-chip
system logic to be obtained in one of two ways while the RUNBIST instruction is selected:

⎯ The signals received at system clock pins can be fed directly to the on-chip system logic as during normal
operation of the component. Where this is done, the component shall be designed such that the self-test
executes only in the Run-Test/Idle controller state. The clock may, however, be active in other controller
states.

⎯ The on-chip system logic can be supplied with clock signals derived from TCK in the Run-Test/Idle
controller state. In all other controller states, the clocks should not change state.

The rules relating to the duration of a self-test executed in response to the RUNBIST instruction [rule d) and rule f)
in 8.10.1)] require that sufficient clock edges are applied to allow completion of self-tests executed concurrently in
different components on an assembled board. Thus, in a product containing components with self-test lengths of
1000, 5000, 10 000, and 50 000 rising clock edges on TCK, the complete board shall be left in the Run-Test/Idle
controller state for at least 50 000 rising clock edges to allow time for all tests to complete satisfactorily. Tests that
complete before 50 000 clock edges have been applied will hold their results until they are accessed.

Rule g) of 8.10.1 requires that the test for an assembled board be independent of the versions of the components
mounted on it. This is an important consideration when working in a maintenance or repair environment, where the
versions of the components used on a board may not be known. The rule can be met by forming the exclusive-OR of
the result from execution of the RUNBIST instruction with a fixed (version-dependent) pattern. The output from this
function would become the result loaded into the boundary-scan register or the other test data register connected
between TDI and TDO.

Rule h) of 8.10.1 requires that data shifted out of the component in response to the RUNBIST instruction is not
altered by the presence of faults in off-chip system logic, board-level interconnections, and so on. This simplifies
diagnosis since any errors in the output bit stream can be caused only by faults in the on-chip system logic or in the
test data register connected in the path between TDI and TDO.

8.11 CLAMP instruction

The optional CLAMP instruction allows the state of the signals driven from component pins to be determined from
the boundary-scan register, while the bypass register is selected as the serial path between TDI and TDO. The
signals driven from the component pins will not change while the CLAMP instruction is selected with the exception
that if the boundary-scan register is segmented, then the signals driven from the component pins controlled by an
excluded segment will be determined by the system logic.

The following rules apply where the CLAMP instruction is provided.

NOTE—After use of the CLAMP instruction, the on-chip system logic may be in an indeterminate state that will persist until a
system reset is applied. Therefore, the on-chip system logic may need to be reset on return to normal (i.e., nontest) operation.
This can be accomplished with the optional IC_RESET instruction.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

69
Copyright © 2013 IEEE. All rights reserved.

8.11.1 Specifications

Rules

a) The CLAMP instruction shall select the bypass register to be connected for serial access between TDI and
TDO in the Shift-DR controller state.

NOTE 1—The bypass register will behave fully as defined in Clause 10 while the CLAMP instruction is selected.
Therefore, it will load a logic 0 during the Capture-DR controller state and shift data during the Shift-DR controller state.

b) When the CLAMP instruction is selected, the state of all signals driven from system output pins controlled
by the boundary-scan register or included boundary-scan register segments shall be defined by the data held
in the boundary-scan register, and system output pins controlled by excluded boundary-scan register
segments shall be defined by the system logic.

NOTE 2—For example, this boundary-scan register data may be shifted into the boundary-scan register by previous use
of the PRELOAD instruction.

c) The states of the update stages in boundary-scan register cells located at system logic outputs (for two-state,
three-state, or bidirectional pins) shall not change while the CLAMP instruction is selected.

d) When the CLAMP instruction is selected, the on-chip system logic shall be controlled such that it cannot be
damaged as a result of signals received at the system input or system clock input pins.

NOTE 3—This might be achieved by placing the on-chip system logic in a reset or “hold” state while the CLAMP
instruction is selected.

Permissions

e) The binary value(s) for the CLAMP instruction may be selected by the component designer.

8.11.2 Description

During testing of a particular IC or a cluster of ICs on a loaded printed circuit board, it may be necessary to place
static “guarding” values on signals that control operation of components not involved in the test—for example, to
place it in a state where it cannot respond to signals received from the logic under test, or to avoid driver contention
when testing other components or performing an in-circuit test.

The EXTEST instruction could be used for this purpose. This instruction would be loaded serially into the ICs that
drive the signals on which “guarding” values are required. The required signal values would be loaded as a part of
the complete serial data stream shifted into the board-level path both at the start of the test and each time a new test
pattern is entered. A limitation of this approach is that the length of the data pattern to be shifted for each test is
increased by inclusion of the boundary-scan registers in the ICs involved in the “guarding” process. As a result, the
test application rate is reduced.

The optional CLAMP instruction allows “guarding” values to be applied using the boundary-scan registers or
included boundary-scan register segments of the appropriate ICs, but it does not retain these registers in the serial
path during test application. In a case in which the CLAMP instruction is used to create “guarding,” the following
process would be used:

NOTE—It is presumed in the following description that every component implements the optional CLAMP instruction.

a) Before the test, the PRELOAD instruction would be loaded into all ICs that will provide “guarding” signals
during the upcoming test. Call this group of ICs G. If test set-up data are required in ICs not in G (i.e., in
those ICs that will participate actively in the upcoming test), the PRELOAD instruction also may be loaded
into these ICs at this time.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

70
Copyright © 2013 IEEE. All rights reserved.

b) Shift the “guarding” pattern into all relevant boundary-scan register cells of the ICs in G. Any test set-up
data required for the ICs to be tested also are loaded.

c) From this point on, until the test is concluded, every time instructions are to be scanned into devices on the
board, enter the CLAMP instruction into the ICs in G. As long as the CLAMP instruction is maintained as the
active instruction in the ICs of G, the output signal values of these ICs will be determined by the “guarding”
data in their boundary-scan registers or included boundary-scan register segments. Also, as a consequence of
the use of the CLAMP instruction, the ICs in G all have their bypass registers selected throughout the test;
thus, they contribute very little to the overall test time.

When the boundary-scan register is segmented, then the guarding is also segmented. By excluding a boundary-scan
register segment, the component outputs controlled by the boundary cells in that segment will stay in their normal
mode and be controlled by the system logic.

8.12 Device identification register instructions

Use of the optional device identification register allows a code to be serially read from the component that shows:

⎯ The manufacturer’s identity

⎯ The part number

⎯ The version number for the part

The device identification register is selected for scan by two standard instructions: IDCODE and USERCODE.
These instructions are defined in 8.13 and 8.14. Use of the IDCODE instruction will provide information on the base
component, while use of the USERCODE instruction will provide information on the particular programming of a
programmable component [e.g., a fuse-programmable logic device or random access memory (RAM)-based, field-
programmable gate array].

8.13 IDCODE instruction

8.13.1 Specifications

The following rules apply when the IDCODE instruction is provided.

Rules

a) Where a device identification register is included in the design, the component shall provide an IDCODE
instruction.

b) The IDCODE instruction shall select only the device identification register to be connected for serial access
between TDI and TDO in the Shift-DR controller state (i.e., no other test data register may be connected in
series with the device identification register).

c) When the IDCODE instruction is selected, the device identification code shall be loaded into the device
identification register on the rising edge of TCK after entry into the Capture-DR controller state.

d) When the IDCODE instruction is selected, all test data registers that can operate in either system or test
modes shall perform their system function.

e) When the IDCODE instruction is selected, then:

1) If the TMP controller is either not provided or in the Persistence-Off state, the operation of the test
logic other than the optional reset selection register and its associated logic (shown in
Clause 17) shall have no effect on the operation of the on-chip system logic or on the flow of signals
between the system pins and the on-chip system logic.

2) If the TMP controller is provided and in the Persistence-On state, then the state of all signals driven
from system output pins shall be completely defined by the data held in the boundary-scan register.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

71
Copyright © 2013 IEEE. All rights reserved.

Permissions

f) The binary value(s) for the IDCODE instruction may be selected by the component designer.

8.13.2 Description

Where a device identification register is included in a component design, the IDCODE instruction is forced into the
instruction register’s parallel output latches during the Test-Logic-Reset controller state. This allows the device
identification register to be selected by manipulation of the broadcast TMS and TCK signals, as well as by a
conventional instruction register scan operation. The importance of this means of selecting access to the device
identification register is that it permits blind interrogation of the components assembled onto a printed circuit board,
and so on. Thus, in circumstances where the component population may vary (e.g., due to second sourcing of
components), it is possible to determine which components exist in a product.

The purpose of the IDCODE instruction is to verify that the device at a board location matches the BSDL used to
generate the test. (See the rules for coding device information given in Clause 12.) If the IDCODE value read during
test does not match the expected device identification register result, that could mean:

a) The wrong device with a compatible pin layout was located at that board location.

b) A different version of the correct device was located at that board location, as indicated by a mismatch in the
version field of the device identification register, but with a matching value in the part number field.

c) A functionally compatible device from a different manufacturer was placed at that board location as
indicated by a mismatch of the manufacturer’s identification field.

Such results would require the board test engineer to investigate the device change and determine whether a correct
part is mounted on the board and whether the current test patterns are still valid. If it is a new version or a second-
sourced version of the component, the board test engineer needs to verify that the new version or manufacturer is
acceptable in the current application. If any of the fields of the device identification register change, then the device
may have changes in the test features documented in BSDL that would require generation of new board-level test
patterns.

If just the version field changes, a device may have been revised by the manufacturer in a way that is of no concern
to either the functional definition of the board or the test logic and, therefore, can be tested with the existing test
patterns and shipped to end users as an acceptable variant. In such a case, either version of the device is acceptable
and allowed on the board. There is no requirement that all variants of the device mission mode logic be
accompanied by a version code change, although version code changes are recommended for significant mission
mode variants where the change is great enough that one or another variant might not be acceptable in a specific
application.

If only the manufacturer code changes, the test engineer needs to confirm that the devices from the alternative
source manufacturer are acceptable. If so, then either of the device choices is acceptable on the board. The BSDL
files for the two devices can be compared to verify that the test logic is the same, as is required for a true second
source.

Board test engineers can decide which device identification register results are allowed and update their tests to
behave accordingly.

8.14 USERCODE instruction

8.14.1 Specifications

The following rules apply when the USERCODE instruction is provided.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

72
Copyright © 2013 IEEE. All rights reserved.

Rules

a) Where a device identification register is included in the design and the component is user-programmable, the
component shall provide a USERCODE instruction.

b) The USERCODE instruction shall select the device identification register to be connected for serial access
between TDI and TDO in the Shift-DR controller state (i.e., no other test data register may be connected in
series with the device identification register).

c) When the USERCODE instruction is selected, the 32-bit user-programmable identification code shall be
loaded into the device identification register on the rising edge of TCK after entry into the Capture-DR
controller state.

d) When the USERCODE instruction is selected, all test data registers that can operate in either system or test
modes shall perform their system function.

e) When the USERCODE instruction is selected, then:

1) If the TMP controller is either not provided or in the Persistence-Off state, the operation of the test
logic other than the optional reset selection register and its associated logic (shown in
Clause 17) shall have no effect on the operation of the on-chip system logic or on the flow of signals
between the system pins and the on-chip system logic.

2) If the TMP controller is provided and in the Persistence-On state, then the state of all signals driven
from system output pins shall be completely defined by the data held in the boundary-scan register.

Permissions

f) The binary value(s) for the USERCODE instruction may be selected by the component designer.

8.14.2 Description

The USERCODE instruction allows a user-programmable identification code to be loaded and shifted out for
examination. This instruction is required only for programmable components, in which the programming cannot
otherwise be determined through use of the test logic. The instruction allows the programmed function of the
component to be determined and verified. This standard does not mandate the 32-bit field content, but that value
should provide identifying information that will be unique to a given application of the device. For example, it could
contain a version number and firmware identification code unique to the content provider and the application it
serves.

The USERCODE instruction is intended for use in components that go through a two-stage manufacturing process,
typically performed by two different companies. The first stage creates programmable functional logic, along with
some fixed and some programmable test logic. The fixed test logic would include both the IDCODE and
USERCODE instructions; and a device identification register loading a fixed value for IDCODE and a
programmable value for USERCODE, which could be implemented in fuses or other component-level programming
technology. The boundary-scan register is fixed in length, although the function of some of the boundary-scan
register may be programmable. The USERCODE value is programmed during the second step of manufacturing,
which also defines device functionality.

The BSDL provided after the first stage would include the device identification register values for the initial
manufacturer and all X’s for the USERCODE register value. The BSDL after the second stage would include a
unique value for the USERCODE (along with any other changes required by the programming, such as a modified
function of some of the boundary-scan cells), all of which is completely defined by the second-stage manufacturer
with the intent that no two different devices that are “socket compatible” have the same USERCODE register value.

Multiple USERCODE register values can be defined in a BSDL. The presence of multiple USERCODE values in
the BSDL should be interpreted as each value represents a programming of the base component that is compatible
with the BSDL.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

73
Copyright © 2013 IEEE. All rights reserved.

8.15 ECIDCODE instruction

The electronic chip identification (ECID) is a “serial number” for the silicon die. If only one die is in a package, then
it becomes the serial number of the packaged die, or component. If there are more than one die in a package, and
only one die has the TAP that acts for the packaged component, then at least the ECID value for the die with the
common TAP on it would be reported. Other die in the package could have their ECID values retrieved by other
means, or the ECID registers of each die could be connected in series and treated, from an external point of view, as
a single, extended ECID value. Finally, an excludable segment structure in the ECID register could be used to
retrieve the multiple ECID values from one die at a time.

The following rules apply when the ECIDCODE instruction is provided.

8.15.1 Specifications

Rules

a) If a vendor-defined public electronic chip identification code is embedded in the component, the component
shall provide an ECIDCODE instruction.

b) The ECIDCODE instruction shall select the ECID register to be connected for serial access between TDI
and TDO in the Shift-DR TAP controller state.

c) When the ECIDCODE instruction is selected, the electronic chip identification code embedded in the
component shall be retrieved, if it has not been retrieved already, and:

1) If the retrieval is not complete, a value of all 1 (111...1) shall be loaded into the ECID register no later
than on the rising edge of TCK after entry into the Capture-DR TAP controller state.

2) If the retrieval is complete, the retrieved value shall be loaded into the ECID register no later than on
the rising edge of TCK after entry into the Capture-DR TAP controller state.

d) Retrieval of the electronic chip identification code shall not be dependent on external digital inputs to the
component other than specified system clocks and those digital inputs required to operate the test logic (TAP
ports, including TCK, and compliance-enable ports).

e) When ECID retrieval requires a defined procedure, the procedure shall be provided using the PDL (see
Annex C).

NOTE 1—Rule c) through rule e) do not preclude a more complex retrieval process requiring additional design-specific
instructions and time. Such a procedure can be described using PDL (see Annex C). It also does not preclude a design
where the ECID is immediately available to be read, perhaps by automatic retrieval at power-up. It does require the
ECIDCODE instruction to retrieve the value, if necessary, and to return either a valid electronic chip identification value
or a specific invalid value, which would permit polling in addition to simple verification of completion.

f) Any public embedded electronic chip identification shall not have a value of all 1.

NOTE 2—This value (all 1) is interpreted as the retrieval process is not complete.

g) When the ECIDCODE instruction is selected, all design-specific test data registers that can operate in either
system or test modes shall perform their system function.

h) When the ECIDCODE instruction is selected, then:

1) If the TMP controller is either not provided or in the Persistence-Off state, the operation of the test
logic other than the optional reset selection register and its associated logic (shown in
Clause 17) shall have no effect on the operation of the on-chip system logic or on the flow of signals
between the system pins and the on-chip system logic.

2) If the TMP controller is provided and in the Persistence-On state, then the state of all signals driven
from system output pins shall be completely defined by the data held in the boundary-scan register.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

74
Copyright © 2013 IEEE. All rights reserved.

Recommendations

i) The number of system clocks used for the retrieval of the electronic chip identification code should be
minimized or, where practical, TCK should be used in lieu of any system clocks.

Permissions

j) The binary value(s) for the ECIDCODE instruction may be selected by the component designer.

8.15.2 Description

The optional ECIDCODE instruction allows an identification code, unique to each integrated circuit die of a specific
type, to be loaded and shifted out for examination. The device identification code and possible user code provided
through the device identification register are used to identify the type and operation of a component, and the
electronic chip identification provided through the ECID register is used to identify the specific instance of that type.

The mechanism required to retrieve the electronic chip identification value may vary, and nothing in this standard is
intended to restrict the underlying mechanism for storing and retrieving the electronic chip identification beyond the
constraints in rule d) in 8.15.1. To support the various retrieval mechanisms, a PDL procedure (see Annex C) named
“ecid” can be optionally provided by the component designer to document a sequence of operations or to document
just the time required for an on-chip mechanism to retrieve the value.

In any case, if the retrieval process is not complete before the TAP controller reaches the Capture-DR state in the
ECIDCODE instruction, then the specified value of all 1 is captured to indicate that the electronic chip identification
value is not yet available. This supports polling the ecid register when the time required is not known exactly.

8.16 HIGHZ instruction

Use of the optional HIGHZ instruction places the component in a state in which all of its system logic outputs are
placed in an inactive drive state (e.g., high impedance). In this state, an in-circuit test system may drive signals onto
the connections normally driven by a component output without incurring the risk of damage to the component.

The following rules apply where the HIGHZ instruction is provided.

NOTE—After use of the HIGHZ instruction, the on-chip system logic may be in an indeterminate state that will persist until a
system reset is applied. Therefore, the on-chip system logic may need to be reset on return to normal (i.e., nontest) operation.

8.16.1 Specifications

Rules

a) The HIGHZ instruction shall select the bypass register to be connected for serial access between TDI and
TDO in the Shift-DR controller state.

NOTE 1—The bypass register will behave fully as defined in Clause 10 while the HIGHZ instruction is selected.
Therefore, it will load a logic 0 during the Capture-DR controller state and shift data during the Shift-DR controller state.

b) When the HIGHZ instruction is selected, all system logic outputs (including two-state and three-state outputs
and bidirectional pins) of the component shall immediately be placed in an inactive drive state.

NOTE 2—If present, pull-up, pull-down, and keeper circuits are not required to be disabled.

NOTE 3—Any portion of the outputs that are powered-down are considered to be in an inactive drive state.

NOTE 4—The HIGHZ instruction is not affected by the state of the TMP controller.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

75
Copyright © 2013 IEEE. All rights reserved.

NOTE 5—Per rule k) of 11.2.1, there can be no consequential change in the states of the parallel output registers or
latches in boundary-scan register cells. For example, on leaving the HIGHZ instruction and selecting the EXTEST
instruction, the data held in the boundary-scan register before selection of the HIGHZ instruction should be applied to
the system output pins.

c) When the HIGHZ instruction is selected, the on-chip system logic shall be controlled such that it cannot be
damaged as a result of signals received at the system input or system clock input pins.

NOTE 6—This might be achieved by placing the on-chip system logic in a reset or “hold” state while the HIGHZ
instruction is selected.

Permissions

d) The binary value(s) for the HIGHZ instruction may be selected by the component designer.

8.16.2 Description

On boards where not all the components are compatible with this standard, a need will continue to exist to use in-
circuit test techniques in which test signals from an ATE system are driven into internal connections of the
assembled board. To allow this to be done without risk of damage to the components that normally would control
these connections, components should be designed such that their system logic output pins can be placed in an
inactive drive state while in-circuit testing proceeds. On a component compatible with this standard, provision of the
HIGHZ instruction allows such a state to be entered by use of the TAP. (On components that do not comply with
this standard, this typically would be achieved using a dedicated test-control pin.)

A further use of the HIGHZ instruction is to allow a source of test data to be connected to one or more signals
internal to a loaded board in place of the normal driver(s). An example application is shown in Figure 8-10.

Figure 8-10—Use of the HIGHZ instruction

During normal operation, the outputs of the component under test would be in an inactive drive state (e.g., high-
impedance), while the outputs of the processor would be active. During testing, the HIGHZ instruction is entered
into the processor with the result that its outputs enter the inactive drive state. The component under test then can be
enabled to drive the connections into the logic under test (which might, for example, be an array of memory
integrated circuits).

Note that, where the system requirement is for a two-state output pin and both logic states are actively driven, a
three-state buffer will have to be provided purely to allow entry into the inactive state when the HIGHZ instruction
is selected. The enable input to this buffer will be supplied directly from the instruction decoder, as illustrated in
Figure 8-11. (In Figure 8-11, the signal from the instruction decoder would be logic 1 other than when the HIGHZ
instruction is selected.) No boundary-scan register cell is required in this signal path.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

76
Copyright © 2013 IEEE. All rights reserved.

Figure 8-11—Provision of HIGHZ at a two-state pin

For a two-state pin where only one state is driven actively, the output should be forced into the inactively driven
state when the HIGHZ instruction is selected. For example, the output pull-down transistor for an open-collector
output would be forced off.

8.17 Component initialization instructions and procedures

At the time the IEEE Std 1149.1 was first created, the input and output circuits of components were mostly fixed
TTL and CMOS I/O. This standard previously required that, after power was applied, application of the optional
TRST* signal and application of the optional compliance-enable pins was the only initialization process required to
prepare the component for board test.

Newer input and output circuits are often programmable, and if incorrectly programmed (or not programmed at all),
they may not detect or drive the expected values during a board test or, in extreme cases, may even be damaged.

In addition, internal blocks such as phase-locked loops (PLLs) and power control circuitry may need to be placed in
specific states to keep the component cool and safe in the board test environment. For example, it is not unusual for
a board test to occur before heat sinks are added to components on the board, placing particularly strict requirements
on component power dissipation.

Multiple solutions to providing more complex initialization processes have been used, but they are neither
standardized nor automatic. They require manual changes to the generated board tests and typically lack sufficient
status and correlation to achieve successful EXTEST-based interconnect testing and diagnosis. This 2013 version of
the standard introduces optional instructions that, if provided in a component, will allow test software to
automatically initialize the compliant components on a board, simplifying test preparation and execution. This
standard specifies a set of rules permitting sufficient observation of the initialization process and, when appropriate,
to detect a failure in achieving initialization (possibly due to a board-level fault) prior to the component going into
EXTEST.

Note that while the initialization instructions are intended to be used after power-up and before EXTEST, they may
be used any time they are needed.

The following rules apply when any initialization instruction is provided.

8.17.1 Specifications

Rules

a) If an orderly initialization process beyond a simple application of the TRST* TAP signal or other Power-On
Reset is required for correct component operation in boundary-scan testing, the component shall provide
either the pair of INIT_SETUP and INIT_SETUP_CLAMP instructions, the INIT_RUN instruction only, or
all three instructions.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

77
Copyright © 2013 IEEE. All rights reserved.

b) Compliance-enable and TAP pins shall operate as specified by this standard without programming by the
initialization process defined in these rules.

c) When the initialization instructions are provided, initialization procedures shall be provided for the
execution of the initialization process using the PDL defined in Annex C.

d) After the initialization procedures have completed successfully, the resulting system logic state and
programmable analog characteristics of the system pins shall remain active as long as any instruction that
interferes with the flow of signals between the system pins and the on-chip system logic is active, or for as
long as the TMP controller remains in the Persistence-On state.

NOTE 1—Of the instructions defined in this standard, this includes EXTEST, CLAMP, CLAMP_HOLD,
CLAMP_RELEASE, HIGHZ, RUNBIST, INTEST, INIT_SETUP_CLAMP, and INIT_RUN. This rule implies that if the
TMP controller is not in the Persistence-On state, and an instruction has been made active that does not interfere with
the flow of signals between system pins and the on-chip system logic, the initialization process must be run again before
selecting an instruction that interferes with the on-chip system logic and the flow of signals between the system pins and
the on-chip system logic.

e) Any changes to the programmable analog characteristics of system pins, and any changes (including a
change to power status) to the system logic, specified by the INIT_SETUP or the INIT_SETUP_CLAMP
instruction shall take effect upon or following the falling edge of TCK in the:

1) Update-DR TAP controller state when the INIT_SETUP or INIT_SETUP_CLAMP instruction is active.

2) Update-IR TAP controller state when a subsequent instruction that interferes with the flow of signals
between the system pins and the on-chip system logic is made active.

NOTE 2—Of the instructions defined in this standard, this includes EXTEST, CLAMP, CLAMP_HOLD,
CLAMP_RELEASE, HIGHZ, RUNBIST, INTEST, INIT_SETUP_CLAMP, and INIT_RUN.

Permissions

f) System clocks may be used by the initialization instructions as specified in the initialization procedures.

Recommendations

g) Where domains on a component may not be ready for test after power is applied, and status and/or controls
are provided to allow these domains to be made ready for test, these controls should be capable of being set
and the status capable of being read by the INIT_SETUP and INIT_SETUP_CLAMP instructions.

h) Where system clocks are used in the initialization procedures, the number of system clocks required should
be minimized.

i) Where system clocks are used in the initialization procedures, they should be capable of being shut off at the
end of the initialization process without loss of the results of the initialization process.

8.17.2 Description

The INIT_SETUP instruction supplies any information required by the initialization. The information to be supplied
is determined by both the component and the board on which the component is used.

The INIT_SETUP instruction does not interfere with the flow of signals between the system pins and the on-chip
system logic (that is, it is not a test mode instruction), but it can still be disruptive. The analog characteristics of the
I/O can be changed by the INIT_SETUP instruction while the I/O are still controlled by the system logic. In addition,
other effects of the information supplied by the INIT_SETUP instruction, such as powering-up domains, including
boundary-scan register domains containing I/O, turning PLLs ON or OFF, can take effect immediately. So while the
instruction is not a test mode instruction, it can be disruptive to both the I/O and the system logic.

Because conditions on the board may be indeterminate during the initialization process, the INIT_SETUP_CLAMP
instruction is required whenever the INIT_SETUP instruction is provided. This instruction enforces a CLAMP
behavior, controlling the system pins from the boundary-scan register (that is, it is a test mode instruction). While a

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

78
Copyright © 2013 IEEE. All rights reserved.

PRELOAD instruction will normally be required before invoking this instruction, it does provide the ability to mask
most effects of initialization from other components on a board, when necessary.

In the case where the INIT_SETUP or INIT_SETUP_CLAMP instruction is used to control excludable segments (see
9.4) and will need to make the domains containing those segments ready for test, the test data register selected by
the INIT_SETUP or INIT_SETUP_CLAMP instruction may need to be scanned multiple times.

The INIT_RUN instruction initiates and provides the time for an internally controlled sequential (state machine)
initialization process, optionally using information provided by the INIT_SETUP instruction. The INIT_RUN
instruction does interfere with the flow of signals between the system pins and the on-chip system logic. The
initialization procedures must wait a specified amount of time to finish (in terms of a number of clock cycles or
actual time), or poll initialization status to determine completion. What happens during the execution of the
sequential machine initiated by the INIT_RUN instruction is the responsibility of the component designer and is not
restricted to programming input and output circuits. If a sequential initialization process is not required, then the
INIT_RUN instruction need not be provided.

The INIT_SETUP instruction, if provided, must be run prior to any instruction that interferes with the flow of signals
between the system pins and the on-chip system logic. (Of the instructions defined in this standard, this includes
EXTEST, CLAMP, CLAMP_HOLD, CLAMP_RELEASE, HIGHZ, RUNBIST, INTEST, INIT_SETUP_CLAMP, and
INIT_RUN.) Given the programmability of some I/O circuits in current use, their analog characteristics can vary
from board to board, or even between two uses of a component on a board, so the data provided by the initialization
procedures and loaded by the INIT_SETUP or INIT_SETUP_CLAMP instruction may vary from use to use, and
from board to board.

The INIT_RUN instruction, if provided, must be run prior to any other instruction that interferes with the flow of
signals between the system pins and the on-chip system logic other than the INIT_SETUP_CLAMP instruction. The
INIT_SETUP and INIT_SETUP_CLAMP instruction pair and the INIT_RUN instruction are each optional and
independent. One can exist without the other. If INIT_RUN is provided and requires parameters, then all three
instructions must be provided.

The initialization processes are expected to leave the component in a controlled test mode state where the system
logic is cool and safe, the input and output pin analog characteristics are set appropriately for boundary-scan testing
of the board under test, and the I/O are controlled from the boundary-scan register. While not required by this
standard, a component designer may wish to use the initialization instruction decodes as a “warning” to the system
logic that a test mode is about to ensue, and block any system logic activity that would interfere with test
initialization. Alternatively, a component designer could use an initialization process to prepare the component for
some built-in test.

Table 8-1 and Table 8-3 illustrate typical initialization sequences for a board with a mixture of components having
varying initialization requirements. It is assumed that the board has been powered up and all compliance signal
values applied. Steps labeled 1 through 8 would be a normal board interconnect test without any initialization
requirement; steps labeled Init1 through Init5 are added to support initialization. As shown in the supplementary
Table 8-2 and Table 8-4, this sequence can be further modified if there are powered-down and/or excludable register
segments in the boundary-scan register that need to be powered-up or included.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

79
Copyright © 2013 IEEE. All rights reserved.

Table 8-1—Typical initialization sequence, deferred test mode

Step Action
Device 1 has no
INIT_SETUP or
INIT_RUN

Device 2 has only
INIT_SETUP,
INIT_SETUP_CLAMP

Device 3
has only
INIT_RUN

Device 4 has INIT_SETUP,
INIT_SETUP_CLAMP and
INIT_RUN

1 TLR: Initialize TAP; component I/O connected in mission mode.

2 IRScan: Load PRELOAD instruction to get ready for EXTEST.

3
DRScan
(NOTE 1):

Shift first pattern of test data into boundary-scan register; ignore data out.

Init1
IRScan:
Get ready for
setup data

Load BYPASS. Load INIT_SETUP.
Load
BYPASS.

Load INIT_SETUP.

Init2

DRScan
(NOTE 1):
Load setup
data

Shift Device2 setup data.

Shift Device4 setup data.

Init3

IRScan
(NOTE 2
and
NOTE 3):
Complete
init process

Load CLAMP or
EXTEST
(start test mode).

Load CLAMP or
INIT_SETUP_CLAMP
(start test-mode).

Load
INIT_RUN
(start test
mode).

Load INIT_RUN
(start test mode).

Init4
DRScan:
Read out
status

If EXTEST, load in
same data as step 3,
ignore data out.

If INIT_SETUP_CLAMP load
in same data as step Init2,
ignore data out.

Read Device3
status.

Read Device4
status.

Init5 Loop:
If not “Done” go to step Init4.
If “Error”, exit.

4
IRScan:
Start test

Load EXTEST.

5 DRScan: Shift next test data vector into boundary-scan register; save current response data out.

6 Loop: Return to step 5 for each remaining pattern.

7 DRScan: Shift safe data into boundary-scan register; save last response data out.

8 TLR: End of test; I/O returned to mission mode, but in undefined state.

NOTE 1—Two or more scans (see Table 8-2) may be needed if excludable or selectable segments (see 9.4) need to be included
or selected, or domains need to be enabled.

NOTE 2—Start of test mode across the board.

NOTE 3—May require delay (wait) during execution.

If the boundary-scan register contains segments that are powered down and/or excluded when the component and
board are powered up, then step 3 in Table 8-1 can be expanded as shown in Table 8-2 to bring those segments into
the boundary-scan register. (See 9.4 for the definition of excludable segments.) In this case, this is done while the
component and board are still in the mission mode, and it assumes that including those segments while in mission
mode will not cause three-state conflicts or other problems on the board. The PRELOAD instruction is active in all
components through and after this sequence.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

80
Copyright © 2013 IEEE. All rights reserved.

Table 8-2—Including boundary-scan segments in mission mode

Step Action
Device 1 has no
INIT_SETUP or
INIT_RUN

Device 2 has only
INIT_SETUP,
INIT_SETUP_CLAMP

Device 3 has only
INIT_RUN

Device 4 has
INIT_SETUP,
INIT_SETUP_CLAMP
and INIT_RUN

3.1 DRScan: Load appropriate domain-control cells with 1.

3.2 DRScan: After power-up wait, if needed; check all appropriate segment-select cells capture 1.

3.3 DRScan: Load appropriate segment-select cells with 1.

3.4 DRScan: Shift first interconnect pattern of test data into boundary-scan register; ignore data out.

In some cases, the initialization process itself, or the process of powering-up and including boundary-scan segments,
may create three-state conflicts or other problems on the board. In this case, these problems may be avoidable if the
components on the board are taken out of mission mode and put into test mode before such changes take place.
Table 8-3 shows a typical sequence that would achieve this goal.

Table 8-3—Typical initialization sequence, immediate test mode

Step Action
Device 1 has no
INIT_SETUP or
INIT_RUN

Device 2 has only
INIT_SETUP,
INIT_SETUP_CLAMP

Device 3 has only
INIT_RUN

Device 4 has
INIT_SETUP,
INIT_SETUP_CLAMP
and INIT_RUN

1 TLR: Initialize TAP; component I/O connected in mission mode.

2 IRScan: Load PRELOAD instruction to get ready for EXTEST.

3
DRScan
(NOTE 1):

Shift first interconnect pattern of test data into boundary-scan register; ignore data out.

Init1

IRScan
(NOTE 2):
Get ready
for setup
data

Load CLAMP or
EXTEST, (start
test mode).

Load
INIT_SETUP_CLAMP
(start test mode).

Load CLAMP or
EXTEST
(start test mode).

Load
INIT_SETUP_CLAMP
(start test mode).

Init2

DRScan

(NOTE 1):
Load setup
data

If EXTEST, load
in same data as
step 3, ignore
data out.

Shift Device2 setup data.

If EXTEST,
load in same data
as step 3, ignore
data out.

Shift Device4 setup data.

Init3

IRScan

(NOTE 3):
Complete
init process

Load CLAMP or
EXTEST.

Load CLAMP or
INIT_SETUP_CLAMP.

Load INIT_RUN. Load INIT_RUN.

Init4
DRScan:
Read out
status

If EXTEST, load
in same data as
step 3, ignore
data out.

If INIT_SETUP_CLAMP
load in same data as step
Init2, ignore data out.

Read Device3
status.

Read Device4
status.

Init5 Loop:
If not “Done” go to step Init4.
If “Error”, exit.

4
IRScan:
Start test

Load EXTEST.

5 DRScan: Shift next test data vector into boundary-scan register; save current response data out.

6 Loop: Return to step 5 for each remaining pattern.

7 DRScan: Shift safe data into boundary-scan register; save last response data out.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

81
Copyright © 2013 IEEE. All rights reserved.

Step Action
Device 1 has no
INIT_SETUP or
INIT_RUN

Device 2 has only
INIT_SETUP,
INIT_SETUP_CLAMP

Device 3 has only
INIT_RUN

Device 4 has
INIT_SETUP,
INIT_SETUP_CLAMP
and INIT_RUN

8 TLR: End of test; I/O returned to mission mode, but in undefined state.

NOTE 1—Two or more scans may be needed if excludable or selectable segments need to be included or selected, or
domains need to be enabled; see Table 8-4.

NOTE 2—Start of test mode across the board.

NOTE 3—May require delay (wait) during execution.

If the boundary-scan register contains segments that are powered down and/or excluded when the component and
board are powered up, then Step 3 in Table 8-3 can be expanded as shown in Table 8-4 to bring those segments into
the boundary-scan register. (See 9.4 for the definition of excludable segments.) In this case, this is done while the
component and board are in the test mode. The PRELOAD instruction is active in all components, but the EXTEST
instruction is immediately made active to initiate test mode, which will be in effect when continuing with step Init1
in Table 8-3.

Table 8-4—Including boundary-scan segments in test mode

Step Action
Device 1 has no
INIT_SETUP or
INIT_RUN

Device 2 has only
INIT_SETUP,
INIT_SETUP_CLAMP

Device 3 has only
INIT_RUN

Device 4 has
INIT_SETUP,
INIT_SETUP_CLAMP,
and INIT_RUN

3.1 DRScan: Shift first interconnect pattern of test data into boundary-scan register; ignore data out.

3.2 IRScan:
Load CLAMP or EXTEST instruction (start test mode). EXTEST required for components with
excludable boundary-scan register segments.

3.3 DRScan: Load appropriate domain-control cells with 1.

3.4 DRScan: After power-up wait, if needed; check all appropriate segment-select cells capture 1.

3.5 DRScan: Load appropriate segment-select cells with 1.

3.6 DRScan:
Because boundary-scan register has changed length, shift first interconnect pattern of test data into
selected boundary-scan registers again; ignore data out.

8.18 INIT_SETUP and INIT_SETUP_CLAMP instructions

8.18.1 Specifications

Rules

a) The INIT_SETUP and INIT_SETUP_CLAMP instructions shall both be provided when the initialization
process requires parameterization, including parameters for setting input and output characteristics, for
controlling excludable domains, or for controlling the sequential execution of the initialization process.

b) The INIT_SETUP and INIT_SETUP_CLAMP instructions shall select the initialization data register (see
Clause 14) to be connected for serial access between TDI and TDO in the Shift-DR TAP controller state.

c) When the INIT_SETUP instruction is active, all public test data registers that can operate in either system or
test modes, other than the initialization data register, shall perform their system functions.

d) When the INIT_SETUP instruction is active and the TMP controller is either not provided or in the
Persistence-Off state, the operation of the test logic other than the optional reset selection register and its

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

82
Copyright © 2013 IEEE. All rights reserved.

associated logic (shown in Clause 17) shall have no effect on the flow of signals between the system pins
and the on-chip system logic.

e) When the INIT_SETUP instruction is active and the TMP controller is provided and in the Persistence-On
state, or the INIT_SETUP_CLAMP instruction is active, the state of all signals driven from system output
pins shall be completely defined by the data held in the boundary-scan register.

Permissions

f) The binary value(s) for the INIT_SETUP and INIT_SETUP_CLAMP instructions may be selected by the
component designer.

8.18.2 Description

As described above, the INIT_SETUP and INIT_SETUP_CLAMP instructions supply the data needed for initializing
the component on the board by loading the initialization data register. The data values may change from board to
board and even from use to use of a component on a single board.

The INIT_SETUP instruction does not interfere with the operation of the component input and output circuits and
should be run before any such instruction is run. INIT_SETUP_CLAMP, on the other hand, forces CLAMP type
behavior, putting the component into test mode. This will normally require a PRELOAD instruction first. The
difference is to allow a test engineer to control exactly when the component transitions from mission to test mode.
For example, some power domains may need to be powered up and boundary or initialization data register segments
may need to be included. Such changes can have an effect on the board, and if that becomes a problem, the test
engineer can switch from INIT_SETUP to INIT_SETUP_CLAMP to mask undesirable effects of initialization on a
board. Normally, after INIT_SETUP, the component would not go to test mode until a test mode instruction such as
EXTEST or INIT_RUN was made active.

It is recognized that, sometimes, initialization data are provided through component pins. These may be tied to a
high or low value on the board, or controlled by another source on or off the board. Such pins have not had a
definition in this standard, nor any standardized way of monitoring them to verify that they are set as expected for
the board. With the allowance for monitoring virtually any pin with redundant observe-only boundary-scan register
cells, these pins may be monitored during test in the boundary-scan register. Alternatively, with the capture
capability of the initialization data register (see Clause 14), these pins may be checked and verified prior to
initialization and scan the boundary-scan register, when required.

8.19 INIT_RUN instruction

8.19.1 Specifications

Rules

a) If the initialization process requires the execution of a sequential process within the component requiring
some time before any test instruction controlling the input and output circuits can be used, then the
INIT_RUN instruction shall be provided.

b) The INIT_RUN instruction shall select the initialization status register (see Clause 15) to be connected for
serial access between TDI and TDO in the Shift-DR controller state.

c) While the INIT_RUN instruction is active, the sequential initialization process built into the component shall
execute.

d) While the INIT_RUN instruction is active, the on-chip system logic shall be controlled such that it cannot be
damaged as a result of signals received at the system input or system clock input pins.

e) When the INIT_RUN instruction is active, all system outputs from the component shall be defined by data
held in the boundary-scan register, whose analog characteristics may have been defined by data held in the
initialization data register.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

83
Copyright © 2013 IEEE. All rights reserved.

f) A maximum duration shall be specified for the initialization process executed in response to the INIT_RUN
instruction (e.g., absolute time or a number of rising edges of TCK).

Recommendations

g) After the successful completion of INIT_RUN, and when the active instruction no longer requires control of
the input and output circuits, the device system logic should remain in the initialized state until another test
or a functional reset process is initiated.

NOTE—This is to protect the component and other components on the board, and it does not eliminate the need to re-
run initialization after an instruction that does not control the input and output circuits.

Permissions

h) At any time while the INIT_RUN instruction is active, the initialization status register may capture data in
the Capture-DR TAP controller state and be scanned out in the Shift-DR TAP controller state.

i) The binary value(s) for the INIT_RUN instruction may be selected by the component designer.

8.19.2 Description

Sometimes, complex input and output circuits will require sequential initialization. More often, the system logic will
require a sequential process to prepare it for the board test. For example, in order to minimize power consumption,
PLLs or internal clock distribution may need to be turned OFF, various internal power domains shut down or
powered up, and other steps taken to put the system logic into a protected state for the board test.

A state machine controlling such a process can be designed into the component by the designer. The INIT_RUN
instruction is then used to automatically initiate and time the execution of that state machine prior to the board test.
Alternatively, a PDL procedure “init_run” (see Annex C) could be provided by the component designer, and it could
make use of multiple instructions (such as the optional IC_RESET instruction) to properly sequence the system logic
to a safe state, as needed. In this case, the INIT_RUN instruction itself may not even be needed, and the analog
characteristics of the I/O set by the INIT_SETUP instruction would take effect when the first test instruction
(EXTEST, CLAMP_HOLD, etc.) becomes active.

The test software would normally run INIT_SETUP as the last non-test instruction followed by INIT_RUN as the
first test instruction, although this could be altered by the provided PDL procedures.

While the INIT_SETUP_CLAMP or INIT_RUN instructions are selected, the logic value of all signals driven from
system output pins will be completely defined by the data held in the boundary-scan register and will not change
during the Update-DR state.

If the initialization process successfully completes on a component, then the system logic is assumed to be in a safe
state with the output circuits ready for boundary-scan testing to occur. This is based on the assumed correctness of
any values loaded into the initialization data register by the INIT_SETUP or INIT_SETUP_CLAMP instruction.

When the initialization process does not correctly complete on a component, then no instruction requiring control of
the input and output circuits can be expected to operate correctly. Of the instructions defined in this standard, this
includes EXTEST, SAMPLE, CLAMP, CLAMP_HOLD, CLAMP_RELEASE, HIGHZ, RUNBIST and INTEST.
BYPASS, IDCODE, and USERCODE are expected to work without initialization. PRELOAD is expected to work,
but it may not produce expected results if the boundary-scan register has excluded segments. In addition, the
component system logic may not be in a safe state for the test.

The results of initialization are expected to remain in effect as long as the active instruction is one that interferes
with system operation and the flow of signals between the system pins and the on-chip system logic (such as
EXTEST, CLAMP, CLAMP_HOLD, CLAMP_RELEASE, HIGHZ, INIT_SETUP_CLAMP, INIT_RUN, RUNBIST, or

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

84
Copyright © 2013 IEEE. All rights reserved.

INTEST). The results are also expected to remain in effect if the TMP controller is provided and is in the
Persistence-On state.

When the TMP controller is either not provided or is in the Persistence-Off state, loading an instruction that does not
interfere with system operation (such as PRELOAD, IDCODE, BYPASS, etc.), or asserting the Test-Logic-Reset
state, creates an assumption that the mission mode logic has taken control of those aspects of the system logic that
were defined by the execution of the INIT_RUN instruction and, possibly, the analog characteristics of the I/O. Thus,
in this situation, at least the INIT_RUN instruction or the “init_run” PDL procedure would have to be re-run to take
back control of the system logic and the input and output circuits prior to running other standard instructions that
interfere with system operation and the flow of signals between the system pins and the on-chip system logic.

The initialization process must put the system logic into a safe and test-ready state, which could prevent actions such
as thermal runaway or large power consumption, as well as reducing system noise for sensitive tests, and so on.
Whenever possible, the system logic should remain in that state, regardless of other test activity, until some explicit
form of system reset takes control. Similarly, the analog controls of the I/Os may be released when the active
instruction is one that does not block the flow of signals between the system logic and the system pins, or may stay
in the same state until new instructions or functional operation change the values. There is some ambiguity as to
when the initialized state of the I/Os and system logic end. Therefore, if the initialized state is required for tests after
an instruction is made active that does not interfere with system operation or the flow of signals between the I/O and
the system logic (such as BYPASS or PRELOAD), then the component must be re-initialized.

8.20 CLAMP_HOLD, CLAMP_RELEASE, and TMP_STATUS instructions

The CLAMP_HOLD and CLAMP_RELEASE instructions, provided if and only if the optional TMP controller is
provided, control the state of the test mode persistence (TMP) controller. The TMP_STATUS instruction, again
provided if and only if the TMP controller is provided, captures the current TMP controller state and the current
state of the bypass-escape bit in the TMP status register. The TMP controller, in turn, forces the state of the signals
driven from component pins to be determined from the boundary-scan register even when other instructions that
would normally not control the signals at the pins may be active. The CLAMP_HOLD and CLAMP_RELEASE
instruction pair departs from other instructions in this standard in that they set or clear a controller state, which
modifies the behavior of the Test-Logic-Reset TAP controller state and many instructions.

The following rules apply when the CLAMP_HOLD, CLAMP_RELEASE, and TMP_STATUS instructions are
provided.

8.20.1 Specifications

Rules

a) If and only if the TMP controller (described in 6.2) is provided per permission d) of 5.1.1, then the
CLAMP_HOLD, CLAMP_RELEASE, and TMP_STATUS instructions shall be provided.

b) The CLAMP_HOLD, CLAMP_RELEASE, and TMP_STATUS instructions shall select the TMP status
register to be connected for serial access between TDI and TDO in the Shift-DR controller state (see
Clause 16).

c) When either the CLAMP_HOLD or the CLAMP_RELEASE instruction is selected, the state of signals driven
from all system output pins provided with boundary cells in any included boundary-scan register segments
shall be controlled by the data in those cells.

d) The CLAMP_HOLD instruction shall set the TMP controller state to Persistence-On.

e) The CLAMP_RELEASE instruction shall set the TMP controller state to Persistence-Off.

NOTE 1—Since the CLAMP_HOLD and CLAMP_RELEASE instructions already control the component pins from the
boundary-scan register, the change in the TMP controller state is not immediately observable at the pins and thus the
change of TMP controller state can be performed at any time while the respective instructions are selected. The change
must occur on a rising edge of TCK, as required by the TMP controller rules.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

85
Copyright © 2013 IEEE. All rights reserved.

f) When the TMP_STATUS instruction is selected, then:

1) If the TMP controller is in the Persistence-Off state, the operation of the test logic other than the
optional reset selection register and its associated logic (shown in Clause 17) shall have no effect on
the operation of the on-chip system logic or on the flow of signals between the system pins and the on-
chip system logic.

2) If the TMP controller is in the Persistence-On state, then the state of all signals driven from system
output pins shall be completely defined by the data held in the boundary-scan register.

g) The states of the update stages in boundary-scan register cells located at system logic outputs (for two-state,
three-state, or bidirectional pins) shall not change while any of the CLAMP_HOLD, CLAMP_RELEASE, or
TMP_STATUS instructions are selected.

h) The on-chip system logic shall be controlled such that it cannot be damaged as a result of signals received at
the system input or system clock input pins while either the CLAMP_HOLD or CLAMP_RELEASE
instruction is selected.

NOTE 2—This might be achieved by placing appropriate portions of the on-chip system logic in a reset or “hold” state
while the CLAMP_HOLD or CLAMP_RELEASE instruction is selected.

i) The opcodes chosen for the CLAMP_HOLD and CLAMP_RELEASE instructions shall not include the all 0
opcode.

NOTE 3—The all 0 opcode could be presented to a device by a stuck-at-zero fault on a device TDI pin. As with any
intrusive instruction, the CLAMP_HOLD and CLAMP_RELEASE instruction should not be selected by this event.

Permissions

j) The binary value(s) for the CLAMP_HOLD, CLAMP_RELEASE, and TMP_STATUS instructions may be
selected by the component designer.

8.20.2 Description

The CLAMP_HOLD and CLAMP_RELEASE instructions exist solely to control the TMP controller state (see 6.2).
These instructions do not need to perform a data register scan to change the TMP controller state. When the
Persistence-On state is set, the device I/O and boundary-scan register remain in test mode regardless of the active
instruction or the Test-Logic-Reset state. The TMP_STATUS instruction simply observes the current state of the
TMP controller status without causing a change in the test mode state of the component. All three instructions are
required if the TMP controller is provided, and they must not be provided otherwise (they are reserved keywords in
BSDL).

All three instructions select the TMP status register for scanning, which includes a read-only TMP-status bit, which
observes the TMP controller state, and the write only bypass-escape bit, which enables or disables the bypass-escape
transition of the TMP controller state machine. See Clause 16 for details on the TMP status register.

When the TMP controller is not provided, a device would enter test mode only when the active instruction takes
control of the device I/O away from the system logic (i.e., EXTEST, CLAMP, HIGHZ, RUNBIST,
INIT_SETUP_CLAMP, INIT_RUN, etc.) and the device leaves test mode when the active instruction does not
control the device I/O (i.e., PRELEAD, SAMPLE, IDCODE, BYPASS, INIT_SETUP, etc.). The Test-Logic-Reset
TAP controller state forces the IDCODE or BYPASS instruction, causing the device to leave test mode. This is the
“traditional” behavior of a device conforming to this standard since its inception in 1990.

When the TMP controller is provided, a device that was switched from its normal activities to test mode will persist
in test mode rather than enter into an undefined and potentially destructive state that could occur by reconnecting the
I/O pins to the device’s system logic. Since the state of the internal logic of a device may be completely undefined
as a result of entering test mode, it could be risky to reconnect this logic to the I/O pins and attempt to resume
functional operation. The rules in this standard require that the system logic be maintained in a state designed to be

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

86
Copyright © 2013 IEEE. All rights reserved.

safe by the component designer while the component is in test mode. The persistent clamped I/O state gives test
engineers the ability to control the unintended consequences of testing.

In addition, certain types of internal tests selectable by design-specific instructions may share some I/O pins to allow
an IC tester to monitor the test. If this test may also be performed in situ, on a fully populated board, it may be
necessary to block those signals to prevent them from causing undesired effects in other devices on the board. The
TMP controller allows the test engineer to put such a device on a board into a safe state for running such tests.

For the boundary-scan register cells defined in this standard (BC_1, BC_2, etc.), control of the I/O is dominantly
exercised through one or another of the “Mode” signals defined in the tables provided in Clause 11, which include
entries for the TMP controller Persistence-On state and for excluded boundary-scan register segments. In addition,
some of the non-data characteristics of the I/O may be controlled in the test mode by the results of running the
INIT_SETUP, INIT_SETUP_CLAMP, and INIT_RUN instructions.

When the Persistence-On state is set, instructions that would otherwise assert test mode will behave as specified.
HIGHZ, for instance, will shift the I/O controlled by included boundary-scan register segments from a CLAMP to a
HIGHZ behavior while active. Instructions that would otherwise not assert test mode will behave as specified except
that the I/O controlled by included boundary-scan register segments will remain controlled by the test logic. This
behavior is shown in Table 8-5.

Table 8-5—I/O pin behavior for TMP controller states

I/O pin behavior per instruction based on TMP controller state

Instruction Behavior when Persistence-Off Behavior when Persistence-On

IDCODE/USERCODE Mission pins connected to system logic
Pins controlled by boundary-scan
register content

BYPASS Mission pins connected to system logic
Pins controlled by boundary-scan
register content

PRELOAD Mission pins connected to system logic

Pins controlled by boundary-scan
register content but content could
change at Update-DR (emulates
EXTEST)

SAMPLE with permission f) of 8.6.1
Mission pins connected to system
logic, emulates PRELOAD

Pins controlled by boundary-scan
register content but content could
change at Update-DR (emulates
EXTEST)

SAMPLE without permission f) of 8.6.1
Mission pins connected to system
logic, does not emulate PRELOAD

Pins controlled by boundary-scan
register content

EXTEST IEEE 1149.1 EXTEST IEEE 1149.1 EXTEST

INTEST with EXTEST output behavior;
rule c1) of 8.9.1

Pins controlled by boundary-scan
register content; emulates EXTEST on
outputs only

Pins controlled by boundary-scan
register content; emulates EXTEST on
outputs only

INTEST with CLAMP output behavior;
rule c2) of 8.9.1

Pins controlled by boundary-scan
register content

Pins controlled by boundary-scan
register content

CLAMP
Pins controlled by boundary-scan
register content

Pins controlled by boundary-scan
register content

HIGHZ All pins high impedance
All pins high impedance (does not
change boundary-scan register content)

RUNBIST with HIGHZ behavior; rule
k2) of 8.10.1

All pins high impedance
All pins high impedance (does not
change boundary-scan register content)

RUNBIST with CLAMP behavior; rule
k1) of 8.10.1

Pins controlled by boundary-scan
register content

Pins controlled by boundary-scan
register content

INIT_SETUP Mission pins connected to system logic
Pins controlled by boundary-scan
register content

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

87
Copyright © 2013 IEEE. All rights reserved.

I/O pin behavior per instruction based on TMP controller state

Instruction Behavior when Persistence-Off Behavior when Persistence-On

INIT_SETUP_CLAMP
Pins controlled by boundary-scan
register content

Pins controlled by boundary-scan
register content

INIT_RUN
Pins controlled by boundary-scan
register content

Pins controlled by boundary-scan
register content

CLAMP_HOLD
Pins controlled by boundary-scan
register content

Pins controlled by boundary-scan
register content

CLAMP_RELEASE
Pins controlled by boundary-scan
register content

Pins controlled by boundary-scan
register content

TMP_STATUS Mission pins connected to system logic
Pins controlled by boundary-scan
register content

IC_RESET Mission pins connected to system logic
Pins controlled by boundary-scan
register content

In addition, the behavior of the Test-Logic-Reset TAP controller state is significantly changed when the Persistence-
On state is set. The forced setting of the IDCODE or BYPASS opcode in the update portion of the instruction register
still takes place, but the resetting of any TDR or other test logic that affects control of the I/O must be blocked. This
specifically applies, but is not limited, to the setting or clearing of the update flip-flop of a boundary-scan register
control cell as described in part 2 of permission h) of 11.3.1 and illustrated in the gated-clock design in Figure 8-12.

Figure 8-12—Boundary-scan register control cell with a reset on the update flip-flop R2

If the ResetBSR* signal shown in Figure 8-12 were connected to the TAP Controller output signal “Reset*”, then
entry into the Test-Logic-Reset TAP controller state will clear (or set) the Update flip-flop “R2” of a control cell to
the state that will disable the driver [see rule p) of 11.6.1]. This would produce the noncompliant effect of a visible
change at the I/O pins if the TMP controller was in the Persistence-On state. One function of the TMP controller is
to intercept the “Reset*” signal from the TAP controller to the TDRs controlling the I/O. See Figure 6-10 for an
implementation example including the generation of the modified reset signal “CHReset*”. When the TMP
controller exists, the “CHReset*” signal is connected to the boundary-scan register reset (“ResetBSR*”) signal and
other TDRs controlling the I/O. In this way, the boundary-scan register cells controlling data to I/O pins, and the
effects of the initialization instructions controlling the other characteristics of the I/O pins, are maintained across the
Test-Logic-Reset TAP controller state. Note that either TRST* or on-chip power-up reset generation will continue to
reset all of the test logic, including the TMP controller state.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

88
Copyright © 2013 IEEE. All rights reserved.

8.21 IC_RESET instruction

The purpose of the optional IC_RESET instruction is to provide a means to control reset and related signals to the
system logic using the TAP. This instruction selects the reset selection register (see Clause 17).

Complex components may have multiple internal reset functions that they can perform. These are normally initiated
by pulsing one or another I/O pin, although some reset functions may be initiated within the system logic, such as
between two IP blocks on an SOC (system-on-a-chip). The IC_RESET instruction and its associated reset selection
register (see Clause 17) allow control of system reset functions through the TAP, including blocking undesired
resets to the system logic during testing.

The term “system reset” is defined loosely, and a given reset signal to the system logic could cause any number of
actions to occur, from preparing some part of the component for functional operation, to forcing a region into a state
ready for a BIST, to forcing some functional block off-line.

The following rules apply when the IC_RESET instruction is provided.

8.21.1 Specifications

Rules

a) When the IC_RESET instruction is selected, the reset selection register shall be connected for serial access
between TDI and TDO in the Shift-DR controller state (see Clause 17).

b) When the IC_RESET instruction is selected, any changes of the reset function signal(s) to the system logic
caused by the test logic shall be asserted or de-asserted on the falling edge of TCK in the Update-DR TAP
controller state.

NOTE 1—This rule does not constrain timing when the reset selection register does not control the reset
signals to the system logic. See Clause 17.

c) When the IC_RESET instruction is selected and the optional TMP controller is not provided or is in the
Persistence-Off state, the operation of the test logic other than the optional reset selection register and its
associated logic (shown in Clause 17) shall have no effect on the flow of signals between the system pins
and the on-chip system logic.

NOTE 2—This rule does not constrain the response of the system logic to reset signals controlled by the reset selection
register. Such a response might, itself, affect the flow of signals to and from the system logic.

d) When the IC_RESET instruction is selected and the optional TMP controller is provided and in the
Persistence-On state, the state of signals driven from all system output pins provided with boundary cells in
any included boundary-scan register segment shall be controlled by the data in those cells.

e) When the optional TMP controller is provided and in the Persistence-On state, any system reset function
initiated by the IC_RESET instruction shall be designed so that it does not alter the data held in the
boundary-scan register nor alter the characteristics of the component I/O established by execution of the
INIT_SETUP, INIT_SETUP_CLAMP, and INIT_RUN instructions.

NOTE 3—This rule may be met by using the TMP controller Persistence-On state to block propagation of any reset
signal that would otherwise violate this rule. In other words, some internal reset signals may be defined as valid only if
the TMP controller is in the Persistence-Off state.

f) The IC_RESET instruction shall not affect the operation of the TAP TRST* pin, any internally generated
POR* signal to the TAP (see Figure 6-8), nor either the Reset* or CHReset* outputs of the TAP and TMP
controller, respectively, nor any other test logic.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

89
Copyright © 2013 IEEE. All rights reserved.

Recommendations

g) All functional reset sources to the component should be controlled by the IC_RESET instruction.

NOTE 4—Functional reset sources include I/O pins and internally generated reset signals.

h) Where practical, independent system reset functions should be controlled separately, even if controlled in
parallel from a single reset input to the component.

i) The binary logic value(s) for the IC_RESET instruction should not include the all 0 value.

Permissions

j) The binary logic value(s) for the IC_RESET instruction may be selected by the component designer.

k) Additional design-specific instructions may be provided to give the component users access to system reset
functions within a component.

l) System clocks may be specified when the system logic requires such clocks to complete the reset action.

8.21.2 Description

The IC_RESET instruction is an optional instruction providing a standard means for the test logic to control one or
more reset signals to the system logic without requiring access to the reset pins on the board. This may be desirable
in a test environment where the boundary-scan register may intercept the board reset signals normally connected to
the component I/O, blocking their execution, or where the reset pins are not accessible to the tester. The IC_RESET
instruction may help maintain safe board or system operation after testing is complete without the need of a manual
power cycle or external system reset intervention.

While a given reset signal may cause an initialization state machine in the functional logic to run and initialize some
portion of the system logic, the core concepts of reset and initialization are separate and distinct. The purpose of this
instruction is to provide test control of the system and other reset inputs to the system logic, regardless of the
response of the system logic to the system inputs. The initialization instructions are provided to allow test control of
component initialization for a test, at least for a board test. On the other hand, the reset signal to the system logic can
initiate a sequencer in the system logic that does initialize the component for functional operation, if it is designed
that way.

Note that this instruction is not allowed to control reset signals to the test logic. Other mechanisms for that are
defined in this standard, and the test and system logic should be kept as separate as practical. In particular, neither
the TRST* test reset pin nor the internal Reset* or CHReset* signals generated by the TAP and TMP controllers
may be controlled by this instruction. In addition, if there is a POR signal generated internal to the component, and it
resets either or both the system and the test logic, the POR signal to the system logic may be controlled but the POR
signal to the test logic may not be controlled by this instruction, all per rule f) of 8.21.1.

The action of the IC_RESET instruction is simply to control the reset signals to the system logic. There are no
requirements or constraints placed on the system response to the reset signals so controlled. Often, system resets are
designed so that one action or set of actions is taken on the assertion of the reset signal, and other actions taken on
the de-assertion of the reset signal. The IC_RESET instruction allows that same behavior; the reset signal will be
asserted in the Update-DR TAP controller state and de-asserted in another Update-DR state. It is not required that
the entire system reset process take place while the reset signal is asserted, only that the appropriate reset functions
are initiated. If both edges of the reset signal are required for proper reset operation, with perhaps a minimum delay
between the edges, then the designer can use a PDL procedure to document such requirements (see Annex C) or the
second edge can be generated with system logic.

One requirement that the component designer must be aware of is that the system reset functions must honor the
Persistence-On state of the TMP controller, when it is included, by not altering either the data or the characteristics
controlling the component I/O. There are situations that arise during system-level testing where the I/O of a
component must be maintained at logic values under test logic control while performing an internal system logic test

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

90
Copyright © 2013 IEEE. All rights reserved.

such as memory built-in self-test (MEMBIST). If a reset function is needed prior to initiating MEMBIST, then the
I/O logic levels and characteristics should be maintained during the reset to maintain proper test control in the
system.

If this requirement to honor the TMP controller state cannot otherwise be met, then the reset signal to that logic
controlling the I/O should be blocked by the TMP controller Persistence-On state to preserve the test mode state of
the I/O when the controller is in the Persistence-On state.

In many cases, the component designer is not aware of the board- or system-level test requirements. To provide
better control of resets from the test logic, the component designer should provide separate control of all reset input
pins or other functional reset sources and additional separate control of internal reset functions, even if such
functions are all activated in parallel by the system reset I/O pin or are generated from an internal circuit.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

91
Copyright © 2013 IEEE. All rights reserved.

9. Test data registers

The test logic architecture contains a minimum of two test data registers (TDRs): the bypass and boundary-scan
registers. In addition, the designs of other standard optional test data registers are defined: the device identification,
electronic chip identification, initialization data, initialization status, TMP status, and reset selection registers.

The architecture is extensible beyond the TDRs specified in this standard to allow access to any test-support features
embedded in the design. These features might include scan-test, self-test registers, or access to key registers in the
design (for example, via scannable shadow registers). Additional test data registers need not be intended for public
access and use; in which case, the instruction selecting them for scan must be clearly documented as “Private” and
the test data register need not follow all of the rules of this clause.

Each named TDR complying with this standard has a defined length after reset [see rule c) and rule d) of 9.2.1] and
can be accessed using one or more instructions. The registers can, where appropriate, share circuitry and can be
concatenated to form further TDRs, provided that each distinct combination is given a new name (thus, allowing it
to meet the defined length requirement).

Excludable and selectable register segments can exist within a TDR as explained in 9.4. The definition of excludable
segments provides a standardized implementation of register segments within various power or other domains that
may be individually activated or inactivated. The definition of selectable segments provides for a standardized
description of register structures like those found in IEEE Std 1500TM.6

This clause defines the common design requirements for all publically accessible test data registers incorporated in
the test logic architecture defined by this standard. Specific design requirements for the bypass, boundary-scan,
device identification, electronic chip identification, initialization data, initialization status, TMP control, and reset
selection registers are contained in Clause 10 through Clause 12 and Clause 14 through Clause 17, respectively.
Subclauses B.8.18 through B.8.21 provide the syntax for describing test data registers, and Annex C provides a
language for automating procedural access to the registers.

9.1 Provision of test data registers

9.1.1 Specifications

Rules

a) The group of test data registers shall include, as a minimum, a bypass register and a boundary-scan register
designed according to the requirements contained in this clause and in Clause 10 and Clause 11,
respectively.

b) Where a device identification register is included in the group of test data registers, it shall be designed
according to the requirements contained in this clause and in Clause 12.

c) Where an electronic chip identification is included in the group of test data registers, it shall be designed
according to the requirements contained in this clause and in Clause 13.

d) Where an initialization data register is included in the group of test data registers, it shall be designed
according to the requirements contained in this clause and in Clause 14.

e) Where an initialization status register is included in the group of test data registers, it shall be designed
according to the requirements contained in this clause and in Clause 15.

f) Where a TMP status register is included in the group of test data registers, it shall be designed according to
the requirements contained in this clause and in Clause 16.

6 IEEE publications are available from The Institute of Electrical and Electronics Engineers (http://standards.ieee.org/).

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

92
Copyright © 2013 IEEE. All rights reserved.

g) Where a reset selection register is included in the group of test data registers, it shall be designed according
to the requirements contained in this clause and in Clause 17.

h) All other public test data registers shall be designed according to the requirements contained in this clause.

Permissions

i) Design-specific test data registers may be provided within the group of test data registers to give access to
design-specific testability features.

j) Design-specific test data registers may (but need not) be publicly accessible.

NOTE—Any register that is not publicly accessible must be accessed by a private instruction as documented in BSDL
using the INSTRUCTION_PRIVATE attribute. See B.8.11.

Recommendations

k) Each design-specific test data register should be accessed by a single instruction in order that it can be more
easily used with the PDL as described in Annex C.

9.1.2 Description

Figure 9-1 shows the bypass, boundary-scan, and optional test data registers realized as a set of shift-register based
elements connected in parallel between a common serial input and a common serial output. Selection of the register
that forms the serial path at a given time is controlled from the instruction register. In Figure 9-1, this is shown to be
achieved using a multiplexer; however, other implementations are possible.

Figure 9-1—Implementation of the group of test data registers

The registers shown in Figure 9-1 are briefly described as follows.

Bypass register

This provides a single-bit, which is the minimum length for any TDR serial connection through the circuit when
none of the other test data registers is selected. This register can, for example, be used to allow test data to flow

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

93
Copyright © 2013 IEEE. All rights reserved.

through a particular component to other components in a product without affecting the normal operation of the
particular component. The specification for the bypass register is contained in Clause 10.

Boundary-scan register

This allows testing of board interconnections, detecting typical production defects such as opens, shorts, and so on.
It also allows access to the inputs and outputs of components when testing their system logic or sampling of signals
flowing through the system inputs and outputs. The specification for the boundary-scan register is contained in
Clause 11.

9.1.2.1 Optional standard test data registers

This group of registers is defined in this standard and may include any of the following.

Device identification register

This is an optional test data register that allows the manufacturer, part number, and variant of a component to be
shifted out. If this register is included, it must conform to the specification contained in Clause 12.

Electronic chip identification register

This is an optional test data register that allows an identifier unique to this instance of the component to be
determined. If this register is included, it must conform to the specifications contained in Clause 13.

Initialization data register

This is an optional test data register that provides parameters for initializing programmable I/O and other circuits
requiring initialization prior to boundary-scan interconnect testing. If this register is included, then it must conform
to the specifications contained in Clause 14.

Initialization status register

This is an optional test data register that observes the status of the initialization process. If this register is included,
then it must conform to the specifications contained in Clause 15.

TMP status register

This is an optional test data register that enables a special transition of the TMP controller state to Persistence-Off. If
this register is included, then it must conform to the specifications contained in Clause 16. This register is not, and
should not be confused with, the Bypass Register.

Reset selection register

This is an optional test data register that selects one or more possible functional reset operations to be performed. If
this register is included, then it must conform to the specifications contained in Clause 17.

9.1.2.2 Design-specific test data registers

These optional registers allow access to design-specific test support features in the integrated circuit such as self-
tests, scan paths, and so on. They may or may not be made available for public use and access, as the component
designer wishes. If they are made available for public use, then they must conform to the specifications in Clause 9.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

94
Copyright © 2013 IEEE. All rights reserved.

9.2 Design and construction of test data registers

9.2.1 Specifications

Rules

a) Each test data register shall be given a unique name.

b) The design of each test data register shall be such that, when data are shifted through it, data applied to TDI
appears without inversion at TDO after a number of full TCK cycles equal to the current length of the
register when the TAP controller is in the Shift-DR state.

c) The length of each mandatory or optional standard test data register defined in this standard, or the length of
each segment used to assemble such a register, shall be fixed, independent of the instruction by which the
test data register is accessed.

d) For programmable components, the lengths of each mandatory or optional standard test data register defined
in this standard and the length of all segments of which such registers are assembled shall be independent of
the way the component is programmed.

NOTE 1—Most standard test data registers may vary in length, by switching fixed-length segments into and out of the
register, for both fixed and programmable components. See permission k) in this subclause and 9.4.

e) Segments used to assemble a mandatory or optional standard test data register shall not overlap and shall not
be contained within another segment.

f) Each test data register and each test data register segment shall have a minimum length of one.

g) Each test data register cell shall be able to respond to the TAP controller in accordance with the rules in
Clause 9 any time compliance has been established.

Permissions

h) A test data register may be constructed from segments, including segments also used in one or more other
registers, provided that the resulting design complies fully with the rules in this standard.

NOTE 2—Per rule a) of this subclause, the resulting combination must be given a name distinct from those of the
registers from which it is constructed.

i) Circuitry (including the shift-register paths) in the various test data registers included in a design may be
shared between test data registers provided that the rules contained in this standard are met.

j) Unless specifically prohibited by this standard, circuitry contained in test data registers may be used to
perform system functions when test operation is not required.

k) A test data register may be constructed from segments that are switched between excluded from or included
in the register, and from sets of segments where one segment of each set is selected for inclusion in the
register.

NOTE 3—The rules for controlling excludable and selectable segments are detailed in 9.4.

Recommendations

l) Design-specific test data registers should use the logical interface using ungated clocks as defined in
Table 9-1.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

95
Copyright © 2013 IEEE. All rights reserved.

Table 9-1—Recommended TDR interface for design specific TDRs

Signal Source Shared/Unique Comment
TCK
(NOTE 1 and
NOTE 5)

from TAP Common signal

SI_<TDR>

(NOTE 1 and
NOTE 5)

TDI or previous segment Shift chaining input Changes state on rise of TCK

Shift_<TDR>

(NOTE 2 and
NOTE 5)

TAP State Decode Unique control input Changes state on fall of TCK

Capture_<TDR>

(NOTE 2 and
NOTE 5)

TAP State Decode Unique control input Changes state on fall of TCK

Update_<TDR>

(NOTE 2 and
NOTE 5)

TAP State Decode Unique control input Changes state on rise of TCK

SO_<TDR>

(NOTE 3 and
NOTE 5)

Scan output from register to next segment
or TDO multiplexer

Shift chaining output Changes state on rise of TCK

Reset*_<TDR>

(NOTE 2 and
NOTE 5)

from TAP Common signal
TAP_POR*, TRST*, Reset*, or
CHReset*

NOTE 1—See 4.2 and 4.4.

NOTE 2—See Figure 9-4.

NOTE 3—This signal is an output from the TDR back to the TAP and will be multiplexed with other register scan outputs to
form TDO.

NOTE 4—This signal, the optional reset signal to the update stages, could be any of Reset*, CHReset*, TRST*, or
TAP_POR*. These reset signals are not normally gated with the <TDR> decode.

NOTE 5—“_<TDR>” is a unique label for the register and normally implies a signal qualified by the instruction that selects
the register.

9.2.2 Description

While the example implementations contained in this standard show the various test data registers to be separate
physical entities, circuitry may be shared between the test data registers provided the rules contained in this standard
are met. For example, this would allow the device identification register and the bypass register to share shift-
register stages; in which case, the requirements of this standard would be met by operating the common circuitry in
two different modes—the device identification register mode and the bypass register mode. Except where identified
specifically, the test data registers also may perform system functions and, thus, be a part of the on-chip system
logic, when they are not required to perform test functions.

Rule c) of 9.2.1 requires that the length of any test data register defined in this standard, or the segments of which it
is assembled, be fixed. The bypass, device identification, and the TMP status registers have specified and fixed
lengths. For example, the device identification register shall always contain 32 stages no matter how or when it is
accessed. Other test data registers defined in this standard may have segments that can be excluded but must have a
defined length after the initialization of the test logic using either TRST* or TAP_POR*. Design-specific registers
may have a variable length. Rule d) of 9.2.1 requires that the length of a test data register or its segments also be
fixed independently of how a programmable component is programmed.

Table 9-1 defines a standard logical TDR interface that can support TDRs with most common design styles. It
utilizes a combination of TAP ports, TAP controller state decodes gated by Instruction Register decodes (see
Figure 9-4), and an ungated TCK. This is a logical (that is, useful at the Hardware Description Language level of

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

96
Copyright © 2013 IEEE. All rights reserved.

design) interface based on signals readily available in most implementations of this standard. While other TDR
interfaces are compliant, adoption of this interface should allow simple, and perhaps automated, connection of TDRs
to the TAP regardless of the source of the design containing the TDR.

Note that virtual registers are allowed (i.e., a named test data register may be built from circuitry shared with other
test data registers or with the system logic). Therefore, requirements may exist for different segments of a single
physical register to be accessed for different tests, by different instructions. In these cases, rule a) of 9.2.1 is met by
assigning a unique name to each distinguishable register configuration (see Figure 9-2 and
Table 9-2). These restrictions are necessary to help avoid unnecessary complication of the software used to generate
and apply tests.

Figure 9-2—Construction of multiple test data registers from shared circuitry

Table 9-2—Naming of test data registers that share circuitry

Test data register name Stages that form the register

WHOLE_REG a, b, c, x, y, z
FRONT_REG a, b, c
BACK_REG x, y, z

9.2.3 TAP-to-TDR interface

The TAP decodes shown in Figure 6-5 are general and not gated for any specific register. In the simplest
implementations of this standard, with only the boundary-scan, bypass, and perhaps the device identification
registers, those signals may be used without any further gating. All registers would shift together, increasing power
consumption and possibly noise, but as the bypass and device identification register are “read-only” without update
latches or registers, the operation would be fully compliant.

In more complex situations, where there are additional optional standard and design-specific registers, then at a
minimum the controls or gated clocks of the update latch must be qualified by an instruction decode signal. For
several reasons, such as noise, power, and possible issues with TDRs that do not include the optional update latch or
register, it is preferred practice to also gate the signals that clock or control capture and shifting of the shift stage of
TDRs as well. This helps ensure that the TDR only changes states at appropriate times.

Throughout this standard, the example boundary-scan register cells all assume the gated clock TDR interface (state
Shift-DR plus gated clocks Clock-DR and Update-DR). Figure 9-3 shows how, in all but the simplest
implementation, the gated clocks would be further gated by an output of the instruction register decoding logic to
create the signals Clock-BSR and Update-BSR that are then distributed to all of the boundary-scan register cells.
[The instruction decodes shown implement permission f) of 8.6.1 and permission f) of 8.7.1, where both SAMPLE
and PRELOAD cause the boundary-scan register to both capture and update.] Figure 9-3 serves as an example for
other TDRs using the gated TCK approach.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

97
Copyright © 2013 IEEE. All rights reserved.

Figure 9-3—Gated-clock boundary-scan register gating

As use of this standard has evolved over the years, the original set of TAP outputs for TDRs, including the two gated
clocks Clock-DR and Update-DR, has worked well for the boundary-scan register cells and the device identification
and bypass registers defined in this standard and often is automatically inserted by synthesis tools. However, design-
specific test data registers, especially where a TDR is synthesized or embedded in an IP block, have tended toward
an interface that uses the ungated TCK. This creates a single clock domain for the test logic and simplifies the
timing and synthesis of the circuits. It also allows the TDR to be specified in a hardware description language that is
independent of the considerations required for gate-level synthesis and physical placement.

This standard now recommends a standard TDR interface (see Table 9-1) that uses the ungated TCK, especially if
the TDR is part of a reusable logic block. This interface is also used in the design examples for some of the optional
TDRs in this standard including the TMP status and reset selection registers. Figure 9-4 shows example gating logic
for interfacing the general TAP outputs of Figure 6-5 with the TDR-specific standard TDR inputs.

Figure 9-4—Test data register control gating

The <instruction n> input is the output from the instruction decoder (see Figure 7-2 for an example) for the
instruction(s) selecting the TDR with the unique identifier <TDR>. This interface logic may be built into the TAP,
into the TDR, or provided in a separate logical entity. In many cases, this logic will be created by the same tools that
build the TAP and connect to TDRs.

9.2.4 Test data register cell design examples

Test data register cells come in essentially four basic forms. In every case, a cell will have a shift register stage that
shifts on the rising edge of every TCK in the Shift-DR TAP controller state and holds the data stable at least until the
instruction selecting the register is no longer active. The first form of the cell is just that shift register driving its data
to the parallel output of the cell and is referred to here as a shift-only cell. The second form of the cell adds to the
shift register the capability of capturing data from the cell parallel input on the rising edge of TCK in the Capture-
DR TAP controller state and is referred to here as a capture cell. The third form of the cell adds to the shift register

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

98
Copyright © 2013 IEEE. All rights reserved.

stage the capability of transferring the data from the shift register to a hold latch or register on the falling edge of
TCK in the Update-DR TAP controller state and is referred to here as an update cell. The fourth form adds to the
shift register both the capture and update cell capabilities and is referred to here as a capture-update cell. An
example of each of these forms is shown below.

When the update latch or register is present, it may optionally be set or reset by the Test-Logic-Reset TAP controller
state (signal Reset*) or by the Test-Logic-Reset TAP controller state only when the TMP controller is in the
Persistence-Off state (signal CHReset*), or by either the TRST* TAP port signal or the TAP_POR*, whichever
initializes the TAP controller. Note that, in general, resets may not be needed and should be used only where needed,
and with the appropriate reset signal. Experience has shown, for instance, that the Test-Logic-Reset TAP controller
state may be entered frequently during testing, which may make Reset* a poor choice for resetting the TDR if the
data it holds may be needed later. Where the update stage is used, the optional reset is shown in the examples.

The register may be shared with other test data registers, or it may have a system function when the test logic is not
active. This will significantly change the implementation details and is not shown in the examples.

Additionally, there are different approaches to clocking the cells: using either an ungated TCK or a gated TCK such
as the Clock-DR signal generated in the TAP. Signals supporting both clocking schemes are shown as outputs from
the example TAP in Figure 6-5.

Gated-clock example TDR bit

Figure 9-5 shows a possible gate-level example of a control-update TDR cell built using the gated clock
implementation that shifts only when selected. The apparent simplicity of this example stems from the fact that the
appropriate TAP controller state decodes have been used to gate the two clocks within the TAP (see Figure 6-5).
The TAP-to-TDR interface logic, equivalent to that shown for the boundary-scan register in
Figure 9-3, is included in this figure outside the dashed box of the TDR cell, but again it could be implemented in
the TAP, the TDR, or another block in between. Again, <instruction n> is the decode of the instruction that selects
the TDR for scan, and an example of its generation is shown in Figure 7-2.

Figure 9-5—Capture-update TDR cell using gated clocks

Ungated-clock example TDR bits

This standard recommends a standard TDR interface using ungated TCK (see Table 9-1). Figure 9-6 through
Figure 9-9 illustrate the use of this interface using the outputs of the TAP to TDR interface logic in Figure 9-4. For
each figure, VHDL and Verilog code segments are also provided. The figures show one possible gate-level
implementation. In each gate-level example, PI is the parallel input for capture, PO the parallel output to the test

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

99
Copyright © 2013 IEEE. All rights reserved.

logic, “From last bit” and “To next bit” are the scan chain through the TDR, and the other signals are as defined in
Table 9-1.

Ignoring all the language structural requirements for inputs and outputs of entities or modules, segments of VHDL
and Verilog for coding each form of the TDR cell with an ungated TCK as input are shown below. The optional
reset is included if the update stage is included.

First is the capture-update (read-write) form with optional reset.

--
 -- VHDL code segment, see Figure 9-6
 if (TCK'event and TCK='1') then
 if CaptureTdrBit = '1' then
 tdr_cap <= pi; -- Capture parallel input
 elseif ShiftTdrBit = '1' then
 tdr_cap <= si; -- Shift data TDI->TDO
 end if;

 if (Reset_tdr='0') then
 tdr_upd <= 0;
 elseif (TCK'event and TCK='0') then
 if (UpdateTdrBit='1')
 tdr_upd <= tdr_cap; -- Update from shift/capture flop
 end if;
 end if;

 po <= tdr_upd;
 so <= tdr_cap;

--
 // Verilog code segment, see Figure 9-6
 always @(posedge TCK) // Shift/Capture flop
 if (CaptureTdrBit)
 tdr_cap <= pi; // Capture parallel input
 else if (ShiftTdrBit)
 tdr_cap <= si; // Shift data TDI->TDO

 always @(negedge TCK, negedge Reset_tdr) // Update flop
 if (~Reset_tdr)
 tdr_upd <= 0; // (Optional) reset of Update flop
 else if (UpdateTdrBit)
 tdr_upd <= tdr_cap; // Update from shift/capture flop

 assign po = tdr_upd;
 assign so = tdr_cap;

--
Figure 9-6 illustrates this test data register capture-update cell and has an update register that can optionally be reset
by the Test-Logic-Reset TAP controller state. This example includes essentially all of the capabilities listed above,
other than sharing the register with system logic. Most test data register cells will be a subset of this one.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

100
Copyright © 2013 IEEE. All rights reserved.

Figure 9-6—Capture-update TDR cell with nongated clock and optional reset

The second form is the “write-only” cell that does not capture PI data and is shown in Figure 9-7. The update
register is usually provided so the PO data remain constant while the shift register is being shifted. The only
difference is the simpler selection logic providing the data input to the shift register.

--
 -- VHDL code segment, see Figure 9-7
 if (TCK'event and TCK='1') then
 if ShiftTdrBit = '1' then
 tdr_cap <= si; -- Shift data TDI->TDO
 end if;

 if (Reset_tdr='0') then
 tdr_upd <= 0;
 elseif (TCK'event and TCK='0') then
 if (UpdateTdrBit='1')
 tdr_upd <= tdr_cap; -- Update from shift/capture flop
 end if;
 end if;

 po <= tdr_upd;
 so <= tdr_cap;

--
 // Verilog code segment, see Figure 9-7
 always @(posedge TCK) // Shift/Capture flop
 if (ShiftTdrBit)
 tdr_cap <= si; // Shift data TDI->TDO

 always @(negedge TCK, negedge Reset_tdr) // Update flop
 if (~Reset_tdr)
 tdr_upd <= 0; // (Optional) Reset
 else if (UpdateTdrBit)
 tdr_upd <= tdr_cap; // Update from shift/capture flop

 assign po = tdr_upd;
 assign so = tdr_cap;

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

101
Copyright © 2013 IEEE. All rights reserved.

Figure 9-7—Update TDR cell without capture and with nongated clock and optional reset

One item of note on the first three example TDR cells, Figure 9-5 through Figure 9-7: the “Reset*_<TDR>” signal
(Reset_tdr in the code segments) is not a signal gated by the TDR decode, but it may be sourced from any of four
possible reset signals: Reset*, illustrated in Figure 6-5, will reset the update register any time the TAP controller
enters the Test-Logic-Reset state. If the register is designed to be reset, but it is one of those that needs to be held
when the TMP controller is provided and in the Persistence-On state, then the “CH-Reset*”, illustrated in
Figure 16-1, would be used instead. Alternatively, when the TDR only needs to be reset at power-up, the TRST*
TAP port or TAP_POR*, whichever is used to reset the TAP controller, may be used. Again, TDRs should only be
provided with a reset when needed.

The third form shows a “read-only” cell that captures data and may optionally drive the PO output from the scan
stage and is shown in the code samples and Figure 9-8. Note that the parallel output data will not be stable during
shift operations. The logic is simpler still.

--
 -- VHDL code segment, see Figure 9-8
 if (TCK'event and TCK='1') then
 if CaptureTdrBit = '1' then
 tdr_cap <= pi; -- Capture parallel input
 elseif ShiftTdrBit = '1' then
 tdr_cap <= si; -- Shift data TDI->TDO
 end if;

 -- po <= tdr_cap; -- Optional PO without update
 so <= tdr_cap;

 // Verilog code segment, see Figure 9-8
 always @(posedge TCK) // Shift/Capture flop
 if (CaptureTdrBit)
 tdr_cap <= pi; // Capture parallel input
 else if (ShiftTdrBit)
 tdr_cap <= si; // Shift data TDI->TDO

 // assign po = tdr_cap; // Optional PO without update.
 assign so = tdr_cap;

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

102
Copyright © 2013 IEEE. All rights reserved.

Figure 9-8—Capture TDR cell with nongated clock and without update stage

The fourth and final form is a single shift stage without an update stage. This can be used as a “scan-only” cell, or
again as a “write-only” TDR where the PO output is not stable during shift operations. It is the simplest yet, as
shown in the code and Figure 9-9.

--
 -- VHDL code segment, see Figure 9-9
 if (TCK'event and TCK='1') then
 if ShiftTdrBit = '1' then
 tdr_cap <= si; -- Shift data TDI->TDO
 end if;

 po <= tdr_cap;
 so <= tdr_cap;

--
 // Verilog code segment, see Figure 9-9
 always @(posedge TCK) // Shift/Capture flop
 if (ShiftTdrBit)
 tdr_cap=si; // Shift data TDI->TDO

 assign po = tdr_cap;
 assign so = tdr_cap;

--

Figure 9-9—Shift-only TDR cell with nongated clock and without update stage.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

103
Copyright © 2013 IEEE. All rights reserved.

Care should be taken when using the last two forms (Figure 9-8 and Figure 9-9) as the parallel outputs will toggle
often during shifting. The test logic fed by PO must be designed to take this behavior into account and, if necessary,
prevent problems.

There are two additional specialized variations on the capture-update cell documented in this standard: a self-
monitoring cell that captures its own update latch so the current value can be observed, and a self-resetting cell,
which will produce a pulse as its output instead of a level.

The self-monitoring cell is shown in Figure 9-10. When the cell with an Update capability does not otherwise
require the capturing of the parallel input (PI), then the capture capability can be used to capture the value present in
the Update stage during the TAP controller state Capture-DR. This improves the observability of the test logic, and
it allows a user to verify the value actually being driven by the cell on the parallel output (PO) is as expected. For
instance, if a reset has occurred, the value in the Update stage may not be the same as the value last shifted in. If
there is a defect in the cell, this monitor can detect a stuck defect.

--
 -- VHDL code segment, see Figure 9-10
 if (TCK'event and TCK='1') then
 if CaptureTdrBit = '1' then
 tdr_cap <= tdr_upd ; -- Capture Update stage
 elseif ShiftTdrBit = '1' then
 tdr_cap <= si; -- Shift data TDI->TDO
 end if;

 if (Reset_tdr='0') then
 tdr_upd <= 0;
 elseif (TCK'event and TCK='0') then
 if (UpdateTdrBit='1')
 tdr_upd <= tdr_cap; -- Update from shift/capture flop
 end if;
 end if;

 po <= tdr_upd;
 so <= tdr_cap;

--
 // Verilog code segment, see Figure 9-10
 always @(posedge TCK) // Shift/Capture flop
 if (CaptureTdrBit)
 tdr_cap <= tdr_upd; // Capture parallel input
 else if (ShiftTdrBit)
 tdr_cap <= si; // Shift data TDI->TDO

 always @(negedge TCK, negedge Reset_tdr) // Update flop
 if (~Reset_tdr)
 tdr_upd <= 0; // (Optional) reset of Update flop
 else if (UpdateTdrBit)
 tdr_upd <= tdr_cap; // Update from shift/capture flop

 assign po = tdr_upd;
 assign so = tdr_cap;

--

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

104
Copyright © 2013 IEEE. All rights reserved.

Figure 9-10—Self-monitoring TDR cell with update stage and nongated clocks

The self-resetting cell (also with self-monitoring capability) is shown in Figure 9-11. When this cell has a 1 value in
the shift stage, it will produce a “0-1-0” pulse on PO and a “1-0-1” pulse on the inverse of PO (called Pulse1_PO
and Pulse0_PO in Figure 9-11 and in the code examples). The pulse changes state on the consecutive falling edge of
TCK. This signal can then be directly used to gate TCK to other registers clocked by TCK, either using actual clock
gating or using the data-hold illustrated in these cells. Figure 9-12 shows the timing of the output pulse and the
monitor stage in and around the Update-DR TAP controller state. Note that this cell would violate rule e) of 9.3.1 if
PO were designed to be driven off-chip.

In order to support the expected behavior of this cell, the reset input is connected to the Reset* TAP controller
output to clear the update and monitor cells at power-up and whenever the test logic is reset.

The self-monitor is designed, in this case, to capture the value on PO on the rising edge of TCK following the
transfer of shift data to the Update stage on the falling edge of TCK. This should, unless there has been a reset in the
meantime, reflect the value last shifted into the cell. If the monitoring is not desired, or the cell is required to capture
other data on the PI input, the monitoring stage may be deleted.

--
 -- VHDL code segment, see Figure 9-11
 if (TCK'event and TCK='1') then
 if CaptureTdrBit = '1' then
 tdr_cap <= monitor; -- Capture monitor stage
 elseif ShiftTdrBit = '1' then
 tdr_cap <= si; -- Shift data TDI->TDO
 end if;

 if (Reset_tdr='0') then
 tdr_upd <= 0;
 elseif (TCK'event and TCK='0') then
 -- Update from shift/capture flop, clear after Update-DR
 tdr_upd <= UpdateTdrBit AND tdr_cap;
 end if;

 if (Reset_tdr='0') then
 monitor <= 0;
 elseif (TCK'event and TCK='1') then
 if (UpdateTdrBit='1')
 monitor <= tdr_upd; -- Update from shift/capture flop

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

105
Copyright © 2013 IEEE. All rights reserved.

 end if;
 end if;

 Pulse1_PO <= tdr_upd;
 Pulse0_PO <= NOT tdr_upd;
 so <= tdr_cap;

--
 // Verilog code segment, see Figure 9-11
 always @(posedge TCK) // Shift/Capture flop
 if (CaptureTdrBit)
 tdr_cap <= monitor; // Capture monitor stage
 else if (ShiftTdrBit)
 tdr_cap <= si; // Shift data TDI->TDO

 always @(negedge TCK, negedge Reset_tdr) // Update flop
 if (~Reset_tdr)
 tdr_upd <= 0; // (Optional) reset of Update flop
 // Update from shift/capture flop, clear after Update-DR
 else
 tdr_upd <= UpdateTdrBit & tdr_cap;

 always @(posedge TCK, negedge Reset_tdr) // Update flop
 if (~Reset_tdr)
 monitor <= 0; // (Optional) reset of Update flop
 else if (UpdateTdrBit)
 monitor <= tdr_upd; // Update from shift/capture flop

 assign Pulse1_PO = tdr_upd;
 assign Pulse0_PO = ~tdr_upd;
 assign so = tdr_cap;

--

Figure 9-11—Self-resetting and self-monitoring TDR cell with nongated clocks

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

106
Copyright © 2013 IEEE. All rights reserved.

Figure 9-12—Timing of a self-resetting and self-monitoring TDR cell at Update-DR

9.3 Operation of test data registers

9.3.1 Specifications

Rules

a) Each instruction shall identify a test data register that will be serially connected between TDI and TDO.

NOTE 1—Use of PDL (see Annex C) creates a preference for one and only one instruction selecting a given TDR.

b) The test data register connected between TDI and TDO shall shift data one stage toward TDO after each
rising edge of TCK in the Shift-DR controller state.

c) When the TAP controller is in the Test-Logic-Reset state and the TMP controller, if present, is in the
Persistence_off state, all test data registers shall be set so that either they perform their system function (if
one exists) or they do not interfere with the operation of the on-chip system logic.

d) Where a test data register is required to load data from a parallel input in response to the current instruction,
these data shall be loaded on the rising edge of TCK in the Capture-DR controller state.

e) Test data registers enabled to drive data (signal values) off-chip shall be designed such that component
outputs change only:

1) On the falling edge of TCK after entry to the Update-DR, Update-IR, Run-Test/Idle, or Test-Logic-
Reset controller state as a result of signals applied at TCK and TMS.

NOTE 2—This may require that the register be provided with a latched parallel output.

2) Immediately on entry into the Test-Logic-Reset controller state as a result of a logic 0 being applied at
TRST*.

f) Where a test data register is required to operate in response to the RUNBIST instruction, the required
operation shall occur in the Run-Test/Idle controller state.

g) Where no operation of a selected test data register is required in a given controller state in response to the
current instruction, the register shall retain its last state.

h) Test data registers that are not selected by the current instruction shall be set so that either they perform their
system function (if one exists) or they do not interfere with the operation of the on-chip system logic.

i) Test data registers not enabled for shifting between TDI and TDO by the active instruction shall maintain
their state in the Update-DR TAP controller state.

Permissions

j) In addition to the test data register enabled for shifting between TDI and TDO, an instruction may select
further test data registers.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

107
Copyright © 2013 IEEE. All rights reserved.

Recommendations

k) Test data registers not enabled for shifting between TDI and TDO by the active instruction should maintain
their state in the Capture-DR and Shift-DR TAP controller states.

9.3.2 Description

These requirements define the correct test data register operation in conjunction with the TAP and the TAP
controller.

When there are multiple power domains on a component, some of which may be powered down, then in order for
the test data registers to comply with the above rules of operation, they must either be in a power domain that is
always on or is always on whenever the power domain containing the TAP controller is on. The exception is
excludable register segments per permission k) of 9.2.1, which have additional rules in 9.4.

Note that while an instruction may select the test operation of more than one test data register, there must be one and
only one such selected test data register between TDI and TDO. All other selected test data registers retain their state
in the Shift-DR controller state. One use of this capability is as follows.

Consider the case where several test data registers need to be accessed in sequence in order to establish the starting
conditions for a test or to examine test results. As an example, Table 9-3 shows the sequence of events (starting from
the Test-Logic-Reset controller state) that would be required if two design-specific test data registers and the
boundary-scan register needed to be accessed in order to execute an instruction. Figure 9-13 shows the design of the
group of test data registers for this example.

Figure 9-13—Example design containing two optional test data registers

In step 4, serial access to register B is required in order to set its initial condition as required for execution of the test.
However, register A was set to its required initial condition in step 2, and so it is necessary to design the test logic
such that register A can retain its state between steps 2 and 7 (when the self-test is executed) while register B and
the boundary-scan register are accessed. Similarly, the test logic must be designed so that
register B retains the initial condition set during step 4 until step 7 and so that the reverse sequence of events can
occur after completion of execution of the self-test.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

108
Copyright © 2013 IEEE. All rights reserved.

Note that the design of the test logic may require that test data registers be accessed in a fixed sequence in order to
achieve the desired result. For example, the test logic may not allow register B to retain its state while register A is
scanned.

Table 9-3—Sequential access to test data registers

Step Action
0 Test logic inactive in the Test-Logic-Reset controller state.
1 Enter instruction that selects register A for connection between TDI and TDO.
2 Scan required initial values into register A.
3 Enter instruction that selects register B for connection between TDI and TDO and keeps register A in its test mode of

operation.
4 Scan required initial values into register B. Register A retains its state.
5 Enter the test instruction that selects test operation of registers A and B and connects the boundary-scan register between

TDI and TDO.
6 Scan required values for the component inputs and outputs into the boundary-scan register. Registers A and B retain their

state.
7 Execute the instruction by entering the Run-Test/Idle controller state.
8 Enter instruction that selects register B for connection between TDI and TDO and keeps register A in its test mode of

operation.
9 Scan test results out of register B. Register A retains its state.
10 Enter instruction that selects register A for connection between TDI and TDO.
11 Scan test results out of register A.

9.4 Design and control of test data register segments

A test data register may be constructed as a chain of multiple segments, some of which are always scanned while
others, called excludable segments and selectable segments, and defined below, are scanned only in particular
situations. Restrictions on the use of these segments for the test data registers defined in this standard are also
defined below.

The simple ability to exclude or include a defined register segment is intended to support registers or portions of
registers passing through power domains that may be powered down, but it is not restricted to that use. The
boundary-scan, initialization data and status registers, ECID, and reset selection registers defined in this standard are
limited to un-nested excludable segments. Other TDRs defined in this standard, such as the bypass, idcode, and
TMP status registers, are not allowed to have excludable segments. Design-specific TDRs may have excludable and
nested excludable segments (excludable segments completely within another excludable segment).

Design-specific TDRs may also have selectable segments, where encoded selection fields select one or more of
several segments for parallel scan-in, and select exactly one segment for scan-out. This parallel structure is similar to
the structure of the TDRs defined in this standard, where one of multiple, parallel TDRs is selected by the
instruction register for scanning and is connected to TDO. (All may be connected to TDI.) This may be replicated on
a smaller scale within a single TDR. A good, and well-defined example of this is the wrapper serial port (WSP) of
IEEE Std 1500, with a wrapper instruction register (WIR) selecting one of several wrapper data registers (WDRs) to
place in the scan chain. Only design-specific TDRs are allowed to have selectable segments.

The following aspects of this definition help ensure the integrity of the test data scan path:

⎯ All excludable segments are initialized to the excluded state, and any encoded selection field is initialized to
a specified state selecting a documented (public) segment.

⎯ For simple excludable segments, provisions are made to capture whether the segment is ready to scan or not,
so the segment would not be included when it could break the scan chain.

⎯ Special register fields are defined in the BSDL Standard Package (see B.9) for use in a test data register to
provide consistent control of the excludable segments:

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

109
Copyright © 2013 IEEE. All rights reserved.

i) A “segment-select” field to both capture a “ready to scan” indication and control the inclusion of a
simple excludable segment.

ii) A zero-length “segment-start” field to mark the beginning of an excludable segment.
iii) A zero-length “segment-mux” field to mark the end of an excludable segment.

⎯ The outputs of the segment-select field (for excludable segments) and the selection field (for selectable
segments) are delayed to prevent a race condition between the update signals to the segments and the
selection criteria gating those signals.

No additional instructions are necessary beyond the one that selects the test data register for scanning. In the
initialized state, the TDR must still have a nonzero length, and that is the length used to determine the documented
length of the register.

In the case of power domains that may be powered down (or other domain types that may need to be “made ready”
before a TDR can be scanned), another special test data register cell (a “domain-control” cell) is provided. This cell
is only used if the power (or other domain type) is controlled on-chip, and may be controlled through the TAP for
test purposes. The latched parallel output of the domain-control cell must be designed to override the functional
signal to the power or domain controller and cause it to power up the domain or otherwise make it ready for
scanning.

The domain-control and segment-select fields and the encoded segment selection field may be in the same TDR as
the excludable or selectable segments, or they may be in another TDR (such as the initialization data register) that
acts to configure the component for test. All of the control fields and controlled segments must be in public
(standard or design-specific) and documented TDRs so that tools can find them. Duplicate control fields, each
having the same effect, are allowed in different public TDRs. Note that boundary-scan and initialization data register
segment domain-control and segment-select fields are required to be in the same register as the segments, although
duplicates are allowed elsewhere.

9.4.1 Specifications

Rules

a) Any excludable test data register segment taking advantage of permission k) of 9.2.1 shall be immediately
preceded (closest to TDI) by a segment-select cell or a segment-start field and immediately followed by the
associated segment-mux switching circuit.

NOTE 1—See B.8.21 for a full discussion on documenting these fields and segments.

b) No excludable segment shall appear in the bypass, device identification, or TMP status standard registers.

c) No additional excludable segment shall appear within an excludable segment in the boundary-scan,
initialization data or status, ECID, or reset selection standard registers.

d) Any excludable segment that appears within another excludable or selectable segment shall be completely
enclosed within that segment.

e) The segment-select cell for an excludable segment shall have capture, update, and reset capabilities (see the
example in Figure 9-19).

f) The segment-select cell for an excludable segment shall load, at the rising edge of TCK in the Capture-DR
TAP controller state, a signal indicating whether the segments are ready to scan (a logic 1) or not (a logic 0).

g) The latched parallel output of a segment-select cell for an excludable segment shall control the switching
element after the end of the segment, and the value in the parallel output shall either exclude (0) or include
(1) the segment.

h) When an excludable segment is dependent on an on-chip controller to make it ready to scan, a domain-
control cell with a latched parallel output shall be provided.

i) The output of a domain-control cell shall be connected to the on-chip domain controller, and a logic 1 in the
domain-control cell shall cause the domain controller to enable the domain for its test function.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

110
Copyright © 2013 IEEE. All rights reserved.

NOTE 2—It is the intent that the domain-control signals to an on-chip power controller would have priority over
mission mode signals just as IEEE 1149.1 test modes have priority over the mission mode. The power controller is
permitted to not honor domain control signals only when doing so is impossible or could damage the component, and
such cases would be documented by the component designer.

NOTE 3—In a case where a boundary-scan register segment and the associated I/O are in separately controlled power
domains, then more than one domain controller could be designed to respond to a single override signal.

j) The domain-control cell shall have update and reset capabilities (see the example self-monitoring cell in
Figure 9-10 or the example update cell in Figure 9-7).

k) For each domain-control override signal connected to an on-chip domain controller, the domain controller
shall output a status signal to be captured in the segment-select cell and shall have a value of 1 when the
domain is ready (regardless of the state of the signal from the domain-control cell) and a value of 0 when the
domain is not ready.

l) Once the domain has been enabled for test, it shall remain enabled as long as the domain-control cell
remains set to 1.

NOTE 4—If the on-chip domain-controller cannot respond at the same time to all of a set of override signals, then any
established overrides must be maintained and any conflicting overrides ignored. An established override must be
explicitly de-selected (with a TDR scan or a reset of the domain control cell) before requesting a different override when
the two cannot be turned on at the same time. The fact that the override is being ignored is reflected in the status signal
returned from the domain-controller to the segment-select cell.

m) Any selectable set of test data register segments taking advantage of permission k) of 9.2.1 shall be
documented and the documentation shall include:

1) The association of each set with an encoded selection field or fields.

2) The encoded values required to select for scan-out each and every segment in the set.

3) The encoded values required to select for scanning each desired subset of segments in the set.

NOTE 5—See B.8.20 and B.8.21 for rules concerning documentation of excludable and selectable segments in BSDL.

n) A selectable set of segments shall not appear in the bypass, device identification, TMP status, boundary-
scan, initialization data or status, or reset selection standard registers.

o) Any selectable set of segments that appears within another excludable or selectable segment shall be
completely enclosed within that segment.

p) Each segment in a selectable set of segments shall receive the same scan-in data.

q) The selection field cells associated with a selectable set of segments shall have update and reset capabilities
(see the example in Figure 9-19).

NOTE 6—Capture capabilities are optional, but self-monitoring cells would be highly desirable in order to scan out the
current selection value.

r) The decoded values of the latched parallel output of the selection field cells associated with a selectable set
of segments shall select the scan-out of no more than one segment for connection to the scan chain.

NOTE 7—There is no requirement that all possible decodes of the selection field be used; it may be one-hot encoded,
for example. Unused decodes produce undefined results and could be used for “private,” undocumented segments, be
reserved for future expansion, and so on.

s) To provide time for the test data register and segment cells to complete update operations, when a segment-
select cell or segment selection field is scanned at the same time as the controlled segments, the latched
parallel output of the segment-select cell or segment selection field shall be delayed to avoid race conditions
in the operation and switching of the test data register segments, and the delay shall be no more than two
TCK cycles.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

111
Copyright © 2013 IEEE. All rights reserved.

NOTE 8—Figure 9-19 illustrates such a cell with a one TCK cycle delay. This rule explicitly excludes structures such as
the WIR of IEEE Std 1500, which are not scanned at the same time as the WDRs that they select.

t) All segment-select, domain-control, and selection fields associated with excludable or selectable segments
shall be dedicated test logic.

u) Each segment-select cell and domain-control cell shall be reset to a logic value of 0, and each selection field
associated with a set of selectable segments shall be reset to a specified value by one of the following:

1) The Test-Logic-Reset TAP controller state when the TMP controller is provided and in the Persistence-
Off state (i.e., the CHReset* signal shown in Figure 6-10).

2) The Test-Logic-Reset TAP controller state whether or not the TMP controller is provided (i.e., the
Reset* signal shown in Figure 6-5).

3) The TRST* TAP port and/or the operation of power-up reset (also known as power-on reset or POR)
circuitry built into the test logic, as used to reset the TAP controller (see 6.1.3).

NOTE 9—Each segment-selector, domain control, and selection field instance can be reset by a different choice; this
rule does not require all such instances to use the same reset signal.

v) When excludable segments are excluded, or selectable segments are not selected for scan, such segments
shall not respond to the Update-DR TAP controller state.

w) When excludable boundary-scan register segments are excluded, they shall have no effect on the flow of
signals between the system pins and the on-chip system logic.

x) Any segment-select cell or selection field contained in an excludable or selectable segment shall be in a
known state prior to the containing segment being included or selected.

Permissions

y) When a domain controller requires more than just the override signal from the domain controller cell to
make the segment ready for scan (such as a fixed delay), such requirements may be documented in a PDL
procedure. (See Annex C.)

z) When excludable segments are excluded, or selectable segments are not selected for scan, such segments
may perform other system or test functions, and excluded segments may be powered down.

Recommendations

aa) When excludable segments are excluded, or selectable segments are not selected for scan, such segments
should not respond to the Capture-DR and Shift-DR TAP controller states.

bb) Any segment-select cell contained in an excludable segment that can be powered down should automatically
reset at power-up.

cc) Any domain incompatibilities or external requirements that would prevent all domains from being enabled at
the same time should be documented by the component designer.

dd) If the selection field cells associated with a selectable set of segments do not otherwise capture data, they
should be self-monitoring cells (see example Figure 9-10) in addition to the required capabilities.

9.4.2 Description

Excludable segments

Segments of a test data register are made excludable by means similar to that shown in Figure 9-14.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

112
Copyright © 2013 IEEE. All rights reserved.

Figure 9-14—Scan control of excludable test data register segments

The excludable segment of the test data register is controlled by a segment-select cell (named a SegSel in
Annex B of this standard) with capture, update, and reset capabilities as shown in Figure 9-14. (The clocks and
asynchronous resets are not shown for simplicity.) The excludable segment is immediately followed by a switching
element, represented in Figure 9-14 with a multiplexer (named a SegMux in Annex B of this standard). When the
segment is excluded, at least the Update_<TDR> signal to this segment of the test data register, if used, must be
disabled, and the Capture_<TDR> and Shift_<TDR> signals would preferably be disabled, as shown by the dashed
lines. Additional fixed (not excludable) or excludable segments may come before or after this segment, and
switching element. Note that, except as restricted for some standard registers, the segment selector cell can be in a
different TDR or duplicated in a different TDR.

If the excludable segment is a boundary-scan register segment, the mode signals that allow the boundary cells to
control the I/O must also be disabled (not illustrated), allowing the system logic to control the I/O associated with
the excluded segment. The appropriate mode signal values for an excluded boundary-scan register segment are
shown in the mode signal generation tables in Clause 11.

When a logical 0 is scanned into the segment-select cell, or any time the segment-select cell is reset, the segment
will be excluded. The length of the test data register with all excludable segments excluded is the default length, and
that default length and the lengths of each excludable segment must be documented so that the actual length of the
test data register may be determined for any configuration of excludable segments. For example, if the complete test
data register is a single excludable segment plus the segment-select cell, then the default length is one. (All TDRs
must have at least one scannable element in every configuration.)

Because an excludable segment may not be able to scan under some circumstances, the segment-select cell must
capture a signal that indicates whether the segment is ready to scan (logical 1) or not (logical 0). If the segment is
always ready to scan, then the segment-select cell always captures a logical 1. In other words, for any segment-select
cell in any test data register, if a 1 is captured in that cell, then it may be assumed that the excludable segment may
be included without breaking the test data register scan chain.

If the test data register segment requires some action to be taken to make the segment scannable, then a domain-
control cell must be provided. It is shown immediately prior to the segment-select cell in the TDR in
Figure 9-15, but it could be placed in any nonexcludable portion of this or another TDR. (Boundary-scan and
initialization-data registers require the domain-control field instances to be in the same register, although copies may
be in other registers.)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

113
Copyright © 2013 IEEE. All rights reserved.

Figure 9-15—Scan control of excludable test data register segments with domain control

If the segment-select cell captures a 0 logic value, indicating that the segment is not ready for scanning, then the
domain-control cell must be enabled by scanning a 1 into its parallel output, and the segment-select capture value
must be rechecked to verify that the segment is ready. For instance, if a segment is in a power domain that can be
powered down, and the power domain is controlled on the component, then a domain-control cell (named a DomCtrl
cell in Annex B) must be provided to turn on the power to the domain containing the segment, when required. If
multiple TDRs have segments in the same power domain, then there could be multiple domain-control field
instances in different TDRs that can turn the domain power on. The “ready to scan” signal from the domain-
controller could be captured in multiple segment-select field instances to verify that the power is on and that the
various segments are ready to be included for scan.

The parallel output of the segment-select cell is delayed at least one TCK cycle from the latched parallel output.
This is to prevent the potential race between update actions and switching the segment between included and
excluded by allowing time for the update actions to complete before the segment changes state.

Design-specific TDRs, but not standard TDRs, are allowed to have nested segments, including having segment-
select fields within an excludable segment. This raises some special requirements for segment-select fields that are
contained within an excludable segment that may be powered down. (Segment-select fields, nested or not but
contained in segments that are never powered down independently from the rest of the component, do not have any
special requirements.) In keeping with the rules for excludable segments, the segment-select field instance must be
reset after being powered up and before the segment it is contained in is included, so that the nested segment it
controls is excluded.

The following considerations come into play when designing nested segments for a design-specific TDR. First, any
domain-control field instances should be in a nonexcludable segment that is always powered on. Segment-select
field instances also placed in a nonexcludable segment that is always powered on provide the most straightforward
control, and they can even be used to include both the containing and contained excludable segments with a single
scan. For a segment-select cell that is contained in an excludable segment that may be powered down, examples of
two ways that they can be properly reset before the containing segment can be included are:

⎯ If the power domain controller or the powered domain provides a signal (such as a local power-up reset),
that signal can be used to reset the contained segment select cell. As shown in Figure 9-16, another reset
signal such as CHReset* can optionally be combined with the domain POR signal. Separate reset signals are
shown for the two segment-select field instances as the type of reset may be different in each case, and
CHReset* is shown as an example.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

114
Copyright © 2013 IEEE. All rights reserved.

Figure 9-16—Domain POR reset of nested segment-select fields

⎯ The contained segment-select field instance (inner segment-select instance) may be reset by the parallel
output of the segment-select instance controlling the containing segment (outer segment-select instance).
This outer segment-select instance must be 0 while the segment it controls is being powered-up, and so that
state of the cell can be used to reset the inner segment-select instance. Note that this will cause the contained
segment to be excluded within its containing segment any time the containing segment is excluded, a
behavior that may not be desired. On the other hand, any time the outer segment-select cell is reset, that
reset will ripple down to the inner segment-select cell. Figure 9-17 illustrates this option.

Figure 9-17—Hierarchical reset of nested segment-select fields

If, for whatever reason, none of the above can be done, then the inner segment-select cell should be reset by one of
the same means that any other segment-select cell can be reset, and that reset would have to be performed during test
after the domain is powered on, and before the outer segment is included. Clearly, this has significant impact on test
flow (affecting all components in a scan chain, for example) and should be avoided wherever practical.

Selectable segments

Design-specific TDRs, but not standard TDRs, are also allowed to have selectable segments. The set of selectable
segments are essentially in parallel, sharing the same scan-in data, with exactly one of the segments selected as the
scan-out for the set. There must be a specified selection field with specified values for selecting each of the public
segments in the set, both for scanning and for connection to the scan-out. This is essentially the same structure as the
set of test data registers, which are in parallel and exactly one is selected for connection to TDO by the instruction
register. Figure 9-18 shows the essential characteristics of a set of selectable segments.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

115
Copyright © 2013 IEEE. All rights reserved.

Figure 9-18—Selectable segments and selection field

In Figure 9-18, there are four selectable register segments, each of different length, although they could also be
multiple instances of the same segment. The selectable segments start at the point marked SI, where the scan path
fans out to each of the segments, and ends at the point marked SO, after the selection circuit (shown as a four-input
multiplexer) that connects one segment to the scan chain. The selection field is shown as a contiguous segment
immediately preceding the selectable segments, but it could be anywhere in this or any other public TDR, and it
could be any defined field, contiguous or not. The output of the selection field is decoded both to select the segment
for scan out and to gate the response of the segments to the Shift-DR, Capture-DR, and Update-DR TAP controller
states, as shown by the up arrow in Figure 9-18. There is no requirement that all possible decodes be specified.

Figure 9-19 shows an example segment-select or selection-field cell meeting all of the rules of this clause. For a
selection-field cell, the capture logic in Figure 9-19 is optional, as shown with the dashed lines, although it is
recommended that it capture the state of the update or delay stage. For a segment-select cell, the capture is required
and must capture the “Ready-to-scan” signal.

NOTE—The reset signal in the figure is shown as a Reset_<TDR>* signal. The rules permit any of the test reset signals:
(TAP_POR*, TRST*, Reset*, or CHReset*) to be used here, but one of them must be used.

Figure 9-19—Example segment-select or selection-field cell with ungated clocks

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

116
Copyright © 2013 IEEE. All rights reserved.

10. Bypass register

The bypass register provides a minimum-length serial path for the movement of test data between TDI and TDO.
This path can be selected when no other test data register needs to be accessed during a board-level test operation.
Use of the bypass register in a component speeds access to test data registers in other components on a board-level
test data path.

10.1 Design and operation of the bypass register

10.1.1 Specifications

Rules

a) The bypass register shall consist of a single shift-register stage.

b) When the bypass register is selected for inclusion in the serial path between TDI and TDO by the current
instruction, the shift-register stage shall be set to a logic zero on the rising edge of TCK in the Capture-DR
controller state.

c) The circuitry used to implement the shift-register stage in the bypass register shall not be used to perform
any system function (i.e., it shall be a dedicated part of the test logic).

d) The operation of the bypass register shall have no effect on the operation of the on-chip system logic.

10.1.2 Description

The bypass register may be implemented as shown in Figure 10-1.

Figure 10-1—Bypass register gated-clock implementation

The provision of this register allows bypassing of segments of the board-level serial test data register that are not
required for a specific test. Test access times to the segments of interest are reduced.

As an example, consider a circuit board containing 100 integrated circuits, each of which has 100 bits in its
boundary-scan register. The boundary-scan path on the assembled board would include 10 000 shift-register stages
if all the segments were connected in series simultaneously. This would give protracted test times, for example,
when accessing just one of the integrated circuits on the path.

The ability to bypass segments of the shift-register path under control of the appropriate instruction register allows
considerable shortening of the overall path in such circumstances. Continuing the example, 99 of the components
could be set to shift only through their bypass register, with the integrated circuit under test having its full boundary-
scan register in circuit. This would give a total serial path length of 199 stages—a considerable reduction compared
to 10 000.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

117
Copyright © 2013 IEEE. All rights reserved.

Rule b) of 10.1.1 is included so that the presence or absence of a device identification register in the test logic can be
determined by examination of the serial output data. The bypass register (which is selected in the absence of a
device identification register) loads a logic 0 at the start of a scan cycle, whereas a device identification register
loads a constant logic 1 into its least significant bit. When the IDCODE instruction is loaded into the instruction
register, a subsequent data register scan cycle will allow the first bit of data shifted out of each component to be
examined—a logic 1 showing that a device identification register is present. This allows blind interrogation of
device identification registers by setting the IDCODE instruction as outlined in 12.1.

A requirement of the BYPASS instruction is that, when it is selected, the on-chip system logic shall continue its
normal operation undisturbed. Rule c) of 10.1.1 is included so that this requirement can be met. Note, however, that
provided rule d) of 10.1.1 is met, the shift-register stage may be a shared resource used by several of the registers
defined by this standard and by any design-specific test data register.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

118
Copyright © 2013 IEEE. All rights reserved.

11. Boundary-scan register

The boundary-scan register allows testing of circuitry external to a component, for example, board interconnect or
external components that do not conform to this standard. The register also permits the system signals flowing into
and out of the system logic to be sampled and examined without causing interference with the normal (nontest)
operation of the on-chip system logic. Optionally, additional test functions may be supported—for example, testing
of the on-chip system logic.

11.1 Introduction

This clause specifies the design of the boundary-scan register in a component and the operation of the register in
response to the various instructions defined by this standard.

Among the registers required by this standard, the boundary-scan register is the most complex. Its complexity lies
neither in its shifting function, nor in its architectural placement in parallel with the other required test data registers,
nor in its ability to exclude segments, all of which conform to the rules set out in Clause 9. The complexity lies
instead in the manner in which the register is connected around the on-chip system logic and in its operation in
response to the instructions defined in Clause 8. Design requirements for both connectivity and functional operation
vary from cell to cell and are determined both by the type of signal (input to or output from the on-chip system
logic) and by the set of instructions to be supported.

The design specifications are presented in three groups:

⎯ Register design and operation (11.2 and 11.3). The structure of the boundary-scan register is specified. Also
presented are specifications for the operation of the shift-register at the heart of the boundary-scan register
and for the parallel output latches or flip-flops that are required for some shift-register stages.

⎯ Cell provision and operation (11.4 through 11.8). Rules are presented that specify where boundary-scan
register cells must be provided and how they are to be connected between the system pins of a component
and the system inputs and outputs of the on-chip system logic. Further rules are presented that define how
signals are to be routed through boundary-scan register cells in response to selection of the various
instructions defined by this standard.

⎯ Cell merging (11.9). Finally, permissible ways in which boundary-scan register cells required by the cell
provisioning rules can be merged are specified. Application of these rules will reduce the cost of
implementation of a boundary-scan register in certain special cases.

To simplify the presentation of the rules, this clause uses the terminology and approach described in the following
clauses.

11.1.1 Approach

To simplify the presentation of the rules in this clause, the boundary-scan register will be described as though it
were being added to an already finished design—one that does not conform to this standard. Such a design may be
thought of as shown in Figure 11-1.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

119
Copyright © 2013 IEEE. All rights reserved.

Input buffers

System

input

pins

System

logic

Output buffers

System

output

pins

Output
controls

Output
signals

Clock

Non
clock

EN

EN

EN

Figure 11-1—Component without boundary scan

Note the following features in Figure 11-1:

⎯ The system logic. This is the circuitry that realizes the nontest, digital function of the component.

⎯ The system pins. The term “system pin” is used throughout this standard to refer to any system (i.e., nontest)
terminal to which an external connection may be made. For packaged components, external connections are
made to package pins, typically by means of a soldering process. However, in some cases, an integrated
circuit die will be assembled directly onto a substrate without prior packaging. In such cases, the term
“system pin” should be interpreted as the point to which the external connection is made, i.e., the bonding
pad.

⎯ The input/output buffers. The buffers are connected between the system pins and the system logic. Note that
output buffers may have control as well as data inputs from the system logic. The signals received at the
control inputs determine the manner in which the output buffer operates. For example,
Figure 11-1 shows several three-state output buffers at which the enable input (EN) is used to determine
whether the output is driven. Other types of output buffers at which control signals may be used to
determine different characteristics of the signal driven off-chip are possible. Additional variations include
differential drivers and receivers, and other drivers and receivers used in specific communication protocols.
Input/output buffers are always assumed to be present, even if not shown in order to simplify an illustration.

⎯ The inputs and outputs of the system logic. Two types of input to the on-chip system logic should be
distinguished, as follows:

i) Clock inputs. Transitions at these inputs, from the low to high logic level (or vice versa), are used to
indicate when a stored-state device, such as a flip-flop or latch, may perform an operation. In an edge-
triggered design, the edges (logic level transitions) received at clock inputs are used to trigger
operation of all or part of the on-chip system logic, and steady-state logic values received at these
signals have no significance. In a level-sensitive design, clock inputs are used to enable storage devices
in the on-chip system logic to load data values. Note that the values loaded into stored-state devices are
not determined by the values of clock inputs.

ii) Nonclock inputs. This group includes all other inputs to the on-chip system logic. Typically, signals
applied at these inputs are used to supply data or to select an operation to be performed.

Outputs from the on-chip system logic drive output buffers (or, as will be discussed later, inputs to mixed
analog/digital circuit blocks external to the system logic). It is necessary to distinguish between two types of
signal that may be driven to an output buffer, as follows:

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

120
Copyright © 2013 IEEE. All rights reserved.

iii) Output control signals. In a component without a boundary scan, such as that shown in
Figure 11-1, these signals would directly drive “enable” inputs of output buffers and hence determine
whether they actively affect the state of the respective connected system pins.

iv) Data signals. In a component without a boundary scan, these signals would drive data inputs to output
buffers (or, as will be discussed later, inputs to mixed analog/digital circuit blocks external to the
system logic).

NOTE—A single output from the on-chip system logic may drive an output control signal to one output buffer and a
data signal to another.

11.1.2 Signal paths to the on-chip system logic

Each signal path into the on-chip system logic is considered to be a fan-out tree with one or more branches. Signals
enter the fan-out tree at the trunk (e.g., from an input buffer) and leave through the branches (e.g., at the inputs of
the on-chip system logic). For example, Figure 11-2 shows signal paths between one system input pin and several
inputs to the on-chip system logic. (In many cases, the fan-out tree will be regarded as being contained within the
system logic. In these cases, only a single point-to-point connection is considered to be present between the system
input pin and the system logic, which is a connection with only one fan-out branch.)

Pin

Trunk

Branches

System
logic

Figure 11-2—Input connections

11.1.3 Boundary-scan register cell

NOTE—The rules contained in this clause describe the boundary-scan register as a logical device, not a particular physical
implementation. Furthermore, for clarity of presentation, the example boundary-scan register cell designs presented in this clause
show the circuitry to be separate from that used to construct the various other features defined in this standard. However, be
aware that the rules of this standard permit parts of the circuitry used to construct boundary-scan register cells—notably the shift-
register stages—to be used in the implementation of other features defined by this standard, such as the bypass and device
identification registers. Where circuitry is shared between the boundary-scan register and other features defined by this standard,
boundary-scan register cells may appear that are more complex than those described here.

Every boundary-scan register cell is considered to have a number of data terminals (at least two) and a number of
clock and control inputs appropriate to the style of implementation. Contained within each cell is a single shift-
register stage that often is provided with a parallel input and a parallel output (which may be latched). This shift-
register stage uses two data connections of the cell as a serial input and a serial output. By way of these connections,
the cell is linked to the cells before and after it in the boundary-scan register.

Cells that have three data terminals allow signals entering or leaving the on-chip system logic to be observed, but
not controlled. For such a cell, the third data terminal functions as a parallel input to a parallel-in, serial-out shift-
register stage. When the boundary-scan register is selected as the serial path between TDI and TDO by an

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

121
Copyright © 2013 IEEE. All rights reserved.

instruction, the data present at this terminal is loaded into the shift-register stage on the rising edge of TCK in the
Capture-DR controller state (i.e., as required by the rules of Clause 9). Cells of this type may be described as
“observe-only” cells. They will be connected to a signal path entering or leaving the on-chip system logic, as shown
in Figure 11-3.

Pin Pin

b/s

System
logic

System
logic

Figure 11-3—Connection of an observe-only boundary-scan register cell

Cells with four or more data terminals are inserted into signal paths entering or leaving the on-chip system logic, as
shown for the case of an input in Figure 11-4. Such cells may be described as “control-and-observe” cells. The shift-
register stage in a control-and-observe cell can load the value of the signal path into which they are inserted and
hence allow observation of that signal. Also, when required, the value held in the shift-register stage can be driven to
the wire in place of the normal (nontest) source. In some cases, a constant signal value also may be driven to the
wire in place of the normal (nontest) source.

Pin Pin b/s System
logic

System
logic

Figure 11-4—Insertion of a control-and-observe boundary-scan register cell

Cells that have only two data terminals are redundant in the sense that they could have been omitted from the design
without jeopardizing compliance of the component to this standard. Such cells may be simple shift-register stages.
Typically, they will exist in a component design as a result of programming or customization of boundary-scan
register cells (see 11.8). These cells do not contribute information to the test process.

The rules presented later in this clause define the manner of cell insertion or addition required at each type of
connection into or out of the system logic. These rules also define the manner of insertion or addition of additional
observe-only boundary-scan register cells, which may be added at almost any component pin. Such additional cells
are redundant in the sense that they could have been omitted from the design without jeopardizing compliance of the
component to this standard, and they are described as “redundant observe-only” cells. Given the rules in this clause,
there is no such thing as a “redundant” control-and-observe cell.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

122
Copyright © 2013 IEEE. All rights reserved.

A conceptual model of a control-and-observe boundary-scan register cell is shown in Figure 11-5. Such cells contain
a parallel-in, parallel-out shift-register stage. Signals to be controlled or observed flow into the cell through one or
more terminals of the cell (termed the parallel inputs) and out through other terminals (termed the parallel outputs).
Logic (typically, one or more multiplexers) within the cell determines routing of the signal from the parallel input(s)
of the cell to the parallel output(s) of the cell. The signal may be routed through the PI and PO terminals of the
parallel-in, parallel-out shift-register stage or, in normal (nontest) operation of the component, will be driven directly
from the parallel input(s) of the cell to the parallel output(s) without any change in signal value.

Figure 11-5—Conceptual view of a control-and-observe boundary-scan register cell

11.2 Register design

11.2.1 Specifications

Rules

a) The boundary-scan register shall consist only of boundary-scan register cells as defined in this clause and
register control cells as defined in 9.4.

b) Sufficient boundary-scan register cells shall be provided to fully meet the requirements for each connection
into or out of the on-chip system logic, as defined later in this clause.

c) Each boundary-scan register cell shall contain a single shift-register stage and shall have a serial input
terminal and a serial output terminal by means of which the cell is linked to the cells before and after it in
the boundary-scan register or, in the case of the cells at each end of the register, to the remainder of the test
logic defined by this standard.

d) A boundary-scan register cell shall have two or more data terminals [including the serial terminals required
by rule c) of 11.2.1].

NOTE 1—Each cell will also have several clock and control inputs, the number of which will be determined by the style
of implementation.

e) Boundary-scan register cells that have three connected data terminals shall be designed such that:

0

1

G1

1D
C1

1D
C1

Boundary-Scan Register Cell

Routing Logic of Cell

PIPO Shift Register

Parallel
Input(s)

Parallel
Output(s)

PI PO

Serial Input Clocks and Controls Serial Output

Routing Control(s)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

123
Copyright © 2013 IEEE. All rights reserved.

1) One data terminal is connected by routing logic to a parallel input to the shift-register stage in the cell
(referred to as “observe-only” cells).

2) One data terminal is connected by routing logic to the latched parallel output, if provided, or the
parallel output of the shift register stage, if not (referred to as “control-only” cells).

f) For boundary-scan register cells that have four or more connected data terminals, data terminals other than
those used for serial input and output shall be parallel inputs and parallel outputs of the cell and be
connected by routing logic:

1) To each other.

2) To the parallel input to the shift-register stage and to the latched parallel output, if provided, or the
parallel output of the shift-register stage.

NOTE 2—Such cells are described as “control-and-observe” cells.

NOTE 3—Often, but not always, shift-register stages will require latched parallel outputs.

g) For a given component, the ordering of cells in the boundary-scan register shall be fixed and shall not vary
as a result of any operation of the on-chip system logic.

h) For a given component, the length of the boundary-scan register, or the length of each boundary-scan
register segment assembled to form the boundary-scan register, shall be fixed and shall not vary as a result
of any operation of the on-chip system logic.

i) In the event that no boundary-scan register cells are required for a component, a register consisting of a
single shift-register stage shall be provided.

NOTE 4—This situation will arise when a component contains only test logic as defined or permitted by this standard.
Such a component could be described as being dedicated to testing; it will not contribute to the system function of an
assembled board.

j) Other than boundary-scan register segments that can be powered down, operation of boundary-scan register
cells shall not be interfered with or interrupted by the normal operation of any system function (see 11.3).

NOTE 5—Subject to conformance with rule k) of 11.2.1, circuitry may be shared between the boundary-scan register
and another part of the test logic. For example, the shift-register stages also may be used by another test data register.

k) Where a boundary-scan register cell has a latched parallel output, if a system or another test function alters
the value of the latched parallel output (i.e., the latched parallel output may be shared), the value that would
have existed if the latched parallel output were dedicated shall be restored upon entry into the EXTEST,
INTEST, CLAMP, or other instruction requiring the boundary-scan register [see rule b) and rule c) of
11.3.1 and the description of 11.3.2].

NOTE 6—Subject to conformance with rule j) and rule k) of 11.2.1, circuitry may be shared between the boundary-scan
register and the normal system logic.

NOTE 7—Rule k) of 11.2.1 applies in situations where the value in the latched parallel output is expected to be held by
the test application software. It does not apply when a boundary-scan register segment is excluded and possibly powered
down. In this case, it is assumed the values in the latched parallel outputs have not been retained. See rule x) in 9.4.1.

Permissions

l) Rule i) in 11.2.1 may be met by selecting the bypass register whenever this standard requires selection of the
boundary-scan register as the path between TDI and TDO.

m) Boundary-scan register cells may be connected in any order.

NOTE 8—See rule g) of 11.2.1.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

124
Copyright © 2013 IEEE. All rights reserved.

11.2.2 Description

The boundary-scan register is a mandatory feature of this standard and shall be included in each component that
claims conformance to this standard. It consists of a number of cells equal to the number of shift-register stages
contained in the register. These cells are positioned around the on-chip system logic of a component as specified
later in this clause. They are connected to form a single shift-register-based path that is connected between TDI and
TDO in the Shift-DR controller state when an appropriate instruction is selected. (With regard to the instructions
defined in this standard, the boundary-scan register is defined to be the serial path between TDI and TDO in the
Shift-DR controller state for the SAMPLE, PRELOAD, EXTEST, INTEST, and, optionally, RUNBIST instructions.)

Figure 11-6 illustrates the design of the shift-register portion of the boundary-scan register. Note that not all stages
in the figure are provided with latched parallel outputs, and one is an observe-only cell.

Figure 11-6—Boundary-scan shift-register design

For a given component, the minimum permissible length of the boundary-scan register with all excludable segments,
if any, excluded is a function of the number and type of system (nontest) connections into and out of the on-chip
system logic. (Typically, these will be off-chip connections.) The rules that determine the minimum set of cells that
has to be provided are presented later in this clause. Note, however, that every component claiming to be compliant
to this standard is required to have a boundary-scan register that contains at least one shift-register stage.

11.3 Register operation

11.3.1 Specifications

Rules

a) When the boundary-scan register is selected as the serial path between TDI and TDO in the Shift-DR
controller state, data entered at TDI shall appear without inversion at TDO after the application of a number
of paired rising and falling edges at TCK equivalent to the current length of the boundary-scan register.

b) When the EXTEST, INTEST, or PRELOAD instruction is selected, latched parallel outputs of the boundary-
scan shift-register shall change state only on the falling edge of TCK in the Update-DR controller state; at
which time, each shall be set to the state of its corresponding shift-register stage.

c) While any instruction is active that does not select the boundary-scan register for scanning, all latched
parallel outputs of the boundary-scan register not in an excluded segment shall retain their state at least until:

1) The Test-Logic-Reset controller state is entered as a result of application of a logic 0 at TRST*.

2) The first falling edge of TCK occurs in the Test-Logic-Reset controller state when that state is entered
as a result of signals applied at TCK and TMS if the TMP controller is not provided or is in the
Persistence-Off state.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

125
Copyright © 2013 IEEE. All rights reserved.

NOTE 1—Permission h) of 11.3.1 allows the boundary-scan register to be reset after entry into the Test-Logic-Reset
controller state; and so in a case in which such implementation details are not known, it should be assumed that the states
of the latched parallel outputs of the boundary-scan register are unknown once this state has been entered unless the
TMP controller is provided and in the Persistence-On state.

NOTE 2—Application of a logic 0 at TRST* will reset both the TAP and TMP controllers. Therefore, boundary-scan
register cells can be reset by the TAP Test-Logic-Reset state since the TMP controller, if provided, will be in the
Persistence-Off state.

d) No limit shall be imposed on the number of system output pins that may change state in a single Update-DR,
Update-IR, or Test-Logic-Reset controller state as a result of the operation of the test logic; neither shall
restrictions be placed on the data patterns that may be driven (e.g., a maximum limit on the number of
system logic outputs that may drive a logic 1).

NOTE 3—Designers should consider that in test mode, a boundary-scan test may manipulate several buses in ways that
could never occur during normal system operation. This may cause transient or steady-state power consumption to
exceed that expected for normal system operation. Be especially aware of this when bread boarding, socketing, or
fixturing components compatible with this standard because in these environments, power distribution may be
suboptimal.

e) No limit shall be placed on the combinations of logic values that may be shifted into the boundary-scan
register.

NOTE 4—During test operations, combinations of signals may be driven either to the on-chip system logic or off-chip
that will not arise during normal operation of the component. This is particularly the case where multiple boundary-scan
register cells are used to drive signals that normally are driven from a single source [see rule c) and rule d) of 11.5.1 and
rule e) of 11.6.1].

Permissions

f) When the SAMPLE instruction is selected, latched parallel outputs of the boundary-scan shift-register may
either hold their value in any TAP controller state or change state only on the falling edge of TCK in the
Update-DR controller state; at which time, each shall be set to the state of its corresponding shift-register
stage.

g) The delay between the falling edge of TCK and consequent changes at system output pins may be
deliberately skewed between system outputs, e.g., because of a need to minimize simultaneous switching at
several or all system outputs.

NOTE 5—In the case of the example implementations shown in this standard, this skew could be added by injecting
small delays in the Update-DR clock path and Mode-n control signals to each boundary-scan register cell. Such skew
may be required both for boundary-scan register cells that feed data signals and for those that feed output control signals.
In the latter case, the added skew will prevent excessive current demand due to simultaneous changes from “disable” to
“active” or vice versa.

h) Where boundary-scan register cells are provided with shift-register stages with latched parallel outputs, all,
any, or none of these latched parallel outputs may be reset to either logic state (0 or 1):

1) When the Test-Logic-Reset controller state is entered as a result of application of a logic 0 at TRST*.

2) On the first falling edge of TCK in the Test-Logic-Reset controller state when that state is entered as a
result of signals applied at TCK and TMS and if the TMP controller is either not provided or in the
Persistence-Off state.

NOTE 6—Application of a logic 0 at TRST* will reset both the TAP and TMP controllers. Therefore, boundary-scan
register cells can be reset by the TAP Test-Logic-Reset state since the TMP controller, if provided, will be in the
Persistence-Off state.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

126
Copyright © 2013 IEEE. All rights reserved.

11.3.2 Description

To meet the requirements of the SAMPLE and PRELOAD instructions, it has to be possible to move data through the
boundary-scan register without interfering with the normal system operation of the component. This may be
achieved by making the shift-register stages used by the boundary-scan register a dedicated part of the test logic;
that is, they do not perform any system function. Alternatively, the shift-register stages may be a shared resource
used by several of the registers defined by this standard and by any design-specific test data register.

In contrast, for the public instructions defined by this standard, the latched parallel output required at some
boundary-scan register stages is controlled such that it retains its last state whenever the boundary-scan register is
not selected for scanning by the current instruction. This feature allows a set of data values to be shifted into the
register and placed onto the latched parallel outputs by use of the PRELOAD instruction. As other instructions that
do not select the boundary-scan register for shifting are made active, the values in the latched parallel outputs of the
boundary-scan register will be retained. Thus, when an instruction is made active that causes the data held in the
boundary-scan register to be driven out of the component (e.g., the EXTEST or CLAMP instruction), the previously
loaded data are immediately available for use. (See the discussion in 8.7.)

11.4 General rules regarding cell provision

11.4.1 Specification

Rules

a) One or more boundary-scan register cells shall be provided at each digital system input or output of the on-
chip system logic, as detailed in 11.5 and 11.6.

b) For components that contain analog circuitry external to the on-chip system logic (i.e., analog circuitry
having off-chip connections as shown in Figure 11-7), the connections between the on-chip analog circuits
and the on-chip system logic shall be treated as off-chip connections.

AnalogDigital

Figure 11-7—Component that contains analog circuitry

NOTE 1—Differential drivers and receivers that operate through detection of the direction of current flow are
considered “analog” circuits. Therefore, in such cases, this rule requires a single boundary-scan register cell to be placed
between each differential driver or receiver and the on-chip system logic, as illustrated in Figure 11-9. See 11.4.2 for

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

127
Copyright © 2013 IEEE. All rights reserved.

information on the application of these rules to other types of paired inputs and outputs, e.g., differential signals that
operate using conventional logic voltages.

c) Boundary-scan register cells shall not be provided at TAP pins (TCK, TDI, TDO, TMS, and TRST*).

d) The connection of boundary-scan register cells of the control-and-observe type shall be such that if each cell
were replaced by a short-circuit connection between its parallel input and parallel output, the normal
(nontest) logical operation of the component would not be altered.

NOTE 2—There may, however, be changes in performance.

e) There shall be no logic between any boundary-scan register cell and the system pin to which that cell is
connected.

NOTE 3—“Transparent” devices such as buffers and I/O buffers are not considered to be “logic” and may exist outside
the boundary-scan register. Inverters may also exist outside the boundary-scan register subject to conformance to rule i)
and rule j) of 11.5.1 and rule l) through rule o) of 11.6.1. Devices that perform a logic operation (such as gates, flip-
flops, and latches) are considered to be logic devices and are not allowed outside the boundary-scan register.

f) Where the boundary-scan register is segmented [as described in rule c), rule d), and rule h) of 9.2.1], all cells
associated with a single port or an associated port pair (including any output control cells) shall appear
within a single segment.

g) Where the boundary-scan register is assembled from segments that may be included or excluded, a segment-
select cell conforming to the requirements of 9.4.1 shall be provided for each excludable segment.

h) Where an excludable boundary-scan register segment must be conditioned in order to be included, a
“control-only” domain-control cell conforming to the requirements of 9.4.1 shall be provided for each such
conditioning requirement.

NOTE 4—This is the only defined compliant use of a “control-only” cell in the boundary-scan register. The conditioning
requirement is often a power domain that can be powered on or off.

Permissions

i) Where some inputs or outputs are not connected to package pins in a particular packaged configuration of a
component, boundary-scan register cells may be provided for the unconnected signals.

j) Redundant observe-only boundary-scan cells may be provided on any package pin other than TCK, TMS,
TDI, TDO, and TRST*.

NOTE 5—Redundant observe-only cells are permissible on some nonsystem pins and on nondigital pins as well as pins
and signals to and from the system logic in order to enhance fault coverage and diagnostics. See 11.8 for rules
concerning these cells. Figure 11-10 illustrates a conceptual schematic of how redundant observe-only cells may be used
on differential pins. These cells have the function OBSERVE_ONLY as defined by BSDL (see Annex B).

k) Segment-select and domain-control cells controlling excludable boundary-scan register segments may be
duplicated in other public test data registers.

NOTE 6—Where more than one domain-control or segment-select cells control a single excludable segment, they would
effectively be ORed together so that each one of them has the same effect as the others, and all must be set to zero to
exclude the segment or disable the domain.

11.4.2 Description

Figure 11-8 illustrates the placement of required boundary-scan register cells for basic input, output, and
bidirectional pin types. The input cells could be control-and-observe (which would support INTEST) or observe-
only, and the separate output and input cells on the bidirectional output could be replaced by a single cell performing
both functions.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

128
Copyright © 2013 IEEE. All rights reserved.

Figure 11-8—Placement of boundary-scan register cells

Boundary-scan register cells are placed such that the state of each digital system pin (including clock pins) can be
controlled and/or observed using the boundary-scan register. These cells also may allow the state of the system logic
inputs and outputs to be controlled and observed respectively.

If the boundary-scan register is segmented, possibly because portions are contained within predefined blocks of
logic, it is commonsense to follow rule f) of 11.4.1, which requires that all cells associated with a single port be
contained within the segment. In other words, when integrating multiple boundary-scan register segments, each
segment would contain all of the cells needed for compliance with this standard given the I/O that it supports.

Extension of the design of the boundary-scan register to cover cases in which analog circuit blocks are located
external to the on-chip system logic, between the logic and the pins, is straightforward. In such components, the
signals that form the interface between the purely digital circuitry and the mixed analog-digital circuit block(s) are
considered to be equivalent to system pins. Therefore, boundary-scan register cells are provided for connections that
flow to or from the mixed analog-digital block(s) [see rule b) of 11.4.1 and Figure 11-7].

The specification of the boundary-scan register also addresses cases in which logic signals are communicated
between components by nondigital or nonelectronic means. Examples would be using optical interconnect or
capacitive coupling. In these cases, drivers and receivers are considered to be analog circuit blocks and are placed
outside the boundary-scan register cells for the relevant logic signals.

Alternatively, readers of this standard may wish to reference the architecture and capabilities defined by the latest
version of IEEE Std 1149.4.7 This standard describes circuits to deliver and measure both noncontinuous (dc) and

7 Information on references can be found in Clause 2.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

129
Copyright © 2013 IEEE. All rights reserved.

continuous (ac) signals to and from analog component pins and internal logic via a standardized test interface that is
a superset of, and fully compatible with, the test access port defined by this standard. Of further note, the latest
version of IEEE Std 1149.6 also makes specific provisions for testing of AC coupled and/or differential-signaling
component pins.

The case in which a pair of system pins is used to carry a single logic signal into or out of a component (e.g., at a
differential input or output; see Figure 11-9) is slightly more complex and merits further discussion.

+

-

+

-

Figure 11-9—Component with differential inputs and outputs

Typically, “paired” I/O will be provided to enhance the performance of connections between components, for
example, to enable reliable communication between components in a noisy environment or to reduce skew in high-
performance systems. The characteristics that differentiate paired I/O from conventional digital signals are as
follows:

⎯ The signals flowing through the pair of pins typically are driven from a single buffer and are always
received by a single buffer.

⎯ The signals always should be connected in pairs if the “enhanced” behavior (e.g., noise rejection) of the
component-to-component connection is to be maintained.

Two types of paired I/O are commonplace:

a) Those that work by altering or sensing the direction of current flow around the loop formed by the two
connections

b) Those that appear in many respects to be “conventional” digital signals, for example, because they use TTL-
compatible voltage levels

For current-flow paired I/O signals, the differential input or output buffer should be considered an analog circuit.
Therefore, one boundary-scan register cell must be placed between each buffer and the on-chip system logic
(Figure 11-9). However, it is recommended, when possible, to add redundant observe-only cells to each pin in order
to more fully detect and isolate board -level faults (Figure 11-10).

For paired conventional signals, the location of the boundary-scan register cells at output pins will depend on the
precise characteristics of the link. The following is suggested:

⎯ Where it is possible for the output signals to be used independently (losing the enhanced characteristics of
the connection but retaining the ability to convey the logic signal), two cells should be provided for each

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

130
Copyright © 2013 IEEE. All rights reserved.

driver, one for each output pin. This improves the testability of board-level interconnections where one of
the output signals from a pair is used to drive a “conventional” input pin on another component.

⎯ Where the signals that constitute the pair cannot be used independently, a single boundary-scan register cell
should be provided between the system logic and the output buffer. In this configuration, redundant observe-
only cells are recommended on each pin of the pair.

For a paired “conventional” input, a single boundary-scan register cell has to be placed between the buffer and the
on-chip system logic, allowing observation of the logic signal transmitted across the pair. In this configuration,
redundant observe-only cells are permitted by the rules [see rule r) of 11.5.1 and rule t) of 11.6.1] on each pin of the
pair, as shown in Figure 11-10, and their use will improve the testability and diagnosibility of faults during test.

Figure 11-10—Conceptual schematic of redundant observe-only cells on differential pins

Figure 11-10 is a conceptual schematic showing how current-flow differential pins can better support tests for
board-level construction faults through the use of redundant observe-only cells on each leg of the differential pair.
The schematic is conceptual only, and it is not expected that a designer would simply connect the positive and
negative pins to a wire and to a boundary-scan cell. The extra receivers shown connected to the redundant observe-
only cell would likely be an integral part of the design of the differential driver or receiver. In the case of a current-
flow differential pair [i.e. low-voltage differential signaling (LVDS)], the designer of the driver or receiver would
need to consider the receiver output logic value in the presence of any of the possible board defects. Designers
familiar with adding LVDS receiver failsafe designs will recognize this requires adding analog circuitry to allow
fault identification per pin and supporting detection of pins stuck at ground and individually open in addition to the
LVDS failsafe modes of both open, shorted and stuck at 1. The additional circuitry, however, needs only to be active
during EXTEST and for slow speed operation. It does not need to be functional during mission mode operation as
SAMPLE is no longer required [see permission d) of 11.8.1] on the redundant observe-only cells.

NOTE—Prior to this version of the standard, a loophole in the BSDL language allowed cells with <function>
OBSERVE_ONLY to be used in the position of the cell labeled IN shown in Figure 11-10. This is no longer allowed; the IN cell
must be of BSDL function INPUT or CLOCK and may be either a control and observe cell or a cell with just an observe
capability such as BC_4, as shown in the figure.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

131
Copyright © 2013 IEEE. All rights reserved.

11.5 Provision and operation of cells at system logic inputs

This subclause provides rules for the provision and operation of boundary-scan register cells at digital inputs to the
on-chip system logic. These inputs may be driven by buffers at system input pins or at bidirectional system pins
when they operate as system inputs. Alternatively, such digital inputs may be driven by mixed analog/digital circuit
blocks located external to the on-chip system logic.

As discussed in 11.1.1, system logic inputs may be either clock or nonclock. Many of the rules presented in 11.5.1
are common to both types of input. However, some rules apply only to one input type. Where this is the case, the
rule, recommendation, or permission is labeled “For clock (non-clock) inputs only.”

NOTE—This subclause addresses provision of boundary-scan register cells at inputs to the on-chip system logic in cases in
which these inputs are driven by system input pins during normal (nontest) operation. The case in which an input to the on-chip
system logic is driven by a system bidirectional pin during normal (nontest) operation is discussed in 11.7.

11.5.1 Specifications

Rules

a) Each signal received at a system logic input (e.g., from an input buffer) shall be capable of being observed
by at least one boundary-scan register cell (Figure 11-11).

b/s

Buffer

System

logic

Figure 11-11—Provision of a boundary-scan register cell at a system input

NOTE 1—The cells may be control-and-observe or observe-only. Where at least one control-and-observe cell is
provided to observe a single signal received at a system logic input, rule e) of 11.5.1 applies.

NOTE 2—Any additional cells are redundant in the sense that they could be omitted from the design without
jeopardizing compliance to this standard [see 11.8 and permission r)]. These cells are called redundant observe-only
cells.

NOTE 3—It is permissible for a set of control-and-observe boundary-scan register cells to be distributed in a fan-out
network from one system input buffer to multiple inputs to the on-chip system logic normally driven by that buffer (see
Figure 11-12). In such cases, rule e) of 11.3.1 applies and the cells are not considered redundant.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

132
Copyright © 2013 IEEE. All rights reserved.

b/s

Buffer

System

logic

b/s

b/s

Figure 11-12—Provision of multiple boundary-scan register cells at one input

b) Each boundary-scan register cell that can observe a signal received at a system logic input shall observe
precisely one such signal.

c) For nonclock inputs only: If the INTEST instruction is supported, each nonclock input I to the on-chip
system logic shall be driven from precisely one boundary-scan register cell, and this cell shall be one of
those that observe the system input signal that drives I during normal (nontest) operation.

NOTE 4—For clock inputs, provision of a control-and-observe cell is optional [see rule d) and permission l) of 11.5.1].

d) For clock inputs only: If the INTEST instruction is supported and one or more control-and-observe cells are
provided that observe the system clock input signals of a component, each system clock input I to the on-
chip system logic shall be driven from precisely one control-and-observe cell, and this cell shall be one of
those that observe the system clock input that drives I during normal (nontest) operation.

NOTE 5—This rule is activated when the option set out in permission 1) of 11.5.1 is exercised.

e) The parallel output of a control-and-observe cell that observes a signal received at a system logic input shall
drive only one of the following:

1) One or more system logic inputs

2) An output signal driven to a single system logic output pin or external analog/digital circuit block

3) The signal driven to the output control of one or more output buffers

NOTE 6—It is a consequence of this rule that where a signal from, for instance, a system input pin would normally fan
out to drive more than one of the above options, more than one control-and-observe cell is required. Refer to 11.6 for
rules relating to output data signals and output controls.

f) Each cell that observes a signal received at a system logic input shall be designed to route signals as shown
in Table 11-1.

Table 11-1—Routing of signals in cells at system logic inputs

Instruction The signal loaded into the shift-register stage of
each cell on the rising edge of TCK in the
Capture-DR controller state is:

The signal driven from the parallel
output of control-and-observe cells
while the instruction is selected is:

CLAMP, INIT_RUN,
INIT_SETUP_CLAMP,
CLAMP_HOLD, CLAMP_RELEASE

Not relevant Not defineda

EXTEST The signal driven to the system logic input
from the external source

Not defineda

HIGHZ Not relevant Not defineda
INTEST Not defined For nonclock inputs only: The

parallel output of the shift-register

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

133
Copyright © 2013 IEEE. All rights reserved.

Instruction The signal loaded into the shift-register stage of
each cell on the rising edge of TCK in the
Capture-DR controller state is:

The signal driven from the parallel
output of control-and-observe cells
while the instruction is selected is:
stage
For clock inputs only: See rule g)
of 11.5.1

PRELOAD Not defined The signal received at the
connected system pin

RUNBIST Not defined
(not relevant unless boundary-scan register is
selected as the serial path between TDI and
TDO)

For nonclock input only: Not

definedb
For clock inputs only: Defined by
rule g) of 11.5.1

SAMPLE For clock and nonclock inputs only: The signal
driven to the system logic input from the
external source
For redundant observe-only cells: The signal
driven to the system logic input from the
external source, a constant value signal, or an
undefined signalC

The signal received at the
connected system pin

BYPASS, IDCODE, USERCODE,
IC_RESET, INIT_SETUP

Not relevant The signal received at the
connected system pin

a See rule h) and permission n) and permission o) of 11.5.1.
b See rule h) and rule k) and permission p) and permission q) of 11.5.1.
C See rule a) of 11.8.1.

g) For clock inputs only: When the INTEST or RUNBIST instruction is selected, the signal driven to the on-chip
system logic shall be one of the following:

1) The signal received at the connected system pin

2) The TCK signal, controlled such that the on-chip system logic changes state only in the Run-Test/Idle
controller state

3) For INTEST only, the parallel output of the shift-register stage.

NOTE 7—Where option g1) of 11.5.1 is selected, the component designer should assume that the signal applied to the
clock input pin will be free-running and not externally controllable. Therefore, to meet rule b) of 8.9.1 and rule b) of
8.10.1, circuitry would need to be built into the component to enable only appropriate clock transitions to the on-chip
system logic (for example, in the case of the INTEST instruction, a “hold” signal may be pulsed internally to provide
single stepping in the Run-Test/Idle controller state).

NOTE 8—Where a component has more than one clock input pin, the component design should provide correct
operation of the INTEST and RUNBIST instructions, if provided, for all frequency and phase relationships between the
clock input signals that are permissible for correct nontest operation of the component.

h) The component shall not be damaged as a result of signals fed to the on-chip system logic when the CLAMP,
EXTEST, HIGHZ, INIT_RUN, INIT_SETUP, INIT_SETUP_CLAMP, CLAMP_HOLD, CLAMP_RELEASE,
or RUNBIST instruction is selected.

NOTE 9—This may be achieved by disabling operation of the on-chip system logic or by designing the cell such that a
constant logic signal is output when these instructions are selected.

i) The design of a boundary-scan register cell that observes the signal received at a system logic input shall be
such that, if a logic value V is present at the system input pin at the time when data are loaded from the
signal into the shift-register stage of the boundary-scan register cell (in the Capture-DR controller state), the
value shifted out of the cell through TDO during the immediate subsequent shifting of the boundary-scan
register shall be V.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

134
Copyright © 2013 IEEE. All rights reserved.

NOTE 10—For example, where a logic 0 is applied to a system input pin, a logic 0 has to be observed at TDO after
loading of the cell that observes that pin. See Figure 11-13.

NOTE 11—Redundant observe-only cells may capture values other than the signal value received at a system logic input
(e.g., a failure indication), and in that case are not necessarily constrained by this rule, but if they do observe the signal
value received at a system input, and then this rule applies.

TDI TDO

VU W

...UVW...

Figure 11-13—Noninversion of data between pin and TDO

j) For each control-and-observe cell that observes a signal received at the system logic from a system input pin
P, a data value D shifted into the cell through TDI and subsequently driven to the on-chip system logic when
the INTEST instruction is selected shall cause the same result as the application of value D at P during
normal (nontest) operation of the component (Figure 11-14).

Figure 11-14—Noninversion of data between TDI and the system logic

k) When the RUNBIST instruction is provided and selected, the design of boundary-scan register cells that
observe signals received at the on-chip system logic shall be such as to prevent interference with self-test
execution as a result of data received from external sources (e.g., system input pins).

Permissions

l) For clock inputs only: If the INTEST instruction is supported, precisely one of the provided boundary-scan
register cells that observes the signal received at a clock input to the on-chip system logic also may be able
to control that input.

NOTE 12—See rule d) of 11.5.1.

m) The shift-register stage of a control-and-observe cell that drives an input to the on-chip system logic may be
provided with a latched parallel output.

TDI TDO

V U W

TDI TDO

V U W

...UVW...

(a) Non-test Operation (b) INTEST

V U W

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

135
Copyright © 2013 IEEE. All rights reserved.

NOTE 13—Where the latched parallel output is omitted, transient data values will be driven to the on-chip system logic
during shifting of the boundary-scan register when the INTEST instruction is selected. Where this would cause unwanted
operation of the on-chip system logic, the parallel output of the shift-register stage can be latched such that the data
driven to the system logic changes only on completion of shifting (in the Update-DR controller state).

NOTE 14—Where latched parallel outputs are provided, rule c) and permission h) of 11.3.1 apply.

n) Control-and-observe cells that drive inputs to the on-chip system logic may be designed such that when the
CLAMP, EXTEST, or RUNBIST instruction is selected, the signal driven to the system logic is the parallel
output of the shift-register stage.

o) Control-and-observe cells that drive inputs to the on-chip system logic may be designed such that when the
CLAMP, EXTEST, or HIGHZ instruction is selected, a constant signal value is driven to the system logic.

p) Cells may be designed to act as generators of test patterns for the on-chip system logic when the RUNBIST
instruction (or an alternative self-test instruction) is selected.

q) Cells may be controlled such that during the execution of RUNBIST or an alternative self-test instruction,
data may flow between the system input pins and the on-chip system logic without modification.

NOTE 15—However, the results of executing the RUNBIST instruction will be independent of data received at nonclock
system input pins [see rule j) of 8.10.1].

r) Input pins or inputs to the on-chip system logic may be observed by one or more redundant observe-only
boundary-scan register cells in addition to the cells required by rule a) of 11.5.1.

NOTE 16—Such additional cells, which may be associated with either system or nonsystem input pins, are redundant in
the sense that they could be omitted from the design without jeopardizing compliance to this standard (see 11.8 for the
definition).

11.5.2 Description

In the example implementations for boundary-scan register cells contained in this clause, the routing of data through
each cell is controlled by one or more mode-control signals (labeled Mode or Mode-N). Different mode-control
signals are used for cells at input and output pins of the component, and these are derived from the instruction
present at the parallel output of the instruction register.

Examples of gated-clock implementations for boundary-scan register cells located at system input pins are given in
Figure 11-15 through Figure 11-19. The value of an appropriate <cell name> from the Standard BSDL Package that
corresponds to each figure is provided for convenience (see Table B.3 and B.9), offset from the main caption within
square brackets []. However, it should be noted that the figures represent neither a preferred nor a required
implementation of the named BSDL cell type.

Most figures have “Mode” inputs that perform the signal routing for various instructions and for the TMP controller.
The generation of these signals is shown in associated tables, and unique “Mode” signals are given unique names.
For convenience, some tables repeat the same “Mode” signal. As with the figures themselves, these are just
examples. The precedence in the “Mode” generation table indicates that a row with a lower precedence dominates
the conditions of higher precedence rows.

Note that rule e) of 11.4.1 permits the input to an observe-only boundary-scan register cell to be taken from any
signal that is transparently driven from the system input via a noninverting path, for example, from a point in a
signal distribution tree.

Table 11-2 shows the value of the Mode signal for the cells illustrated in Figure 11-15 and Figure 11-16 for each of
the boundary-scan register instructions defined in Clause 8.

NOTE 1—When the EXTEST instruction is selected, the cell shown in Figure 11-15 feeds data received at the system input pin to
the on-chip system logic. In many cases, the on-chip system logic will be tolerant of such signals, which usually will not be
representative of those received during normal (nontest) operation. However, in some cases, it may be necessary to prevent flow-

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

136
Copyright © 2013 IEEE. All rights reserved.

through of received data, which can be done by adding a logic gate at the output from the cell to the on-chip system logic as
shown in Figure 11-17, or the cell shown in Figure 11-19 may be used, which allows the update stage of the cell to control the
data presented to the on-chip system logic while the EXTEST instruction is selected.

Table 11-2—Mode signal generation for the example cells in Figure 11-15 and Figure 11-16

Precedence Instruction (Condition) Mode2
1 (Cell in excluded segment) 0
2 EXTEST

INTEST
0
1

3 (TMP controller Persistence_on state) 1
4 PRELOAD

SAMPLE
0
0

 RUNBIST X
 CLAMP

CLAMP_HOLD
CLAMP_RELEASE
INIT_SETUP_CLAMP
INIT_RUN

X
1
1
1
1

Nonboundary instruction 0

Figure 11-15—Input cell with parallel output register [BC_2]

NOTE 2—See Table 11-2 for mode signal generation.

Figure 11-16—Input cell without parallel output register [BC_3]

0

1

G1

1D
C1

0

1

G1

From last cell To next cell

Mode2

ClockBSR

ShiftDR

From
system

pin

To
system
logic

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

137
Copyright © 2013 IEEE. All rights reserved.

NOTE 3—See Table 11-2 for mode signal generation.

Figure 11-17—Cell that forces the system logic input to 1 during EXTEST [BC_4]

Figure 11-18—Observe-only input cell without control [BC_4]

The circuits in Figure 11-15 and Figure 11-16 allow the on-chip system logic to be driven from the boundary-scan
register cell when the INTEST instruction is selected in accordance with rule f) of 11.5.1 and, for clock inputs,
rule g3) of 11.5.1. The circuit of Figure 11-18 cannot drive signals into the system logic and may be used at a clock
input in accordance with rule g1) of 11.5.1. The latter design can be used in circumstances where the delay
introduced into the signal path by the multiplexer would cause a design target to be exceeded. (An example would
be a high-performance clock pin.)

The circuit in Figure 11-17 implements permission o) of 11.5.1.

The design in Figure 11-15 includes a parallel output register that is updated from the shift-register stage in the
Update-DR controller state [see permission m) of 11.5.1]. This register is included to prevent the changes at the
output of the shift-register stage during shifting from being applied to the on-chip system logic when the INTEST
instruction is selected (which could cause unwanted operation). Note that the parallel output could alternatively be
held in a level-operated latch, enabled by a logic 1 on the Update-DR input from the example TAP controller
(Figure 6-5 and Figure 6-6).

The design shown in Figure 11-19 can be used for boundary-scan register cells located at both system input and two-
state system output pins, although the Mode signal applied to the cell may need to be different in each case. When
the cell is used at a system input pin, the Mode signal should be controlled as shown in Table 11-3.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

138
Copyright © 2013 IEEE. All rights reserved.

Figure 11-19—Input cell that supports all instructions [BC_1]

NOTE 4—See Table 11-3 for mode signal generation.

Table 11-3—Mode signal generation for the example cell in Figure 11-19

Precedence Instruction (Condition) Mode1
1 (Cell in excluded segment) 0
2 EXTEST

INTEST
1
1

3 (TMP controller Persistence_on state) 1
4 PRELOAD

SAMPLE
0
0

RUNBIST 1
CLAMP
CLAMP_HOLD
CLAMP_RELEASE
INIT_SETUP_CLAMP
INIT_RUN

1
1
1
1
1

Nonboundary instruction 0

Note that the sole difference between the rules that apply to nonclock and clock system inputs is that the provision
of control-and-observe cells is not mandatory at clock inputs when the INTEST instruction is supported. Thus, there
is no requirement for circuitry to be inserted into the signal path between a clock input pin and the on-chip system
logic.

11.6 Provision and operation of cells at system logic outputs

The rules in this subclause apply to outputs from the on-chip system logic. These outputs may drive data inputs of
buffers at system output pins or at bidirectional system pins when they operate as system outputs. They also may
drive output activity controls of buffers located at such pins. Alternatively, on-chip system logic outputs may drive
on-chip mixed-signal circuit blocks that are not a part of the on-chip system logic.

Many of the rules presented in 11.6.1 apply to both control and data signals output from the on-chip system logic.
However, some rules apply only to on-chip system logic outputs that drive data inputs of buffers at system output
pins, while others apply only to outputs that drive control inputs at such buffers. In cases in which a rule is intended
to have limited application to one or the other use of a system logic output signal, the rule is prefaced by the phrase
“Control (Data) inputs to buffers only:.”

NOTE 1—Inputs to on-chip analog/digital circuit blocks are considered to be equivalent to data inputs to output buffers.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

139
Copyright © 2013 IEEE. All rights reserved.

NOTE 2—Where the optional HIGHZ instruction is provided, selection of this instruction will place every output pin in an
inactive drive state, including pins where there is no system requirement for three-state capability. Where three-state capability
will be provided solely to allow implementation of the HIGHZ instruction, the pin should be treated as a two-state pin for the
purposes of this standard.

NOTE 3—This subclause addresses provision of boundary-scan register cells at outputs from the on-chip system logic in cases
where these outputs drive system output pins during normal (nontest) operation. The case in which an output from the on-chip
system logic drives a system bidirectional pin during normal (nontest) operation is discussed in 11.7.

11.6.1 Specifications

Rules

a) Data inputs to buffers only: For each output of the on-chip system logic that drives the data input of a buffer
at a system logic output pin, at least one control-and-observe boundary-scan register cell shall observe only
one of the following:

1) The signal driven from the system logic output (Figure 11-20a)

2) The signal at the corresponding output pin (Figure 11-20b)

b) Control inputs to buffers only: For each output of the on-chip system logic that drives the control input of a
buffer at a system logic output pin, at least one control-and-observe boundary-scan register cell shall observe
the signal driven from the system logic output (Figure 11-20c).

b/s

Buffer
(2-state or
3-state)

System

logic b/s

Buffer
(2-state or
3-state)

System

logic

a) b)

b/sSystem

logic

c)

EN

Control

Figure 11-20—Provision of a boundary-scan register cell at a digital system output pin

c) Data inputs to buffers only: For a given data input to an output buffer, precisely one of the boundary-scan
register cells that satisfy rule a) of this subclause shall be capable of driving that data input (see
Figure 11-21).

NOTE 1—Rule a) [rule b)] of this subclause provides that at least one cell will monitor any given data (control) output
from the on-chip system logic. There may be more than one such cell. If, for example, an output from the on-chip system
logic fans out to several system output pins, rule c) and rule e) require precisely one cell capable of driving the
connected pin to be placed in each fan-out branch. Additional redundant observe-only cells may be included in the
design [permission t)] that can observe the output from the on-chip system logic or system output pin but that cannot
drive any system output pin (see 11.8).

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

140
Copyright © 2013 IEEE. All rights reserved.

Figure 11-21—Provision of boundary-scan register cells at system logic outputs

d) Control inputs to buffers only: For a given control input to an output buffer, precisely one of the boundary-
scan register cells that satisfy rule b) of this subclause shall be capable of driving that control input.

NOTE 2—See also rule e) and rule f).

e) The parallel output of a control-and-observe boundary-scan register cell that observes a system output from
the on-chip system logic shall drive only one of the following:

1) A single data input to a system output buffer (two-state or three-state, or the output signal for a
bidirectional pin)

2) The control inputs to a set of output buffers

NOTE 3—In the latter case, see rule f). Note that where a single output from the on-chip system logic is used both as a
control for the output buffers at a group of pins and as the data signal output at one or more other pins, separate
boundary-scan register cells are required for the control and noncontrol signal paths, as illustrated in Figure 11-22.

Figure 11-22—Provision of cells when one output Is used both as control and data

f) Control inputs to buffers only: Where one boundary-scan register cell drives control inputs to output buffers
at several system output pins, a given data value (0 or 1) held in the cell shall cause the same operation at all
connected system output pins (e.g., a 0 may be defined to place all connected pins in an inactive drive state).

NOTE 4—See also recommendation q) of this subclause.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

141
Copyright © 2013 IEEE. All rights reserved.

g) Control inputs to buffers only: In cases where a single control signal is driven to a set of system output pins
that includes both three-state and bidirectional pins, in interpreting rule f), enabling the three-state system
output(s) shall be considered to be the same as setting bidirectional system pin(s) to output mode; disabling
three-state system output(s) shall be considered to be the same as setting bidirectional pin(s) to input mode.

h) Each cell that observes a system logic output shall be designed to route signals as shown in Table 11-4.

i) Control inputs to buffers only: For each relevant instruction, the option in the right-hand column of
Table 11-4 to drive a value that disables connected output buffers shall be selected either for all cells that
drive control inputs of output buffers or for none of these cells.

NOTE 5—For example, if on selection of the INTEST instruction one three-state output pin of the component was forced
to the high-impedance state, all other three-state output pins also would be forced to the high-impedance state when the
INTEST instruction was selected.

j) Every control-and-observe boundary-scan register cell that observes an output from the on-chip system logic
(data or control) shall be provided with a latched parallel output.

k) When the EXTEST, PRELOAD, or INTEST instruction is selected, the latched parallel outputs of control-
and-observe boundary-scan register cells that observe outputs from the on-chip system logic shall latch the
data held in the shift-register stage on the falling edge of TCK in the Update-DR controller state.

l) When the CLAMP, HIGHZ, or RUNBIST instruction is selected, the latched parallel outputs of control-and-
observe boundary-scan register cells that observe outputs from the on-chip system logic shall retain their
state unchanged in all controller states.

m) Data inputs to buffers only:

1) If C is the control-and-observe boundary-scan register cell that drives data to an output buffer for
system output pin P

2) If O is the output of the on-chip system logic that is observed by C and that drives data to P during
normal (nontest) operation

3) If C is the nth cell of the boundary-scan register

4) If V is the logic signal driven from P in normal (nontest) operation (i.e., when the signal driven from P
is determined by the output from O)

When an instruction is selected that requires the output of O to be captured into C (e.g., the SAMPLE
instruction), the logic value observed as the nth bit output from the boundary-scan register at TDO in the
scan operation immediately after capture shall be V (Figure 11-23).

NOTE 6—For example, where the system logic would drive a logic 0 through the system output pin, a logic 0 has to be
observed at TDO after loading of the cell that observes that pin. See Figure 11-23.

NOTE 7—For outputs where only one logic value is actively driven (e.g., open-collector outputs), receipt of one data
value (0 or 1) from the on-chip system logic will cause the output to be inactive. In these cases, the data value observed
at TDO will be the value that, when fed to the output buffer from the on-chip system logic, will cause the output to be
inactive.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

142
Copyright © 2013 IEEE. All rights reserved.

Table 11-4—Routing of signals in cells at system logic outputs

Instruction The signal loaded into the
shift-register stage of each cell on
the rising edge of TCK in the
Capture-DR controller state is:

The signal driven from the
parallel output of each control-
and-observe cell while the
instruction is selected is:

CLAMP, INIT_RUN,
INIT_SETUP_CLAMP,
CLAMP_HOLD,
CLAMP_RELEASE

Not relevant The latched parallel output of
shift-register stage

EXTEST Not defined The latched parallel output of
shift-register stage

HIGHZ Not relevant The value that disables connected
output buffers

INTEST The signal output from the on-chip
system logic

The latched parallel output of
shift-register stage or the value
that disables connected output

buffersa
PRELOAD Not defined The signal output from the on-

chip system logic
RUNBIST Not defined

(not relevant unless the boundary-scan register is
selected as the serial path between TDI and TDO)

The latched parallel output of
shift-register stage or the value
that disables connected output

buffersa
SAMPLE The signal output from the on-chip

system logic or from the connected
output pin

For redundant observe-only cells: The signal output
from the on-chip system logic or from the connected
output pin, or a constant value signal or an undefined
signalb

The signal output from the on-
chip system logic

BYPASS, IDCODE,
USERCODE,
INIT_SETUP

Not relevant The signal output from the on-
chip system logic

a This option is available only to cells that drive control inputs of output buffers. Where this option is selected for the control input to an output
buffer, the data input to that buffer when the instruction is selected may be regarded as “Not defined.”
b See rule b) of 11.8.1.

TD I TDO

V U W

...UVW...

(a) Nontest Operation (b) INTEST

TD I TDO

V U W

V U W

Figure 11-23—Noninversion of data between the system logic and TDO

n) Data inputs to buffers only:

1) If C is the control-and-observe boundary-scan register cell that drives data to an output buffer for
system output pin P; and

2) If C is the nth cell of the boundary-scan register; and

3) If V is the value of the nth bit of a serial data stream S input to the boundary-scan register via TDI; and

4) If the length of S is equal to the number of cells in the boundary-scan register

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

143
Copyright © 2013 IEEE. All rights reserved.

When an instruction is selected that causes the latched parallel output of C to determine the value of the data
signal driven from P (e.g., EXTEST) and when the data stream S is shifted into the boundary-scan register
and, immediately subsequent to the shifting operation, updated to the latched parallel outputs of the
boundary-scan register, the value of the data signal output from P shall be V (Figure 11-24).

NOTE 8—For outputs where only one logic value is actively driven (e.g., open-collector outputs), receipt of one data
value (0 or 1) from the on-chip system logic will cause the output to be inactive. In these cases, the data value input at
TDI would need to be the value that, when fed to the output buffer from the on-chip system logic, will cause the output
to be inactive.

TDI TDO

VU W

...UVW...

Figure 11-24—Noninversion of data between TDI and a system output pin

o) Control inputs to buffers only:

1) If C is the control-and-observe boundary-scan register cell that drives the control input of the output
buffer for a system output pin P

2) If O is the output of the on-chip system logic that is observed by C and that controls the activity of P
during normal (nontest) operation

3) If C is the nth cell in the boundary-scan register

4) If V (or not V) is the value of the nth bit of S output from the boundary-scan register through TDO
immediately following capture of O into C when P would be active (or inactive, respectively) in normal
(i.e., nontest) operation

5) If the length of S is equal to the number of cells in the boundary-scan register

When an instruction is selected that causes the latched parallel output of C to determine the activity of P
(e.g., EXTEST) and when a data pattern S containing V (or not V) as the nth bit is shifted onto the latched
parallel outputs of the boundary-scan register, P shall be active (or inactive, respectively).

NOTE 9—For example, where a logic 0 output from the system logic normally would disable a driven output buffer, a
logic 0 should be shifted out through TDO whenever the output would have been disabled. Furthermore, a logic 0 shifted
into the cell through TDI should, if driven to the output buffer, cause the output buffer to be disabled. The effect of this
rule is similar to that of rule m) and rule n) of this subclause (Figure 11-25).

NOTE 10—Boundary cells associated with output pins may capture values from the output pin; in which case, they must
observe rule i) of 11.5.1.

NOTE 11—Redundant observe-only cells associated with output pins may capture the possible fault characteristics of a
system logic output or output pin other than the digital signal value.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

144
Copyright © 2013 IEEE. All rights reserved.

(a) Nontest Operation

TDI TDO

C=On; C=Off

EN

(b) Capture and Shift

TDI TDO

EN

(c) Shift and Update

TDI TDO

EN

C C

...C...

...C...

C=On; C=Off

C

Figure 11-25—Noninversion of control signal values between the system logic and TDO

p) Control inputs to buffers only: If the latched parallel output of a boundary-scan register cell that drives a
control input to an output buffer is reset in the Test-Logic-Reset controller state, it shall be reset to the state
that will cause the connected output buffer(s) to be disabled.

NOTE 12—The timing of the reset is specified in rule c) and permission h) of 11.3.1.

Recommendations

q) Control inputs to buffers only: The control signal for each functionally distinct group of system output pins
(e.g., an address bus or a data bus) should be driven from a distinct boundary-scan register cell dedicated to
that purpose, even where the output from the on-chip system logic observed by that cell normally would
drive a common control signal to more than one such group of pins.

NOTE 13—This reduces the complexity of the test generation task because during the test, buffers can be enabled
independently as required.

r) Where practical, at least one boundary-scan register cell should observe the signal at the corresponding
output pin.

NOTE 14—This significantly improves coverage of shorts in board test and may be accomplished by either a self-
monitoring boundary cell (see Figure 11-33 and Figure 11-34) or a redundant observe-only cell. Shorts between two
output ports on a component are particularly difficult to detect unless the shorted nets are observed at a distance, or if
both are three-state capable and one at a time is driving. Analog simulations of shorted drivers can assist in
understanding the issues.

Permissions

s) Boundary-scan register cells that observe outputs from the on-chip system logic may be designed to act as a
part of a signature computing register for test results when the RUNBIST instruction (or alternative self-test
instruction) is selected.

t) Outputs from the on-chip system logic or output pins may be observed by one or more redundant observe-
only boundary-scan register cells in addition to the control-and-observe cells required by the preceding rules.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

145
Copyright © 2013 IEEE. All rights reserved.

NOTE 15—Such additional cells are redundant in the sense that they could be omitted from the design without
jeopardizing compliance to this standard (see 11.8 for their definition).

11.6.2 Description

For two-state output pins, where signals only can be at the high or low logic level at any given instant, one
boundary-scan register cell is sufficient to allow the state of the pin to be controlled or observed. However, for three-
state pins, the capability exists for data to be driven actively or inactively, such that four states are possible. Data
from a minimum of two boundary-scan register cells therefore are required to allow the state (signal value plus
active/inactive) of a three-state pin to be controlled or observed.

Figure 11-26—Control of multiple three-state outputs from one signal

Although it would appear that the additional cells might significantly increase the overhead needed to implement a
boundary scan, it is necessary to provide only one additional cell for each activity control signal generated in the
circuit, although a judicious use of a few additional cells is recommended in
recommendation q) of 11.6.1 (see, for example, Figure 11-26). Thus, where the activity of many three-state output
pins is controlled from a single source, for example in a microprocessor address bus, only one additional cell is
required to give the necessary control. Since, given the basic design of the circuit, it would be a design error if such
three-state pins were wired together, there is no need for the design of the boundary-scan register to account for this
possibility.

The need for the additional cells at output control signals is illustrated in Figure 11-27. This shows a wired junction
between three-state outputs from a number of components. To test this junction, a series of tests need to be
performed, each of which checks that one of the outputs can drive either a 0 or a 1 to the receiving devices. During
each test, the other outputs have to be set to the opposite data value (1 or 0, respectively) with a high-impedance
drive. Table 11-5 shows the pair of tests needed to check the operation of one of the outputs connected to the
junction.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

146
Copyright © 2013 IEEE. All rights reserved.

Figure 11-27—Testing board-level bus lines

Table 11-5—Test for driver B

Stimulus applied to the bus from Result seen at
Component A Component B Component C Component D
1/off 0/on 1/off 0
0/off 1/on 0/off 1

To apply the test, it is necessary to be able to control both the data value at each output and whether the output is
enabled. This can be done via the boundary-scan register independently of the on-chip system logic.

For similar reasons, there shall be additional boundary-scan register cells associated with each three-state
bidirectional system pin that control the activity of the associated output buffer. As in the case of three-state system
pins, these cells may be shared across a bus or between any group of three-state bidirectional system pins that obtain
their output control signal from a single source.

Figure 11-28 highlights the following problems that might be encountered when applying tests to logic blocks
external to a component by using the boundary-scan register of the component but that are minimized by
implementing boundary-scan register cells as defined in this subclause.

⎯ The logic block being tested may contain asynchronous sequential logic that will be set into undesirable
states if shifting patterns appear at its inputs.

⎯ The signals applied from the boundary-scan register may feed into clock inputs on the logic block being
tested, which again will produce undesirable effects if the logic is not shielded from shifting patterns.

C U

C U

C U

C U

C U

C U

EN

EN

EN

C U

A

B

D

C

TDI TDO

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

147
Copyright © 2013 IEEE. All rights reserved.

Figure 11-28—Testing external logic via the boundary-scan register

Since in a generally applicable architecture it cannot be guaranteed that such features do not exist in the circuitry
under test, the boundary-scan design shall be such that these problems are minimized. A design compatible with this
standard does this by requiring a parallel output register or latch in each boundary-scan register cell that can affect
the state of an output driver at a system pin. While the EXTEST instruction is selected, inclusion of this register or
latch allows the data driven from a component to neighboring circuitry to change only on completion of the shifting
process.

Figure 11-29—Primitive noncompliant output cell design with potential problems

0

1

G1

1D
C1

0

1

G1

Mode

To next cell

Parallel
Input

Parallel
Output

ClockBSRShiftDR

From last cell

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

148
Copyright © 2013 IEEE. All rights reserved.

A further potential problem is highlighted by the primitive (noncompliant) boundary-scan register cell design shown
in Figure 11-29. During testing of the on-chip system logic (for example, through the INTEST or RUNBIST
instruction), the example cell would allow responses from the system logic to pass through the data-path multiplexer
to the shift-register input of the cell. This allows the output response from the on-chip system logic to be loaded into
the output boundary-scan register cells and shifted out for inspection. However, a problem arises from the fact that
the cell also allows the test response from the on-chip system logic to be output from the host component and hence
to be applied to neighboring components on a board assembly.

The application of raw test-response data from one component can have a damaging effect on other components in
the circuit if it is received at clock or asynchronous data or control inputs. For example, if built-in self-testing is
being performed on the memory controller of Figure 11-30, there is a distinct possibility that one or more test-
response patterns from the core logic of the memory controller will cause simultaneous activation of the outputs
feeding the component select (CS) inputs of the memory devices. This situation would not occur during normal
operation of the complete design, either due to constraints between the logic values applied to the inputs of the
memory controller or due to the design of the on-chip system logic. The system logic design would in some way
prevent more than one active output from the controller at any time.

Figure 11-30—Circuit illustrating potential boundary-scan test problem

The duration of an on-chip test is dependent on the type of system logic test performed. For static tests applied using
the INTEST instruction, these potentially damaging output patterns can remain in effect over the interval between
successive occurrences of the Update-DR controller state. For instance, in a circuit having a scan path length of
500 bits and a TCK rate of 5 MHz, the approximate interval between closest consecutive Update-DR controller
states is 100 ms. For large board designs, the period could be sufficiently long to cause damage to drivers in
contention on a bus.

One solution is to cause the output buffers of the memory controller that feed the memory CS inputs to be placed in
a high impedance state during internal testing of the controller. However, floating inputs can fluctuate between high
and low logic levels and are susceptible to induced voltages from adjacent board wiring interconnects. Applying a
pull-up resistor on the three-state buffers will solve the bus contention problem in external components with active-
low three-state enables, but those with active-high three-state enables are still at risk.

The solution adopted in this standard is to provide boundary-scan register cells to be placed at two-state output pins,
which are designed such that specific logic values can be placed at the associated pins while system logic within the
component is tested. Figure 11-31 shows a gated-clock design that provides this facility and meets the rules defined
in this clause. Table 11-6 shows how the Mode signal for Figure 11-31 is derived for each of the boundary-scan
register instructions defined in Clause 8.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

149
Copyright © 2013 IEEE. All rights reserved.

Figure 11-31—Output cell that supports all instructions [BC_1]

NOTE 1—See Table 11-6 for mode signal generation.

Table 11-6—Mode signal generation for the example cells
in Figure 11-31, Figure 11-35, Figure 11-37, and Figure 11-47

Precedence Instruction (Condition) Mode1
1 (Cell in excluded segment) 0
2 EXTEST

INTEST
1
1

3 (TMP controller Persistence_on state) 1
4 PRELOAD

SAMPLE
0
0

 RUNBIST 1
 CLAMP

CLAMP_HOLD
CLAMP_RELEASE
INIT_SETUP_CLAMP
INIT_RUN

1
1
1
1
1

 Nonboundary instruction 0

Note that the path in Figure 11-31 between the data input from the system logic and the multiplexer that feeds data
to the system pin will not be used during execution of either the EXTEST or the INTEST instruction. In some cases,
it may therefore be necessary to use additional test operations at the board level to test the circuitry within a
component fully.

Figure 11-32—Output cell that does not support INTEST [BC_2]

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

150
Copyright © 2013 IEEE. All rights reserved.

NOTE 2—See Table 11-7 for mode signal generation.

The example gated-clock cell design in Figure 11-32 could be used where the INTEST instruction is not supported
by a component since this design does not permit rule h) of 11.6.1 to be met with respect to the INTEST instruction.
Note that while the cell meets rule h) of 11.6.1 with respect to the SAMPLE instruction without additional provision,
if the cell drives off-chip via an output buffer, then the signal value captured using the SAMPLE instruction is the
one intended to be driven off-chip, not the one actually on the off-chip connection at the time. The latter may be
affected by faults on the off-chip connection or, for bus connections, by the combination of drivers active at the
time. By ensuring that the signal that should have been driven from the component is sampled at the driving end,
while the signal actually driven is sampled at the receiving end, additional diagnostic information is obtained.

Table 11-7 shows how the Mode signal for Figure 11-32 is derived for each of the boundary-scan register
instructions supported by the cell design.

Table 11-7—Mode signal generation for the example cells
in Figure 11-32, Figure 11-34, and Figure 11-40

Precedence Instruction (Condition) Mode3
1 (Cell in excluded segment) 0
2 EXTEST 1
3 (TMP controller Persistence_on state) 1
4 PRELOAD

SAMPLE
0
0

 RUNBIST 1
 CLAMP

CLAMP_HOLD
CLAMP_RELEASE INIT_SETUP_CLAMP
INIT_RUN

1
1
1
1

 Nonboundary instruction 0
NOTE—Mode3 is the same as Mode1 except that the INTEST instruction is
not supported.

On the other hand, it is highly useful that the signal value captured using the EXTEST instruction is the one at the
corresponding system output pin, according to rule a2) of 11.6.1. Doing so allows a connected system network both
to be driven and to be captured at the same pin, thus, allowing such networks to be tested for shorts to others even
where there are no other connected boundary-scan device pins. Output boundary cells of this type are termed to be
self-monitoring, similar to the test data register cell shown in Figure 9-10, which captures its own output. A gated-
clock cell design that implements this option while still capturing the system logic output during SAMPLE and
INTEST is shown in Figure 11-33. An alternative and simpler gated-clock cell design that also implements this
option but cannot capture the system logic output and therefore does not support INTEST is shown in Figure 11-34.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

151
Copyright © 2013 IEEE. All rights reserved.

Figure 11-33—Self-monitoring output cell that supports INTEST [BC_9]

NOTE 3—See Table 11-8 for mode signal generation.

Table 11-8—Mode signal generation for the example cell in Figure 11-33

Precedence Instruction (Condition) Mode4 Mode1
1 (Cell in excluded segment) 0 0
2 EXTEST

INTEST
1
0

1
1

3 (TMP controller Persistence_on state) X 1
4 PRELOAD

SAMPLE
X
0

0
0

 RUNBIST X 1
 CLAMP

CLAMP_HOLD
CLAMP_RELEASE INIT_SETUP_CLAMP
INIT_RUN

X
X
X
X

1
1
1
1

 Nonboundary instruction 0 0

Figure 11-34—Self-monitoring output cell that does not support INTEST [BC_10]

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

152
Copyright © 2013 IEEE. All rights reserved.

NOTE 4—See Table 11-7 for Mode Signal Generation.

Note that the receiver is not shown in the two self-monitoring output cells, but it would be necessary in most cases.
Also note that the value captured in the cell should follow the rules for cells at system inputs, and in particular, the
“noninversion” rule i) of 11.5.1.

Where a component has three-state system output pins, these pins may feed onto a wired junction at the board level.
To test the interconnections forming the wired junction using the EXTEST instruction, it shall be possible to drive
independently onto the junction from each of the possible driving pins. As was discussed earlier in this clause, to
achieve this, it is necessary to be able to control the output control signals fed to the output drivers at three-state or
bidirectional system pins.

In addition, it is necessary to minimize the possibility of contention from occurring on board-level interconnections
when the on-chip system logic is tested using the INTEST or RUNBIST instruction. This requirement can be met in
either of two ways:

a) The state of a system pin can be fully defined by shifting data into the boundary-scan register.

b) A system pin can be forced into the inactive drive state. This additional option is possible since the board-
level circuit design shall necessarily be designed such that components driven from the three-state bus do
not erroneously respond to high-impedance conditions during normal system operation. Therefore, the
inactive drive state can be safely driven during testing of the system logic within a component.

Figure 11-35—Boundary-scan register cells at a three-state output—Example 1
[BC_1, control and data]

NOTE 5—See Table 11-6 for mode signal generation.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

153
Copyright © 2013 IEEE. All rights reserved.

The options listed for the INTEST and RUNBIST instructions in rule h) of 11.6.1 cover these two possibilities.
Figure 11-35 and Figure 11-36 give example gated-clock designs for a boundary-scan register cell that could be used
at a three-state system output pin. Figure 11-35 implements option a), while Figure 11-36 implements option b). In
Figure 11-35, the Mode signal should be controlled as shown in Table 11-6.

In Figure 11-36, the design of the circuitry around the shift-register stages is such that all paths can be tested if both
the EXTEST and INTEST instructions are executed with appropriate data. The Mode_1 and Mode_2 signals should
be controlled as shown in Table 11-9.

Figure 11-36—Boundary-scan register cells at a three-state output—Example 2
[BC_2, control and data]

NOTE 4—See Table 11-9 for mode signal generation.

0

1

1D
 C1

0

1

G1

EN

0

1

0

1

Output
Cell

Control
Cell

Mode5 Mode6ShiftDR To Next Cell

Output
Enable

Output
Data

From
System
Logic System

Output
Pin

From Previous Cell ClockBSR UpdateBSR

G1

G1

G1

1D
 C1

1D
 C1

1D
 C1

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

154
Copyright © 2013 IEEE. All rights reserved.

Table 11-9—Mode signal generation for the example cell in Figure 11-36

Precedence Instruction (Condition) Mode5 Mode6
1 (Cell in excluded segment) 0 1
2 EXTEST

INTEST
1
0

1
0

3 (TMP controller Persistence_on state) 1 1
4 PRELOAD

SAMPLE
0
0

1
1

 RUNBIST 0 0
 CLAMP

CLAMP_HOLD
CLAMP_RELEASE
INIT_SETUP_CLAMP
INIT_RUN
HIGHZ

1
1
1
1
1
X

1
1
1
1
1
0

 Nonboundary instruction 0 1

11.7 Provision and operation of cells at bidirectional system logic pins

11.7.1 Specifications

Rules

a) Boundary-scan register cells shall be provided at bidirectional system pins such that:

1) Whenever the pin is functioning as an input pin, all rules are met for cells provided at system input
pins and inputs to the on-chip system logic (see 11.5).

2) Whenever the pin is functioning as an output pin, all rules are met for cells provided at outputs of the
on-chip system logic that drive data inputs of system output buffers (see 11.6).

3) All rules are met for cells provided at outputs of the on-chip system logic that drive control inputs of
buffers at system output pins (see 11.6).

NOTE 1—In cases where the direction of signal flow is determined by an output O of the on-chip system logic, a
boundary-scan register cell will exist in the signal path between O and the system pin. When the EXTEST,
CLAMP, CLAMP_HOLD, CLAMP_RELEASE, INIT_RUN, INTEST, or RUNBIST instruction is selected, or the
TMP controller is in the Persistence-On state, the direction of signal flow will be determined by the data held in
the latched parallel output of the shift-register stage of the boundary-scan register cell.

b) Whenever two separate boundary-scan register cells are provided at a bidirectional system pin to meet the
requirements of rule a1) and rule a2) of 11.7.1:

1) The cell that meets the requirements of rule a1) of 11.7.1 shall, at all times, meet all rules for cells
provided at system input pins and inputs to the on-chip system logic (see 11.5).

2) The cell that meets the requirements of rule a2) of 11.7.1 shall, at all times, meet all rules for cells
provided at outputs of the on-chip system logic that drive data inputs of system output buffers (see
11.6).

NOTE 2—A structure of two boundary-scan register cells that would meet rule a) of 11.7.1 while failing to meet
rule b) of 11.7.1 not only would require more logic than a structure, which meets both rule a) and rule b) of 11.7.1,
but also would have less test usefulness.

11.7.2 Description

These requirements represent a merging of those for two-state or three-state output pins with those for system input
pins.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

155
Copyright © 2013 IEEE. All rights reserved.

Figure 11-37 and Figure 11-38 show gated-clock examples of the provision of boundary-scan register cells at three-
state bidirectional pins.

Figure 11-37 allows the state of the pin to be fully controlled while the INTEST or RUNBIST instruction is selected.
The Mode signal shown in Figure 11-37 should be controlled as indicated in Table 11-6. The Reset* or CHReset*
signal may be fed to the parallel output register of the control cell in accordance with permission h) of 11.3.1. If the
TMP controller is not implemented, then Reset* from the example TAP controller of Figure 6-5 may be used. If the
TMP controller is implemented, the CHReset* from the example TMP controller of Figure 16-1 may be used. Reset
of the update stage is not required.

Figure 11-37—Boundary-scan register cells at a bidirectional pin—Example 1
[BC_1, control]

NOTE 1—See Table 11-6 for mode signal generation.

In Figure 11-38, a BC_2 boundary-scan register cell is used to control and a single BC_7 boundary-scan register
cell is used to observe both output and input data. This cell meets the requirements of 11.6.1 when the control cell
puts the pin in the output direction, and the requirements of 11.5.1 when the control cell puts the pin in the input
direction. The various control signals used by the cell should be controlled as shown in Table 11-10.

0

1

G1

1D
C1

0

1

G1

Mode1

UpdateBSRClockBSR

ShiftDR To next cell

From last cell

From
System

Logic

To
Output
Enable

1D

R
C1

Reset* or
CH_Reset*

C U

C U

CU

EN

To next cell

From last cell

Output Cell

Input Cell

Cell as above
System

BIDI
Pin

Output
Enable

Output
Data

Input
Data

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

156
Copyright © 2013 IEEE. All rights reserved.

As discussed in connection with Figure 11-36, the design of the circuitry around the shift-register stages in
Figure 11-38 permits all circuitry in the cell to be tested if the EXTEST and INTEST instructions are executed with
appropriate data.

Figure 11-38—Boundary-scan register cells at a bidirectional pin—Example 2
[BC_2 control; BC_7 data]

NOTE 2—See Table 11-10 for mode signal generation.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

157
Copyright © 2013 IEEE. All rights reserved.

Table 11-10—Mode signal generation for the example cells in Figure 11-38

Precedence Instruction (Condition) Mode5 Mode2 Mode6
1 (Cell in excluded segment) 0 0 1
2 EXTEST

INTEST
1
0

0
1

1
0

3 (TMP controller Persistence_on
state)

1 1 1

4 PRELOAD
SAMPLE

0
0

0
0

1
1

 RUNBIST 0 X 0
 CLAMP

CLAMP_HOLD
CLAMP_RELEASE
INIT_SETUP_CLAMP
INIT_RUN
HIGHZ

1
1
1
1
1
X

X
1
1
1
1
X

1
1
1
1
1
0

 Nonboundary instruction 0 0 1

Figure 11-39 uses a BC_2 cell for control and a BC_6 cell to observe data output and input at a bidirectional pin.
The various control signals used by the cell should be controlled as shown in Table 11-11.

The BC_6 cell is no longer supported. It is included for historical reference only. The BC_6 cell is no longer
described by the BSDL Standard Package, and this cell should not be used in any new design. The BC_6 fails to
capture the logic value at the pin in EXTEST when the control cell puts the bidirectional pin in output mode. This
severely hampers the ability to perform a board-level test, which is the goal of this standard.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

158
Copyright © 2013 IEEE. All rights reserved.

Figure 11-39—Deprecated boundary-scan register cells at a bidirectional pin
[BC_2 control; BC_6 data]

NOTE 3—The BC_6 data cell is no longer supported. (See Table 11-11 for mode signal generation.)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

Ta

Figure 11-
that, like th

NOTE 4—S

Note that i
direction is
cell is not r

ble 11-11—M

40 shows how
he cell design o

Figure 11-40

See Table 11-7 f

in cases where
s defined as ou
required (i.e., a

IEEE Standa

Mode signal g

Instruction
EXTEST
PRELOAD
SAMPLE
INTEST
RUNBIST
CLAMP
HIGHZ

w boundary-sca
of Figure 11-32

0—Boundary

for mode signal g

a bidirectiona
utput for the on
a single bidirec

IEEE
ard for Test Acces

Copyright © 201

generation fo

DMode_1
1
0
0
0
X
1
X

an register cell
2, this gated-cl

y-scan regist
[BC_4, inp

generation.

al pin is provid
ne state that is
ctional cell can

Std 1149.1-2013
ss Port and Boun

159
3 IEEE. All right

or the deprec

DMode_2 D
0 0
0 1
0 1
1 1
X X
X 0
X 0

s may be prov
lock cell design

er cells at an
put; BC_2, o

ded using an op
actively driven

n provide for bo

3
ndary-Scan Arch

ts reserved.

cated examp

DMode_3 DM
0 1
1 1
1 1
1 0
X 0
0 1
0 0

vided at an ope
n does not supp

n open-collec
utput]

pen-drain or op
n and as input
oth data and co

hitecture

ple cells in F

Mode_4

en-collector bid
port the INTES

ctor bidirect

pen-collector o
otherwise. Thu
ontrol), as show

igure 11-39

directional pin
ST instruction.

ional pin

output driver, t
us, a separate c
wn in Figure 11

n. Note

the pin
control
1-41.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

160
Copyright © 2013 IEEE. All rights reserved.

Figure 11-41—Boundary-scan register cell at an open-collector bidirectional pin [BC_8]

NOTE 5—See Table 11-12 for mode signal generation.

Table 11-12—Mode signal generation for the example cells in Figure 11-41 and Figure 11-42

Precedence Instruction (Condition) Mode7
1 (Cell in excluded segment) 0
2 EXTEST 1
3 (TMP controller Persistence_on state) 1
4 PRELOAD

SAMPLE
0
0

 RUNBIST X
 CLAMP

CLAMP_HOLD
CLAMP_RELEASE
INIT_SETUP_CLAMP
INIT_RUN

1
1
1
1
1

 Nonboundary instruction 0

Figure 11-42 illustrates an alternative, reduced complexity gated-clock cell for use at a three-state bidirectional pin.
This cell is designed such that the signal present at the system pin is always captured. Because of this feature, this
cell cannot be used where the INTEST instruction is to be provided. Where INTEST is to be supported, a cell capable
of capturing the output of the system logic and of a design similar to that shown in Figure 11-38 is required.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

161
Copyright © 2013 IEEE. All rights reserved.

Figure 11-42—Boundary-scan register cells for use at a bidirectional pin
where INTEST is not provided [BC_2, control; BC_8, data]

NOTE 6—See Table 11-12 for mode signal generation.

11.8 Redundant cells

Redundant boundary-scan register cells are cells that may be omitted from the component without jeopardizing
compliance with this standard. They may exist in a component design for a number of reasons. For example:

⎯ They may observe a signal (input or output) that is observed by another required boundary-scan register cell.

⎯ They may observe the individual pins of a differential pair.

⎯ They may observe compliance-enable, analog, power, or other pins where no cell is required. (When
observing nondigital pins, they will normally capture a fault condition.)

⎯ They may be parts of boundary-scan register cells designed for bidirectional system pins in cases where the
pin has been programmed or otherwise customized to be permanently an input pin or an output pin. For
example, a programmable component may be provided with three boundary-scan register cells at each
system pin, sufficient to permit each system pin to be programmed as an input pin, two-state or three-state
output pin, or bidirectional pin. After programming, certain of these cells may not be logically connected
either to a given system pin or to a system logic input or output or both. Alternatively, a vendor of
application-specific components may build a boundary-scan register into the basic component design (i.e.,
the design before the component is “committed”) that provides for a fully bidirectional signal at each
possible system pin. When the basic component is “committed,” these cells will be constrained such that
only the required functionality is connected.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

162
Copyright © 2013 IEEE. All rights reserved.

11.8.1 Specifications

Rules

a) The contents of a redundant boundary-scan register cell shall not affect the behavior of any other part of the
component.

b) Optional redundant boundary-scan register cells with observe-only capability observing the digital value of a
component pin or a signal to or from the system logic shall be designed such that the data shifted out
through TDO following loading of the shift-register stage in the Capture-DR TAP controller state conform
to the rules in 11.5.

c) Where an optional special circuit is provided to detect a specific fault condition on a component pin, that
circuit and a redundant boundary-scan register cell with observe-only capability observing the output of that
circuit shall be designed such that the data shifted out through TDO after the loading of the shift-register
stage in the Capture-DR TAP controller state are a defined constant in the absence of the fault condition, and
the opposite value when the fault is detected.

NOTE 1—The optional fault detection circuit and cell may be placed on any component pin other than the TAP ports.
Such fault detection circuits are expected when an optional cell monitors a nondigital pin. There is no restriction on the
number of fault detection circuits or cells that may be associated with a single component pin.

Permissions

d) When the SAMPLE instruction is selected, redundant cells, which have observe-only capability, may capture
a constant value.

NOTE 2—Redundant observe-only cells are the only cells that do not require capturing the logic value at the pin or
system logic input/output during SAMPLE.

Recommendations

e) The number of redundant boundary-scan register cells included in a component that do not have observe-
only capability should be minimized.

f) Redundant cells, which do not have observe-only capability, should be designed such that the data shifted
out through TDO after loading of the shift-register stage in the Capture-DR controller state are either a
constant or the data just previously shifted into the cell.

11.8.2 Description

Some programmable components (e.g., programmable gate arrays or application-specific ICs) offer input/output
circuits that can be programmed as input, output, three-state, or bidirectional pins. To permit programming as a
three-state or bidirectional pin, two or more boundary-scan register cells would have to be included in each
configurable cell to allow access to the data and control signals. However, when the cell is programmed as an input
or two-state output pin, only one cell will be required. In some implementations, the cells not associated with the
programmed system function of a pin may be logically disconnected from the pin and from the system logic. Under
such circumstances, the disconnected cells could no longer be used during testing and would become redundant.
Rule h) of 11.2.1 requires that the unused cells remain in the boundary-scan register so that the register has a fixed
length regardless of how the component is programmed.

NOTE—In many programmable devices, programmed lack of logical connection(s) may occur only with regard to a boundary-
scan register cell and the on-chip system logic. The cells provided for a particular programmable pin may remain logically
connectable to that pin during testing, and the bidirectional control cell would then remain functional. The rules of this clause do
not prohibit this “excess” functionality at a pin. Indeed, interconnect test generation may actually be easier when all pins on a
board-level net appear from outside the components to be provided with full bidirectional boundary-scan capability.

To minimize the number of redundant cells contained in the boundary-scan register of a component, the register
should contain only cells that, in some programmed configuration of the component, can provide access to signals at

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

163
Copyright © 2013 IEEE. All rights reserved.

the boundary of the on-chip system logic or access to a system pin. For example, other than a segment-select or
domain-control cell, a cell that receives its parallel data input from the on-chip system logic and sends its parallel
data output into the on-chip system logic should not be included in the boundary-scan register (e.g., as shown in
Figure 11-43).

Figure 11-43—Cell that should not be included in the boundary-scan register

Optional redundant observe-only cells observing a system logic pin during EXTEST must capture either the same
value the nonredundant cell would capture or, where the pin receiver or driver contains circuits designed to detect
specific faults, then the fault detection signals. The fault detection signal must provide a known, constant, “good-
machine” value (1/0) when no fault is detected, and the opposite value (0/1) when the fault is detected. Such cells
provide additional information when detecting and diagnosing defects.

Redundant observe-only cells observing nonsystem logic digital pins (such as compliance-enable pins, see 4.8)
during EXTEST must capture the same information allowed for redundant observe-only cells on system logic digital
pins, even though there is no nonredundant cell on these pins.

Optional redundant observe-only cells observing nonsystem, nondigital pins (such as analog or power pins) require
the component designer to provide a circuit between the pin and the cell, which is designed to detect specific faults
and output a digital signal. This signal must have the characteristic of a fault detection signal described above with a
known, constant value when no fault has been detected. For example, in Figure 11-10, there are special
buffer/receiver circuits shown connected between the individual differential input pins and the two redundant
observe-only cells. These special buffers/receivers might be window comparators testing that the voltage on the pin
is within the valid range defined by the differential protocol. The redundant observe-only cells might then capture a
logic 1 when the pins were in the valid range, and a logic 0 when the pins were outside the valid range.

11.9 Special cases

11.9.1 Specifications

Permissions

a) In a case in which a system logic input pin is used solely as a source of control or solely as a source of data
for a system output pin, a single cell may be provided that meets the rules of 11.5.1 (for the input pin) and
11.6.1 (for the output pin).

11.9.2 Description

Where the signal received at a system logic input pin is used solely to provide data or control for a system output
pin, it is possible to use a single boundary-scan register cell to meet both sets of requirements. A common example
of a situation where this might arise is one in which a system input pin is used solely to provide an output control
signal for three-state or bidirectional system pins. In such a case, either:

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

164
Copyright © 2013 IEEE. All rights reserved.

⎯ Two separate boundary-scan register cells may be included, as shown in Figure 11-44.

⎯ The functions of both cells may be combined into a single cell as shown in Figure 11-45.

In the latter case, the cell should be carefully designed so that it conforms to all the rules for the set of boundary-
scan test instructions supported by the component.

Figure 11-44—Input pins used only to control output pins—Case A

Figure 11-45—Input pins used only to control output pins—Case B

Note that the situation illustrated in Figure 11-46 violates the rules of this standard. In this case, the signal received
from the system input pin is used both as an output control and as an input to the on-chip system logic.

In a case in which the signal from a system input pin is used only as a control for the three-state output buffer and
the option has been taken to provide a single boundary-scan register cell as shown in Figure 11-19, the top cell in
Figure 11-35 has to be modified if recommendation f) in 8.9.1 is to be met. Specifically, the cell has to reload its
own state in the Capture-DR controller state when the INTEST instruction is selected so it does not capture a value
dependent on off-chip circuitry. Figure 11-47 shows how this could be achieved. For this gated-clock design, the
Mode signal should be controlled as shown in Table 11-6.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

165
Copyright © 2013 IEEE. All rights reserved.

Figure 11-46—Noncompliant use of a single cell for output control and data

Figure 11-47—Boundary-scan register cells at a three-state pin where output control
is from a system pin [BC_5, control; BC_1, data]

NOTE—See Table 11-6 for mode signal generation.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

166
Copyright © 2013 IEEE. All rights reserved.

12. Device identification register

This clause defines the design and operation of the optional device identification register. If provided, this register
allows the manufacturer, part number, and version of each component to be determined through the TAP, which in
turn is used to identify the correct BSDL and correct test patterns for the board. The device identification register
allows the test engineer to distinguish the manufacturer(s) of components on a board when multiple sourcing is used,
and variations of a component that are acceptable for use on the board. Because the IDCODE instruction is loaded
when the TAP controller is in the Test-Logic-Reset state, the test engineer can blindly interrogate a board design in
order to determine the type of each component in each location. The need to do this becomes more apparent if one
considers systems that are configurable by the addition of option boards or by programming certain components, etc.
This information is also available for factory process monitoring and failure mode analysis of assembled boards.

NOTE—The design requirements contained in this clause apply only when the optional device identification register is included
in a component.

12.1 Design and operation of the device identification register

12.1.1 Specifications

Rules

a) The device identification register shall be a shift-register based path that has a parallel input but no parallel
output.

b) The circuitry used to implement shift-register stages in the device identification register shall not be used to
perform any system function (i.e., it shall be a dedicated part of the test logic).

c) On the rising edge of TCK in the Capture-DR controller state, the device identification register shall be set
such that subsequent shifting causes an identification code to be presented in serial form at TDO.

d) The component shall contain a vendor-defined identification code, containing four fields (see
Figure 12-1), which is accessed when the IDCODE instruction is entered.

e) For user-programmable components, the ability shall be provided to permit the user to program a
supplementary 32-bit identification code that will be loaded into the device identification register in
response to the USERCODE instruction.

f) The operation of the device identification register shall have no effect on the operation of the on-chip system
logic.

Figure 12-1—Structure of the device identification code

12.1.2 Description

Figure 12-2 shows a design for a gated-clock device identification register cell that satisfies these requirements. The
first multiplexer, “USERCODE decode” and “USERCODE bit,” all in broken lines, are only provided for
components supporting the USERCODE instruction. Otherwise, the “IDCODE bit” is connected to the 0 input of the
second multiplexer.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

167
Copyright © 2013 IEEE. All rights reserved.

Figure 12-2—Device identification register gated-clock cell design

The board-test user needs to verify whether the component at the location on the board is the one intended to be
there. Therefore, the identification code (together with the user code, if provided) must be unique for all components
with the same footprint and the same placement of power and TAP pins. This becomes possible when the
components are from the same company and perhaps in the same family. To help ensure uniqueness, the
identification code has specific fields and coding requirements.

The identification code loaded into the device identification register in response to the IDCODE instruction allows
the manufacturer, part number, and variant for the component to be read out in a serial binary form. In situations
where blind interrogation of a product is necessary, this information allows the components on the board to be
identified and paired with their documentation (BSDL) and thereby to the instruction set, boundary-scan register
description, and other details for each component. The boundary-scan register description includes the provisioning
of boundary cells at input and output pins, and the location of cells that control three-state or bidirectional pins. This
information is invaluable in ensuring that contention between drivers at the board level is minimized, as discussed in
11.6. (It is assumed that the components in a product will be selected from a limited set.)

For programmable components, however, the configuration of pins as inputs, outputs, etc., may be determined by
programming rather than by the basic design of the component. In such cases, therefore, a supplementary
identification code is required to verify that the component at the location on the board has been properly
programmed and matches the documentation used to generate the test patterns. This supplementary code is user
programmable and accessed through the device identification register in response to the USERCODE instruction.

NOTE—The supplementary identification code is required only in cases where the component cannot be reprogrammed through
the test logic defined by this standard. In cases where such reprogramming is possible, the ATE or master device controlling the
operation of the component can program it to the correct state at the start of the test sequence.

Since the bypass register (which is selected in the absence of a device identification register by the instruction
loaded in the Test-Logic-Reset controller state) loads a logic 0 at the start of a scan cycle, and a device identification
register will load a constant logic 1 into its least significant bit, examination of the first bit of data shifted out of a
component during a test data scan sequence immediately after exit from the Test-Logic-Reset controller state will
show whether a device identification register is included in the design.

A requirement of the IDCODE and USERCODE instructions is that when they are used, the on-chip system logic
shall continue its normal operation undisturbed. Rule b) of 12.1.1 is included so that this requirement can be met.
Note, however, provided rule f) of 12.1.1 is met, the shift-register stages may be shared resources used by several of
the registers defined by this standard and also by any design-specific test data register.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

168
Copyright © 2013 IEEE. All rights reserved.

12.2 Manufacturer identity code

12.2.1 Specifications

Rules

a) The 11-bit manufacturer identity code shall be a compressed form of the code specified by EIA/JEP106
generated as follows:

1) Manufacturer identity code bits 7-1. The seven least significant bits of this field are derived from the
last byte of the EIA/JEP106 code by discarding the parity bit.

2) Manufacturer identity code bits 11-8. The four most significant bits of this field provide a binary count
of the number of bytes in the EIA/JEP106 code that contain the continuation character (hex 7F). Where
the number of continuation characters exceeds 15, these four bits contain the modulo-16 count of the
number of continuation characters.

b) The manufacturer code 00001111111 shall not be used in components that are otherwise compatible with
this standard.

c) The manufacturer identity code shall reflect the company that owns and supports the component at the time
it is first put into production by that company, whether that company is the sole, prime, or second source of
the component. (See 18.2 for a description of prime and second sources.)

NOTE 1—When manufacturing is carried out by a party contracted by the component owner, the component owner’s
manufacturer identity code is used.

Recommendations

d) If the original component owner subsequently transfers component ownership to a new company with a
different manufacturer identity code, the component may retain the former owner’s manufacturer identity
code until such a time, if ever, that the new owner modifies the design.

NOTE 2—Nothing in this clause would require a new owner to modify the design only to change the manufacturer
identity code.

12.2.2 Description

The manufacturer identity code identifies the owner of the component rather than the company that actually
manufacturers the component. If a company contracts component manufacturing to a third party, the manufacturer
identity code is that of the owner of the component rather than of the second party manufacturer. For example, the
manufacturer identity code for an application-specific integrated circuit (ASIC) would reflect the owner of the
device rather than the manufacturer.

The manufacturer identity encoding utilizes a listing of manufacturer identification codes specified by EIA/JEP106
as administered by Electronic Industries Association/Joint Electron Device Council (EIA/JEDEC).

The EIA/JEP106 code is formed from a variable number of eight-bit bytes. Each byte contains seven data bits and
an odd parity bit (the most significant bit). Bytes other than the last contain continuation characters (hex 7F), while
the last contains 127 different codes that, together with a knowledge of the number of preceding continuation code
bytes, allow the manufacturer’s identity to be determined.

The compressed form of the EIA/JEP106 code used within the device identification register limits the number of bits
needed in the device identification register to contain the manufacturer identity code and allows the length of the
code to be standardized. The length of the compressed code is fixed at 11 bits (see 12.1), which allows for 2032
different manufacturer codes. (Note that 16 codes are unused since these correspond to the hex 7F code in the seven
least significant bits—the EIA/JEP106 continuation character.)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

169
Copyright © 2013 IEEE. All rights reserved.

One of the unused codes (00001111111) should be treated as noncompliant for components compatible with this
standard. By shifting a dummy device identification code containing this manufacturer identity code from the bus
master (ATE, board-level controller, etc.) into the board-level serial path set up by moving directly from the Test-
Logic-Reset controller state into scanning of the test data registers, it is possible to detect the end of the identity code
sequence.

When test data register scanning is entered in this way, the serial path at the board level includes:

⎯ The device identification registers of components that provide them.

⎯ The bypass registers of components that do not include a device identification register.

As discussed in 12.1, the fact that identification codes begin with a logic 1 whereas the bypass registers load a logic
0 allows the identification codes in the serial stream read out of the board to be detected. By feeding in the dummy
identification code at the board’s serial input and checking the serial output for the invalid manufacturer identity
code 00001111111, it is possible to locate the end of the identification code sequence for a board containing an
unknown number of components.

12.3 Part-number code

12.3.1 Specifications

Rules

a) The part-number code shall consist of 16 bits located in bits 27 through 12 of the register.

b) When two components from the same owner have different test or system functions and are offered in the
same package with the TAP pins in the same location, they shall have different part-number codes.

Recommendations

c) When a hard selection mechanism (such as internal fuses) is provided to enable or disable certain test or
system functions of a component after component manufacturing, the same mechanism should also select a
separate part-number code for each selectable set of enabled or disabled functions.

Permissions

d) When variations of a component are produced or sorted to meet different performance specifications, such
variations may share the same part-number code.

NOTE—This could result from speed binning, or even by a fabrication process that does not include all of the mask
layers of the device.

12.3.2 Description

The part-number code identifies a component with unique test and system functions.

The “footprint” of a device is defined as the device package geometric pattern that facilitates the mechanical and
electrical connection to the board. Two different devices with packages that have the same geometric pattern can be
said to be mechanically footprint compatible. If, in addition, the TAP and power pins are located in the same
position, then the two devices can be said to be “footprint-compatible” with respect to this standard. For footprint
compatible devices, board manufacturing processes need to determine whether the expected device type is present
on the board. The IDCODE instruction is intended to facilitate that test, but as a practical matter, it cannot serve as a
guarantee that the correct device type is present.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

170
Copyright © 2013 IEEE. All rights reserved.

NOTE—Identical die may be mounted in multiple incompatible footprint packages and sold as different part-numbered devices.
Such devices would exhibit the same device identification register code but would not operate compatibly if loaded at the wrong
location on a board. The common BSDL for such devices accounts for this by documenting the packaging variants (see B.8.7).

A device variant that differs by the system frequency, or one of the component voltage specifications, will likely
result in the component owner assigning a new device part number for data specification purposes. It is also likely
that such changes would result in a “footprint compatible” device. Such changes should be reflected in a different
device identification part-number code, if possible, so that software can detect which device is present on the board.
In many cases, changing the device identification code for such a change in specifications is not reasonably possible.

The part-number code is used to verify the type of the component inserted in a particular location on an assembled
product. The use of a 16-bit value for this code gives an acceptably low chance that an incorrect component inserted
in the location will return a correct part-number code.

Part-number codes could, for example, be generated from the textual part-number code using a data compaction
scheme. The device vendor is constrained only by the above rules in generating part-number codes, and the primary
goal is uniqueness.

12.4 Version code

12.4.1 Specifications

Rules

a) The version code shall consist of 4 bits located in bits 31-28 of the register.

b) The version code shall be changed if there are changes to the test logic defined in this standard and the part-
number code is not changed.

Recommendations

c) The version code should be changed for all significant system logic changes.

NOTE—The word “significant” constitutes an understanding between the device producer and the consumer as to what
system logic changes are relevant to the performance of the device (and the board) as seen by the board consumer. The
board manufacturer is obligated to provide an expected set of board performance specifications to the end user. If a new
version of the device could compromise this obligation, then the device supplier should signal this change with a version
change. This allows the board manufacturer to verify that the correct version is being used.

d) Version code values should start with all 0 and be incremented in binary or gray-code order.

Permissions

e) The version code initially released to customers may be other than all 0 if there were versions not publicly
released.

12.4.2 Description

The version code is used to distinguish device variants that do not result in a part-number code change, providing an
additional means to determine whether the expected device is the actual device located on a board.

Initially, a new device or a variant of the device with a new part-number code will typically have an all 0 version
code. The version code is then incremented in a binary (or other counting scheme such as gray-code) fashion for
each new version code.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

171
Copyright © 2013 IEEE. All rights reserved.

13. Electronic chip identification (ECID) register

An electronic chip identification (ECID) is a value unique to the individual component, within all components of the
same type. It therefore complements the Device ID and User codes allowing identification of individual
components. This may be used to retain historical data about the manufacturing, test, usage, etc. for the life of the
component, which in turn may allow better tracking and improvement of the overall process.

13.1 Design and operation of the ECID register

13.1.1 Specifications

Rules

a) The ECID register shall be a shift-register based path that has a parallel input.

b) On the rising edge of TCK in the Capture-DR controller state, the ECID register or field of the ECID
register representing the unique code shall be set such that subsequent shifting causes to be presented in
serial form at TDO:

1) An electronic chip identification code.

2) A value of all 1 to indicate that the electronic chip identification code is not available.

c) The operation of the ECID register shall have no effect on the operation of the on-chip system logic.

Permissions

d) The ECID register may have additional design-specific fields defined.

NOTE—Design-specific register fields could be used to provide a “Ready” bit, fixed bits for TDR identification, or
other design-specific purposes. If specific fields are not defined for this register, then the entire register is assumed to
return the unique code, with codes all 1 reserved to indicate “not ready.”

13.1.2 Description

The ECID register is a test data register without any special requirements other than that the capture capability is
required. There is no required use for the parallel output from this register, but nothing to prevent its use either.
Figure 12-2 shows a design for a gated-clock test data register cell, and Figure 9-8 shows a design for an ungated-
clock test data register cell, both of which satisfy the requirements.

The electronic chip identification code loaded into the ECID register in response to the ECIDCODE instruction
allows a unique identifier for each copy of the component to be read in a serial binary form. This information allows
the manufacturing, test, and use history of individual components to be tracked for future reference.

A requirement of the ECIDCODE instruction is that when it is used, the on-chip system logic shall continue its
normal operation undisturbed. Note, however, that the ECID shift-register stages may be shared resources used by
several of the registers defined by this standard and also by design-specific test data registers.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

172
Copyright © 2013 IEEE. All rights reserved.

14. Initialization data register

This clause defines the design and operation of the optional initialization data register, which is selected for shifting
by the INIT_SETUP and INIT_SETUP_CLAMP instructions (see 8.18). The initialization data register provides a
means to provide component initialization data.

14.1 Design and operation of the initialization data register

When a simple power-up (explicit internal POR or TRST* signal) is inadequate for initializing a complex
component for board test, then the initialization data register can be used to provide the information required to
complete the initialization prior to the start of board or other testing. This is intended for programmable I/O in
particular, but it can be used for other characteristics of the component as well. Optionally, if some of the critical
initialization parameters are supplied through input pins, then this register can monitor those pins so that their value
is verified prior to starting interconnection tests.

The initialization required will often vary from board to board, or from one use on a board to another use on the
same board. It cannot be defined directly in the BSDL since the BSDL documents the component design, not its use.
BSDL now supports the naming of fields within a register and provides named constants (mnemonics) for use with
those fields. A new language (PDL, see Annex C) allows specification of the values to be loaded into, or expected
from, specific uses of a component in a specific environment. These new capabilities should be used to initialize
complex components for test. They are not intended to initialize the component for system operation.

To prevent the effects of initialization from changing in unanticipated ways, the data shifted into this register are
expected to persist until new data are shifted in.

14.1.1 Specifications

Rules

a) The initialization data register shall consist of one or more stages conforming to the rules of Clause 9.

b) The values shifted into the initialization data register in the Shift-DR state and subsequently driven out the
parallel outputs of the initialization data register shall not be modified by system operation or the Test-
Logic-Reset TAP controller state if the TMP controller is in the Persistence-On state.

c) Where the initialization data register is assembled from segments that may be included or excluded, a
segment-select cell conforming to the requirements of 9.4.1 shall be provided for each excludable segment.

d) Where an excludable initialization data register segment must be conditioned in order to be included, a
domain-control cell conforming to the requirements of 9.4.1 shall be provided for each such conditioning
requirement.

Recommendations

e) The fields of the initialization data register and any associated values for those fields should be defined in
BSDL to support use of component initialization for test.

f) Where critical initialization parameters are provided from a source external to the component through some
set of pins, the value supplied at the pins should be captured without inversion into the initialization data
register in the Capture-DR TAP controller state so that the values may be verified after shifting the register
contents out and prior to the execution of EXTEST or other test mode instructions.

Permissions

g) If the optional TMP controller is either not provided, or is in the Persistence-Off state, the initialization data
register contents may be altered either by system logic while the TAP controller is in the Test-Logic-Reset
state or by the Test-Logic-Reset state itself.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

173
Copyright © 2013 IEEE. All rights reserved.

h) When the initialization data register is selected, the values loaded into the initialization data shift register
stage during the Capture-DR state may be selected by the component designer.

i) Segment-select and domain-control cells controlling excludable initialization register segments may be
duplicated in other public Test Data Registers.

NOTE—Where more than one domain-control or segment-select cells control a single excludable segment, they would
effectively be ORed together so that each one of them has the same effect as the others, and all must be set to zero to
exclude the segment or disable the domain.

14.1.2 Description

The initialization data register is optional, but if provided, then the INIT_SETUP and INIT_SETUP_CLAMP
instructions must also be provided (see 8.18).

The initialization data register may be very long, depending on the complexity of the programmable input and
output circuits. To help ensure that the initialization is not altered unexpectedly, it is preferred that the initialization
data register be a dedicated register. However, if the component designer determines that this does not need to be a
dedicated test register; the register may be shared with system logic (when the TAP is in the Test-Logic-Reset state)
so long as it remains dedicated to maintaining the initialization of the component, and in particular the component
programmable I/O, as long as the test logic is active. This is defined in the combination of rule b) and permission g).

In addition, when the TMP controller is present and in the Persistence-On state, the values held in the register
should not be changed, including by the Test-Logic-Reset TAP controller state. This will allow the supplied data to
persist across other instructions and the Test-Logic-Reset state, so the INIT_SETUP or INIT_SETUP_CLAMP
instructions (see 8.18) do not need to be re-run unless a change in the parameters is required for a subsequent test.

This standard now defines, in Annex B, BSDL mechanisms for documenting and naming the fields of test data
registers, and of providing named constants for those fields. Such documentation of the initialization data register is
strongly recommended and provides the board designer or test engineer the information he or she will require to
define the setup data for each use of a component on each board. This includes the ability to define named constants
expected to be captured in the Capture-DR TAP controller state as well as named constants to be written to the
register.

In addition, this standard now defines, in Annex C, a new file type called Procedural Description Language (PDL)
that is used to document how the various fields of the initialization data register are to be written and read for each
use of the component on each board where it is used. A separate file for each instance is needed because the data
required for specific uses will vary by usage, and so they cannot be specified once by the component designer.

In most applications, this register is intended to be a write-only register, and all parameters needed for initialization
to be provided only through this register. However, there are designs where some initialization parameters are
supplied through the input pins. These need to be monitored to ensure that the initialization received the correct
values.

When the parameters supplied through such pins are not critical either to the operation of the test or to preventing
damage to the components on the board, the pins may be monitored in EXTEST using input or redundant observe-
only cells. This has the advantage of supplying multiple observations of the pin to help detect shorts to other signals,
for instance.

However, when the parameters supplied through the pins are critical to successful initialization, or must be set
correctly before the start of EXTEST to help prevent component damage, the signals from these pins should be
captured directly (without interference by a boundary-scan register cell) in the initialization data register so they can
be verified to be at the expected value for the board (specified in PDL) prior to the start of EXTEST. This is intended
to detect when a board defect could cause incorrect initialization and possible component damage or simply an
invalid test.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

174
Copyright © 2013 IEEE. All rights reserved.

The tester can compare the value captured in the initialization data register to an expected value for the specific
board, and then stop the process if the value returned does not match. Note that the initialization data register cells
can only observe; they cannot control the input signals from these pins. These pins may also be monitored in the
boundary-scan register as described above to detect other problems (such as shorts to other signals) during test.

There may be times when these input pins, providing critical parameters to initialization, are captured in the
initialization data register. The test software (or test engineer) will determine the value expected from the PDL. If
the tester detects an incorrect value, then the test could be aborted with an appropriate error message. If the tester
can control the pins (by some external interface), the expected value will indicate how to drive them as well.

In addition, for other initialization data register bits that do not capture input data, they can be designed to capture a
fixed bit pattern that can also be compared to an expected value to verify that the correct register is being accessed
by this critical instruction.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

175
Copyright © 2013 IEEE. All rights reserved.

15. Initialization status register

This clause defines the design and operation of the optional initialization status register. If provided, this register
must be used with the INIT_RUN instruction (see 8.19). The initialization status register allows the status of an
initialization procedure to be determined through the TAP.

15.1 Design and operation of the initialization status register

15.1.1 Specifications

Rules

a) The initialization status register shall be two or more shift-register stages with parallel input but no parallel
output.

b) The circuitry used to implement shift-register stages in the initialization status register shall not be used to
perform any system function (i.e., it shall be a dedicated part of the test logic).

c) When the initialization status register is selected, the current status of the initialization process shall be
loaded into the register on the rising edge of TCK in the Capture-DR TAP controller state.

d) Bit 0 of the initialization status register shall capture, if such information is provided, a logical 1 during
execution of the initialization process (“Busy”) and a logical 0 (“Done”) otherwise; and if the initialization
process is designed without a completion indication, this bit shall always capture a logical 0 and the time
required for initialization shall be documented in PDL.

e) Bit 1 of the initialization status register shall capture, if such information is provided, a logical 1 after
successful completion of the initialization process (“Pass”) and a logical 0 otherwise (“Fail”); if the
initialization process is designed without a pass/fail indication, this bit shall always capture a logical 1.

Recommendations

f) Optional higher order bits of the initialization status register should capture additional information about the
initialization process to permit reasonable diagnosis of failure to initialize.

15.1.2 Description

The initialization status register is optional, but if present, it implies the existence of the INIT_RUN instruction (see
8.19). If provided, it is treated as a “read-only” register; any data written to it is ignored.

Other than the two low-order bits, the component designer is free to define what status will be captured, and he or
she is encouraged to define and document as much as possible about possible causes of failure to initialize. Such
failures can be extremely difficult to diagnose and can result in significant added rework expense when they are not
diagnosable. This standard requires at least two status bits, one indicating that the initialization process is done (1) or
still in-progress (0), and a second bit indicating that the process was successful. This second bit would typically be
treated as undefined until the “done” bit is set. If the “in-progress” bit is still set at the end of the specified duration,
or if the “done” bit is set and the “success” bit is reset when the initialization status register is read, the initialization
process is assumed to have failed and the component is not ready for test.

Such encoding permits the initialization status register to be repeatedly read during the initialization process to
determine when the process has completed. Such polling could abbreviate the time spent in board test initializing the
board, especially if the component initialization process is highly variable in the amount of time it takes to execute.
If an expected successful completion encoding is not documented, then the component cannot be polled for
completion.

It may not always be possible to determine whether the initialization process has actually completed. In those cases,
the initialization process is assumed to have successfully completed upon expiration of the specified duration.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

176
Copyright © 2013 IEEE. All rights reserved.

16. TMP status register

16.1 Design and operation of the TMP status register

This clause defines the design and operation of the TMP status register, which is part of the optional test mode
persistence controller. This register must be selected for scan by the CLAMP_HOLD, CLAMP_RELEASE, and
TMP_STATUS instructions (see 8.20). The TMP status register provides both a means of observing the TMP
controller state and a means to enable a reset of the test mode persistence controller (see 6.2 and 8.20).

16.1.1 Specifications

Rules

a) If and only if the TMP controller (described in 6.2) is provided per permission d) of 5.1.1, then the TMP
status register shall be provided.

b) The TMP status register shall consist of two shift-register stages, a TMP-status bit closest to TDI and a
bypass-escape bit closest to TDO.

c) The circuitry used to implement the shift-register stage in the TMP status register shall not be used to
perform any system function (i.e., it shall be a dedicated part of the test logic).

d) The operation of the TMP status register shall have no effect on the operation of the on-chip system logic.

e) A logic value of 1 in the bypass-escape bit of the TMP status register shall enable the reset of the test mode
persistence controller to the Persistence-Off state in the Update-IR TAP controller state when making
BYPASS the active instruction, and a logic value of 0 shall disable such reset.

f) The bypass-escape bit of the TMP status register shall be set to a logic 1 by the same means used to initialize
the test mode persistence controller (see 6.2.3).

g) The TMP-status bit of the TMP status register shall capture a 1 when the TMP controller is in the
Persistence-On state and a 0 when it is in the Persistence-Off state, and the bypass-escape bit shall capture
its update register, if any, or not change state in the Capture-DR TAP controller state.

NOTE—This implies that the bypass-escape bit of the TMP status register will return its current state when scanned out.

16.1.2 Description

The TMP status register, as well as the CLAMP_HOLD, CLAMP_RELEASE, and TMP_STATUS instructions (see
8.20), are required if the test mode persistence controller is provided. The TMP status register is a two bit register,
the first bit (closest to TDI) captures the current state of the TMP controller (TMP-status bit) and the second bit
(closest to TDO) sets and returns a value, which enables or disables an escape from the TMP controller Persistence-
On state (bypass-escape bit).

When the bypass-escape bit of this register has been set to 1, loading the BYPASS instruction (through Shift-IR and
Update-IR) will cause the TMP controller to change state to Persistence-Off, as shown in Figure 6-9 and
Figure 6-10. This allows the system to recover in the event that the configuration of the scan chain is unknown or
corrupted since a lengthy Shift-IR of all 1s into the scan chain followed by Update-IR will then clear any
Persistence-On state that had been previously set.

The TMP-status bit is read-only (does not have a primary output, so does not control any test or mission mode logic)
and captures the current state of the TMP controller.

Figure 16-1 shows a possible implementation of the TMP status register that meets the requirements of this clause.
The connection of the “TMP_state” input signal and the “Bypass_Escape” output signal are to the same signals as in
Figure 6-10. Figure 6-8 shows the generation of the TAP_POR* signal from the TRST* or on-component power-up
generation circuit.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

177
Copyright © 2013 IEEE. All rights reserved.

Figure 16-1—Example TMP status register (nongated clocks)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

178
Copyright © 2013 IEEE. All rights reserved.

17. Reset selection register

This register and its associated IC_RESET instruction (see 8.2.1) allow control of system reset functions through the
TAP, including blocking undesired resets to the system logic during testing.

17.1 Design and operation of the reset selection register

Figure 17-1—Reset selection register overview

The reset selection register may be described, as shown in Figure 17-1, in terms of the capture/shift register (the
capture capability is not shown here), the update register, and reset select logic. A more detailed example is shown
in Figure 17-2. The reset selection register is also divided into fields and bits within the fields as described in the
rules. The labeling in Figure 17-1 illustrates the terminology of the rules. Figure 6-8 shows the generation of the
TAP_POR* signal and Figure 6-5 the generation of the Reset* signal. The source of the system reset can be either a
primary input or an internal source, and one of each is shown.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

179
Copyright © 2013 IEEE. All rights reserved.

17.1.1 Specifications

Rules

a) The reset selection register shall consist of at least a single cell to control its own reset plus one or more
pairs (two-bits) of cells and associated reset select logic, one such pair for each reset signal to the system
logic to be controlled,

b) Each cell shall consist of a shift-register stage and an update register stage.

c) The least-significant bit (closest to TDO) of the reset selection register shall be a reset-hold bit.

d) The logic value of the reset-hold update register stage shall be initialized at power-up to a logic 1 by the
same means used to initialize the TAP controller. (See 6.1.3 and Figure 6-8.)

e) When the reset-hold update register stage is set to a logic 1, the reset selection update register shall be
initialized to the values enabling the functional reset source to control all of the system reset signals during
the Test-Logic-Reset TAP controller state.

NOTE 1—The “functional reset source” is normally a reset pin, but it could be an internally generated reset, as might
happen in an SOC, going from one part of the logic to another. The “system reset signal” is the input to the system logic.

f) When the reset-hold update register stage is set to a logic 0, the logic values of the reset selection update
register shall not change during the Test-Logic-Reset TAP controller state.

g) The most significant bit (closest to TDI) of the two-bit pairs shall be a reset-control bit.

h) The least significant bit (closest to TDO) of each two-bit pair shall be a reset-enable bit, selecting control of
the system reset signal between the functional reset source and the reset-control bit.

i) A logic 1 in a reset-enable update register stage shall select reset operation from the functional reset source
for that system reset signal, and conversely, a logic 0 in a reset-enable update register stage shall select reset
operation from the associated reset-control update register stage of the reset selection register.

j) A logic 0 in a reset-control update register stage shall assert the system reset signal when enabled by the
associated reset-enable update stage.

NOTE 2—These rules do not constrain the internal logic value scanned into the reset selection scan register during Shift-
DR nor loaded into the update register during Update-DR states of the TAP controller. They do require that when TDI is
held at a logic 1, possibly a result of a problem in the scan chain causing the TDI pull-up to take control, the test logic
does not interfere with system operation (the reset-hold bit and all reset-enable and reset-control bits are de-asserted by
being set to 1).

k) To observe as well as control the reset signals to the system logic, the reset signal(s) to the system logic shall
be captured in the reset selection register reset-control cell(s).

l) As the relationships between pairs of reset-control and reset-enable cells and individual functional reset
sources and system reset signals to the system logic are not defined by these rules, the reset selection register
shall be documented in BSDL using the REGISTER_FIELDS or REGISTER_ASSEMBLY attributes
and, if the functional reset source is an input signal pin, the REGISTER_ ASSOCIATION attribute.

m) The reset selection register shall not control TRST* or any other test logic reset signal, including any power-
up reset to the test logic.

n) The reset selection register shall be dedicated test logic.

Permissions

o) The component designer may choose a logic value to be captured by the reset selection register in the
Capture-DR TAP controller state, and this choice may be documented in a BSDL register access description
for the reset selection register.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

180
Copyright © 2013 IEEE. All rights reserved.

17.1.2 Description

The reset selection register is used to control and possibly observe various system reset functions through the TAP.
The reset selection register may also be used to block the effects of either reset pins or other functional reset sources
that may not be under test control during testing. This can prevent inadvertently resetting system logic during test.

The rules define a single reset-enable and reset-control bit pair associated with each system reset signal to the
system logic. Where a single reset pin or other functional reset source fans out to different parts of the system logic,
there may be multiple reset-enable and reset-control pairs associated with a single reset pin or other functional reset
source, allowing greater granularity when controlling the system resets from the TAP than is practical through the
pins.

To match the common practice of reset signals being negative-active (0 is the “on” state, and 1 is the “off” state),
this entire register is negative-active. In other words, after a reset, the state of all update register bits will be 1. This
is the opposite of all other TDRs defined in this standard. We continue to use the term “reset” to indicate that the
update registers are set to their “off” state, in this case, 1.

A reset-hold bit is provided to control whether the logic values of the reset selection register are to be reset when
entering the Test-Logic-Reset TAP controller state. Upon power-up, the reset-hold bit is forced to the logic value
allowing the Test-Logic-Reset state to reset the rest of the reset selection update register, using the same means as
the TAP controller. Otherwise, the reset-hold bit is enabled by explicitly shifting in a logic 0 (at TDI) value to the
least significant bit of the reset selection register to prevent the Test-Logic-Reset state from resetting the reset-enable
and control bits of the register, and is disabled by shifting in a logic 1 (at TDI) value to allow the Test-Logic-Reset
state to reset the enable and control bits of the register.

A logic 1 value (at TDI) shifted into all bits of the reset selection register will, after those values are transferred to
the update register stages, disable all register selectable options and allow the normal reset pin (or other internal
functional reset source) to control the system reset signals. As many reset functions may be controlled and possibly
observed as desired.

The IC_RESET instruction initiates the selected reset functions when a logic 0 value (at TDI) is shifted into a reset-
enable bit of a control pair and the TAP controller passes through the Update-DR state. The reset-enable bit selects
control either from the functional reset source or from the associated reset-control bit of the pair. If a reset-control
bit is selected, it may then assert and de-assert on-chip system reset. Multiple loadings of the register can set or clear
reset signals and can cause reset functions to be performed in parallel or in sequence. At a minimum, two loads of
the register will typically be used to first initiate the reset and then to remove the reset signal. The reset process in
the system logic itself may take more or less time than the amount of time the reset signal is enabled.

In addition to controlling the system reset signals to the system logic (RS_System_Reset* in Figure 17-2), it is
valuable to be able to observe them, especially when the functional reset source is internal. The recommended
practice of capturing the reset signal to the system logic allows the test software (including a PDL program) to verify
the state of the system reset pins or other internal functional reset sources when control is not enabled, and to verify
that the reset selection register is being properly set.

The reset selection register and IC_RESET are not intended to be automatically used by test software during testing;
there are just too many ways that this capability could be used. The required documentation of the register bits, and
PDL procedures provided by the component designer for specific reset sequences, possibly in conjunction with
running other on-chip tests, will allow test engineers to use this capability to enhance the test process. One common
use might be to reset the system logic after interconnection tests that will normally leave the system logic in an
indeterminate state.

Nothing in these rules prevents the designer from using the reset selection register to control other similar signals
affecting the system logic. Given how this register can adversely affect the operation of the system logic, the
documentation of all fields of this register should be thorough, if public, or documented as reserved if private.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

181
Copyright © 2013 IEEE. All rights reserved.

Documenting a register field for each pair of register bits controlling a reset signal to the system logic would be a
good practice, as would, where appropriate, the association between the field and the reset input pin.

Figure 17-2—Minimal reset selection register example

Figure 17-2 is an example circuit of a minimal (controls and observes only one system reset input) reset selection
register with no capture capability beyond that recommended in the specifications. As always, this circuit is just an
example to illustrate how the intent of the rules might be implemented. In this example, all shift and update flops use
the recommended ungated TCK and data-wrap-back rather than gated TCK to maintain their value, although a gated
TCK implementation could be used instead. The reset-enable update register output switches between the functional
reset source (in this case an input pin) and the reset-control update register. The reset-hold register controls whether
the rest of the update registers will be reset (to the all 1 state) by the Test-Logic-Reset TAP controller state. The
reset-hold register itself is reset by the same signal used to reset the TAP controller (see Figure 6-8).

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

182
Copyright © 2013 IEEE. All rights reserved.

Component designers should be aware of two aspects of register-select design implementation. First, both the rules
and this design example assume that all of the functional reset sources are negative active signals, so all of the
register bits are also negative active signals. When the reset-enable cell update register stage is set to its default high,
then the reset control bit is not in control. When the reset-control cell update register stage is set to its default high, it
is assumed to be inactive, even if selected by the reset-enable cell update register stage. Even the reset-hold cell
update register stage, when set to its default high state, allows the Reset* signal to reset the enable and control bits.
Designers should be careful to handle both negative-active and positive-active functional reset sources correctly.

Second, there is the possibility of glitches on the output that could create problems for an asynchronous reset. The
output multiplexer sourcing RS_System_Reset* shown in Figure 17-2 (or equivalent logic) should be “hazard-free,”
although that is not sufficient. There is also an inherent race condition to the data and select inputs of that output
multiplexer if the reset-enable and reset-control cell update register stage pair are both toggled with a single scan.
Under each combination of functional reset source state and whether reset-enable or reset-control reaches the
multiplexer first, one of the four possible transition pairs can produce a glitch on the output as shown in Table 17-1.

For this reason, the reset-enable bit(s) could be asserted in one scan to take control away from the functional reset
source(s) prior to asserting and de-asserting the reset-control bit(s) in subsequent scans. Obviously, this could lead to
up to three scans to complete asserting and de-asserting a system reset function through the TAP.

Table 17-1—Logic hazards of dual transitions of reset-enable and reset-control pairs

System_Reset* reset-enable* reset-control* RS_System_Reset*
(reset_enable faster
than reset_control)

RS_System_Reset*
(reset_enable slower
than reset_control)

1 1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 1 1

1 0 1 1 0 1 1 0 1

1 0 1 0 1 0 1 0 1

0 1 0 1 0 0 1 0 0

0 1 0 0 1 0 1 0 1

0 0 1 1 0 1 0 1 0

0 0 1 0 1 0 0 1 0

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

183
Copyright © 2013 IEEE. All rights reserved.

18. Conformance and documentation requirements

18.1 Claiming conformance to this standard

The level of conformance to this standard can vary according to the range of test operations supported.

18.1.1 Specifications

Rules

a) Components that claim conformance to this standard shall comply with all relevant rules in the
Specifications Clauses of this standard.

b) When it is claimed that a component conforms to this standard, the claim shall clearly identify the subset of
the public instructions defined in this standard that is supported, as listed in Table 18-1 and defined in 8.2.

Table 18-1—Public instructions

Instruction Status
BYPASS Mandatory
CLAMP Optional (Recommended)
CLAMP_HOLD, CLAMP_RELEASE,
TMP_STATUS

Optional as a group

EXTEST Mandatory
HIGHZ Optional (Recommended)
IC_RESET Optional
IDCODE Optional
ECIDCODE Optional
INIT_SETUP,
INIT_SETUP_CLAMP

Optional as a group

INIT_RUN Optional
INTEST Optional
PRELOAD Mandatory
RUNBIST Optional
SAMPLE Mandatory
USERCODE Optional

Recommendations

c) It is recommended that components support either the CLAMP or the HIGHZ instruction or both.

NOTE—The importance of CLAMP and HIGHZ is emphasized in this version of the standard. ICs may be included in
scan chains with ICs that support the optional initialization instructions. ICs without support for CLAMP and HIGHZ
must be in EXTEST during the initialization process of the ICs requiring initialization and presenting a longer SHIFT-DR
operation during access to the initialization status register of those ICs.

Permissions

d) ASIC vendors may claim conformance to this standard by illustrating an interconnection of cells that, if
built, would produce a component that meets the requirements of this standard.

18.1.2 Description

The minimum requirement for conformance to this standard is set to help ensure that the user of an integrated circuit
can perform two basic functions using the test logic: examine the operation of a prototype system and test assembled
products for assembly-induced defects during manufacturing.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

184
Copyright © 2013 IEEE. All rights reserved.

18.2 Prime and second source components

18.2.1 Specifications

Rules

a) With the sole exception of the device identification code, the digital operation of publicly accessible test
logic for second source components shall be identical to that for the prime source component in response to
all public instructions.

18.2.2 Description

It is essential that both the system and the test logic of prime and second-source components operate in the same
manner in the component purchaser’s environment. This helps ensure that test programs created for a printed circuit
board containing multiply sourced components produce consistent results regardless of the source of individual
components. However, differences in analog characteristics of the I/O that do not change the digital behavior of the
component are not considered to violate this rule. Differences in analog characteristics of the I/O that would prevent
the second-source component from interoperating with components compatible with that of the prime-source
components would violate this rule since the digital operation is affected.

This standard only sets requirements for the test logic. There are many functional and physical characteristics (such
as the I/O pin locations) that would have to be met for a part to be considered a second source, and those are not
addressed here.

The only exceptions to this requirement are the optional device identification register and any test logic that is
accessed only in response to private instructions. In the former case, the identification code shall vary to identify the
source of the particular component, its part number, and its revision (see Clause 12). In the latter case, test logic that
is not publicly accessible is not intended for use other than by the component vendor; therefore, this test logic should
not be operated by a board-level test program.

18.3 Documentation requirements

18.3.1 Specifications

Rules

a) For any component that claims conformance to this standard, the operation of all public test logic shall be
fully documented.

b) The following information, required by the component purchaser for use in test development and other
activities, shall be supplied by the component manufacturer using the BSDL language described in Annex B,
the PDL language described in Annex C where required, or in a published specification, as appropriate.

1) Instruction register. The following information pertaining to the instruction register is required:

i) Its length.

ii) The pattern of fixed values loaded into the register during the Capture-IR controller state.

iii) The significance of each design-specific data bit presented at a parallel input, where provided.

2) Instructions. For each public instruction offered by a component, the following information is
required:

i) The binary code(s) for the instruction.

ii) A list of test data registers placed in a test mode of operation by the instruction.

iii) The name of the serial test data register path enabled to shift data by the instruction.

iv) A definition of any data values that shall be written into test data registers before selection of the
instruction and the order in which these values shall be loaded.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

185
Copyright © 2013 IEEE. All rights reserved.

v) The effect of the instruction. Any system pins whose drivers become inactive as a result of loading
the instruction should be clearly identified.

vi) A definition of the test data registers that will hold the result of applying a test and of how they are
to be examined.

vii) A description of the method of performing the test and of how data inputs and their corresponding
data outputs are to be computed. In particular, PDL (see Annex C) procedures are required for the
INIT_SETUP, INIT_SETUP_CLAMP, and INIT_RUN instructions, and for the ECIDCODE
instruction when actions are required to retrieve the ECID value.

viii) If private instructions are utilized in a component, the vendor shall clearly identify any instruction
binary codes that, if selected, would cause hazardous operation of the component.

3) Self-test operation. For each instruction that causes operation of a self-test function, the following
information is required in addition to that listed under rule b2) of this subclause:

i) The minimum duration (e.g., a number of cycles of TCK) required to complete the test.

ii) A definition of the test data registers whose states are altered during execution of the test.

iii) A definition of the results of executing the self-test on a fault-free component.

iv) An estimate of the percentage (e.g., to the nearest 5%) of the single stuck-at faults in the
component’s circuitry that will be detected by the self-test function or a description of the
operation of the self-test function and the circuitry exercised.

4) Initialization operation. For each instruction that causes operation of an initialization function, the
following information is required in addition to that listed under rule b2) of this subclause:

i) A definition of fields and possible values of those fields for the test data registers whose states are
altered during execution of the initialization instructions.

ii) The maximum duration (e.g., a number of cycles of TCK or absolute time) required to complete
any initialization sequential process.

iii) A definition of successful completion of the initialization on a fault-free component.

5) Test data registers. For each test data register available for public use and access in a component, the
following information is required:

i) The name of the register, used for reference in other parts of the data sheet.

ii) The purpose of the register.

iii) The length with all excludable segments excluded, and the length of each excludable segment.

iv) The beginning and end of each excludable segment, and the association of domain-control and
segment-select cells with each excludable segment.

v) A full description of the operating modes of the register.

vi) The result of setting each bit at the parallel output of the register.

vii) The significance of each bit loaded from the parallel input of the register.

6) Boundary-scan register. The following information is required in addition to that listed under rule b5)
of this subclause:

i) The correspondence between boundary-scan register bits and system pins, system direction
controls, or system output enables.

ii) Whether each pin is an input, a two-state output, a three-state output, or a bidirectional pin.

iii) For each boundary-scan register cell at an input pin, whether the cell can apply tests to the on-chip
system logic.

iv) For each boundary-scan register cell associated with an output or direction control signal, a list of
the pins controlled by the cell and the value that shall be loaded into the cell to place the driver at
each pin in an inactive state or will be observed using the SAMPLE, PRELOAD, or INTEST
instructions when the on-chip system logic causes the driver to be inactive.

v) The method by which single-step operation is to be achieved while the INTEST instruction is
selected if this instruction is supported.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

186
Copyright © 2013 IEEE. All rights reserved.

vi) The method of providing clocks to the on-chip system logic while the RUNBIST instruction is
selected, if this instruction is supported.

vii) For each redundant cell, whether the cell returns either the value shifted in or a constant after
loading of the cell in the Capture-DR controller state.

7) Device-identification register. Where a device identification register is included in a component, the
following information is required in addition to that listed under rule b5) of this subclause:

i) The value of the manufacturer’s identification code.

ii) The value of the part number code.

iii) The value of the version code.

iv) The method of programming the value of the supplementary identification code, where required.

8) Performance. The performance of the test logic should be fully defined, including the following
information:

i) The maximum acceptable TCK clock frequency.

ii) A full set of timing parameters for the test logic.

iii) The logic switching thresholds for TAP input and output pins.

iv) The load presented by the TCK, TMS, TDI, and TRST* pins.

v) The drive capability of the TDO output pin.

vi) The extent to which the TDO driver may be overdriven when active (e.g., using an in-circuit test
system).

vii) Whether TCK may be stopped in the logic 1 state.

9) Compliance-enable inputs. If a component has compliance-enable inputs as defined in 4.8.1, then the
following documentation shall be provided:

i) A complete list of these inputs labeled as compliance-enable inputs.

ii) A complete list of those logic patterns that, when applied at the compliance-enable inputs, will
enable compliance to this standard.

iii) A clear indication of any patterns that, if applied to the compliance-enable inputs, would cause
hazardous operation of the component.

c) A verified BSDL description of the component shall be supplied by the component manufacturer (see
Annex B).

NOTE—This rule mandates correct and accurate BSDL documentation to claim a component is conformant to this
standard. The component manufacturer must take reasonable steps to validate that the BSDL matches the silicon through
simulation or physical compliance testing.

18.3.2 Description

Figure 18-1 and Figure 18-2 show how setup and hold timing parameters and propagation delays should be
measured relative to the test clock TCK and a reference voltage Vref. Note that such timing parameters are required

for TMS, TDI, and TDO and for system pins that can be driven from the test logic (e.g., the system data input setup
time for the boundary-scan register before the rising edge of TCK in the Capture-DR controller state).

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

187
Copyright © 2013 IEEE. All rights reserved.

Figure 18-1—Measuring setup and hold timing

Figure 18-2—Measuring propagation delay

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

188
Copyright © 2013 IEEE. All rights reserved.

Annex A

(informative)

Example implementation using level-sensitive design techniques

This annex has been deleted as of the 2013 standard. It has served its purpose, and the industry has moved to a
position where many implementation details are now handled by tools that can provide either LSSD or Mux-scan
solutions, as desired.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

189
Copyright © 2013 IEEE. All rights reserved.

Annex B

(normative)

Boundary Scan Description Language (BSDL)

This annex defines a machine-readable language that allows rigorous description of testability features in
components that comply with IEEE Std 1149.1. The language is called the Boundary-Scan Description Language
(BSDL). BSDL documentation is a mandatory requirement of this standard; components cannot claim conformance
without valid BSDL documentation. It is based on the syntax and grammar of VHSIC Hardware Description
Language (VHDL) (IEEE Std 1076) but includes constructs that meet the objectives of the board test that are not
anticipated by VHDL. BSDL was never intended to be synthesized or simulated with VHDL-based tools. It deviates
from VHDL in several ways as the purpose and mission of BSDL is different than VHDL.

B.1 General information

B.1.1 Document outline

In B.2 to B.4, the purpose of BSDL, its scope, and its relationship to VHDL is defined. In B.5 to B.7, the general
characteristics of the language are described. In B.8, the Entity description describes the overall structure of a BSDL
description. In B.8.2 to B.8.25 detailed descriptions of each mandatory and optional section of a BSDL description
are provided. They are documented in the order they should appear. The Standard BSDL Package is described in
B.9, and B.10 describes a design-specific BSDL package supplied by the component designer, both based on VHDL
packages. Some special cases are provided in B.11 for purposes of illustration and indicates how such components
can be specified in BSDL. A typical BSDL description is shown in B.11.1, while B.12 briefly documents the 1990
version of BSDL (see also B.1.3). The 1994 version of BSDL is documented in B.13 (the first version approved by
the IEEE Standards Board and published by the IEEE), while B.14 documents the 2001 version of BSDL.

In B.8.2 to B.8.25, the detailed descriptions of each mandatory and optional section of a BSDL description are
organized in the following way:

— Short introduction

— Specifications, including Syntax, Rules, Recommendations (if any), and Permissions (if any)

— Description

— Examples

The Specifications subclause is normative. The other subclauses are descriptive.

Commonly used syntactic elements are defined in B.6.2.

B.1.2 Conventions

⎯ Examples are printed in Courier New font.

⎯ See B.6 for conventions relating to lexical items and syntax.

⎯ For clarity, all reserved words, predefined words, and punctuation are shown in text (not examples) in bold
Helvetica font within this document. VHDL reserved and predefined words used in BSDL will be shown
in lowercase letters, and BSDL reserved words will be shown in UPPERCASE letters. (BSDL itself is
case-insensitive; this convention is adopted for clarity.)

B.1.3 BSDL history

The development of BSDL started soon after the first promulgation of this standard in 1990. When, out of common
self-interest, an industry-wide group of companies implementing tools to support this standard realized that a single

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

190
Copyright © 2013 IEEE. All rights reserved.

language for describing the boundary-scan implementations in components would be of benefit, many tools were
built using early draft specifications of the BSDL language.

Developments made both to this standard and to the BSDL definition since the language was first proposed in 1990
have resulted in the obsolescence of some of the constructs from the first draft versions of the language. Some
constructs were rendered unnecessary as a result of the standardization of the CLAMP and HIGHZ instructions in
1993, while others were found to duplicate information provided elsewhere in a BSDL description and thus were
removed as redundant.

Because a significant number of BSDL descriptions have been written based on the 1990 draft version of the
language and because these descriptions are likely to remain in circulation for some time, implementers of tools
based on BSDL may wish to design them to read both the BSDL language defined in this annex and the earlier 1990
version. Information on how to do this is contained in B.12 through B.14.

The first version of BSDL issued by the IEEE was the 1994 version. As this standard has been revised, the definition
of BSDL has been modified to correspond. Implementers of tools based on BSDL should design them to
accommodate all versions of the BSDL language defined in this annex and the earlier versions. Information on how
to do this is contained in B.12.3.

This update of the standard introduces a number of new documentation capabilities in BSDL. See “Changes
introduced by this revision” in the front matter of this standard for a quick overview.

B.2 Purpose of BSDL

BSDL provides a human-readable and machine-readable means of representing some parts of the documentation
specified in 18.3. The scope of the language is defined in B.3.

The goal of the language is to facilitate communication among companies, individuals, and tools that need to
exchange information on the design of test logic that complies with this standard. For example:

— A vendor of a component that supports this standard supplies a BSDL description to purchasers.

— A vendor of intellectual property (IP) intended for use in a component that supports this standard supplies a
BSDL User Package to purchasers.

— Automated test-generation tools may use a library of BSDL descriptions to allow generation of a test for a
particular loaded board.

— The test logic defined by this standard could be synthesized with the support of a BSDL description.

BSDL describes “finished” design, not “work-in-progress.” For example, when a bare die conforming to this
standard is produced, a fully compliant BSDL description must be provided for it. A die may be inserted into one or
more types of component packages as well, with each variation described in BSDL (see B.8.7). BSDL for partially
synthesized test logic is considered “work-in-progress,” is not necessarily compliant with this annex, and in most
cases, should not be transmitted beyond the synthesis environment. Similarly, BSDL packages supplied by an IP
provider to describe the “finished” IP design must be compliant with the appropriate subset of BSDL defined for use
in user packages.

B.3 Scope of BSDL

BSDL is not a general-purpose hardware description language—it is intended solely as a means of describing key
aspects of the implementation of this standard within a particular component. A BSDL description is not itself a
simulation model. Examples of features that are and are not described using BSDL are listed in Table B-1.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

191
Copyright © 2013 IEEE. All rights reserved.

Table B-1—Scope of BSDL

Features described by BSDL Features that cannot or need not be described
Length and structure of the boundary-scan register
and lengths of other TDRs

TAP-controller state diagram

Availability of the optional TRST* pin Bypass register
Physical locations of the TAP pins Length of the device-identification register
Instruction binary codes Operation of standard and design-specific

instructions
Provision of optional INTEST, RUNBIST, CLAMP,
IDCODE, USERCODE, ECIDCODE, HIGHZ,
INIT_SETUP, INIT_SETUP_CLAMP, INIT_RUN,
and IC_RESET standard instructions and design-
specific instructions

Provision of BYPASS, SAMPLE, PRELOAD, and
EXTEST instructions

Device-identification code Operation of standard and design-specific TDRs

Note that the language describes only features of the test logic that can vary from component to component,
depending on the choice of the component designer. Features that are completely specified by this standard (without
option) are not required to be described in BSDL but may be described if component designers so wish.

Furthermore, BSDL does not have a general means for providing for the specification of logic levels, timing
parameters, power requirements, and similar factors. These data do not affect the logical behavior of an
implementation and most likely are already described in other parts of the specification of any given component.

B.4 Relationship of BSDL to VHDL

BSDL is based on VHDL (IEEE Std 1076).

For BSDL conforming to the 2013 version of this standard, or later, BSDL cannot be processed by VHDL tools due
to some extensions (such as the new <pin type> keywords LINKAGE_IN or POWER_POS) that are incompatible
with the VHDL standard.

For BSDL conforming to versions of this standard predating 2013, if BSDL is to be processed by VHDL tools, the
user must be prepared to modify a BSDL description to account for implementation dependencies in VHDL-based
tools. No way has been found to avoid this small amount of effort without introducing further undesirable
complications. Specifically, the <standard use statement> (see B.8.4) and the <use statement> (see B.8.5) may
require editing because of tool and file system dependencies. The syntax of the statements as defined is compliant
with VHDL; however, an additional prefix (identifying a library in which the Standard BSDL Package will be
found) will need to be added for most VHDL tools. A syntax lacking such a prefix has been chosen to force an error
in such an application rather than risk unpredictable and confusing errors due to inclusion of an inappropriate prefix.

NOTE—In the event of an error or omission in this annex regarding VHDL syntax, other than deliberate exceptions, IEEE Std
1076 takes precedence.

B.4.1 Specifications

BSDL does not employ all the syntactic elements of VHDL, only those required to meet the scope of BSDL. In
addition, BSDL imposes additional requirements on the syntax and content of certain character strings, that is,
sequences of characters between quotation marks (e.g., "EXTEST"). A VHDL parser will not check the information
in these strings while there are several string syntaxes defined within BSDL. For cases in which a feature could be
described in several ways within VHDL, a restricted set of ways has been selected and defined explicitly as the
standard practice for BSDL. This restriction simplifies the application of the VHDL subset for BSDL, particularly
for tools that are required only to read or generate BSDL (i.e., tools that have no requirement to read or write the full
VHDL language).

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

192
Copyright © 2013 IEEE. All rights reserved.

Rules

a) The following VHDL statements, and no others, shall be employed in BSDL:

attribute generic subtype

constant package type

end package body use

entity port

NOTE—This is not a complete list of VHDL keywords used in BSDL, only the VHDL statements. In some cases, only
a subset of a particular VHDL language element syntax is used in BSDL. Descriptions of the lexical elements and
statement syntax for each syntax element are contained in B.5 through B.8 and B.10. Historical information on such
elements is found in B.12.

b) A BSDL parser shall check that the information in BSDL-defined strings is appropriate for the relevant
parameters or attributes for which such strings are values.

Permissions

c) A BSDL parser may implement just the subset of VHDL needed to implement the syntax listed in this
annex.

B.5 Lexical elements of BSDL

The lexical elements of BSDL are a subset of those of VHDL as defined in IEEE Std 1076-. The following
subclauses enumerate the lexical elements needed to understand the BSDL language definition.

B.5.1 Character set

The language is not case sensitive: that is, for example, the character a is considered identical to the character A.
Therefore, the following names are identical:

FRED Fred fred

B.5.1.1 Specifications

Rules

a) Except for specific tokens that allow expanded character sets, only the following characters shall be
permitted within the language, including within <name string> tokens where most of BSDL is defined:

1) Letters: The uppercase and lowercase 26 letters of the Roman alphabet: A to Z and a to z. These shall
be represented in the syntax by the token <letters>.

NOTE 1—This list is smaller than that of VHDL.

2) Digits: 0 to 9. These shall be represented in the syntax by the token <digit>.

3) Special characters: " & ' () [] * , - + . : ; < = > _ These shall be collectively
represented in the syntax by the token <special characters>.

NOTE 2—This list is different than that of VHDL.

4) Whitespace: The space character and the VHDL format effector “horizontal tabulation” shall be used
within a line as logical separators.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

193
Copyright © 2013 IEEE. All rights reserved.

5) New line: The VHDL format effectors called “vertical tabulation,” “carriage return,” “line feed,” and
“form feed” shall be used to start a new line and as logical separators. These shall be represented in the
syntax by the token <newline>.

6) End-of File: An end-of-file may only occur where a <newline> may be expected, and it acts as a final
logical separator.

NOTE 3—Tokens that allow expanded character sets include <mnemonic identifier> and <information tag>.

NOTE 4—Logical separators have two purposes. They are used to eliminate lexical ambiguity by separating
lexical tokens such as reserved words and/or identifiers. For example, the reserved word entity must be separated
from the component name identifier that immediately follows it rather than being run together with it. Logical
separators and whitespace may also be used in combination to create visually appealing layouts.

B.5.2 BSDL reserved words

B.5.2.1 Specifications

Rules

a) The identifiers listed in this subclause shall be BSDL reserved words and shall have a fixed significance in
the language; these identifiers shall not be used for any purpose in a BSDL description, other than as
specified in the syntax or as part of a comment or other unparsed element.

b) A reserved word shall not be used as an identifier.
c) Identifiers BC_0 to BC_99 shall be boundary-scan register cell identifiers used in the Standard BSDL

Package and Standard BSDL Package Body; names BC_0 through BC_10 are used today, while BC_11
through BC_99 shall be reserved for future use.

d) All identifiers that start with STD_1149_ shall be reserved.

AT_PINS
BC_0 to BC_99
BIDIR
BIDIR_IN
BIDIR_OUT
BOTH
BOUNDARY
BOUNDARY_LENGTH
BOUNDARY_REGISTER
BOUNDARY_SEGMENT
BROADCASTFIELD
BROADCASTVALUES
BSCAN_INST
BSDL_EXTENSION
BYPASS
CAP
CAP_DATA
CAPTURES
CELL_DATA
CELL_INFO
CELL_TYPE
CHRESET
CLAMP
CLAMP_HOLD
CLAMP_RELEASE
CLOCK
CLOCK_INFO
CLOCK_LEVEL

COMPLIANCE_PATTERNS
COMPONENT_CONFORMANCE
CONTROL
CONTROLR
DEFAULT
DELAYPO
DESIGN_WARNING
DEVICE_ID
DIFFERENTIAL_CURRENT
DIFFERENTIAL_VOLTAGE
DOMAIN
DOMAIN_EXTERNAL
DOMCTRL
DOMPOR
ECID
ECIDCODE
EXPECT_DATA
EXPECT0
EXPECT1
EXTEST
HIERRESET
HIGHZ
IC_RESET
ID_BITS
ID_STRING
IDCODE
IDCODE_REGISTER
INIT_DATA

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

194
Copyright © 2013 IEEE. All rights reserved.

INIT_RUN
INIT_SETUP
INIT_SETUP_CLAMP
INIT_STATUS
INPUT
INSTRUCTION_CAPTURE
INSTRUCTION_LENGTH
INSTRUCTION_OPCODE
INSTRUCTION_PRIVATE
INTERNAL
INTEST
INTEST_EXECUTION
KEEPER
LINKAGE_INOUT
LINKAGE_BUFFER
LINKAGE_IN
LINKAGE_OUT
LINKAGE_MECHANICAL
LOW
MON
NOPI
NOPO
NORETAIN
NOUPD
OBSERVE_ONLY
OBSERVING
ONE
ONE_HOT
OPEN
OPEN0
OPEN1
OPENX
OUTPUT2
OUTPUT3
PHYSICAL_PIN_MAP
PI
PIN_MAP
PIN_MAP_STRING
PO
PORRESET
PORT_GROUPING

POWER_0
POWER_POS
POWER_NEG
POWER_PORT_ASSOCIATION
PRELOAD
PULL0

PULL1
PULSE0
PULSE1
REGISTER_ACCESS
REGISTER_ASSEMBLY
REGISTER_ASSOCIATION
REGISTER_CONSTRAINTS
REGISTER_FIELDS
REGISTER_MNEMONICS
RESET_SELECT
RESETVAL
RUNBIST
RUNBIST_EXECUTION
SAFE
SAMPLE
SEGMENT
SEGMUX
SEGSEL
SEGSTART
SELECTMUX
SELECTFIELD
SELECTVALUES
SHARED
STD_1149_*
TAP_SCAN_CLOCK
TAP_SCAN_IN
TAP_SCAN_MODE
TAP_SCAN_OUT
TAP_SCAN_RESET
TAPRESET
TIE1
TIE0
TMP_STATUS
TRSTRESET
UPD
USER
USERCODE
USERCODE_REGISTER
VREF_IN
VREF_OUT
WAIT_DURATION
WEAK0

WEAK1
X
Z
ZERO

NOTE—In this list of reserved words, the entry STD_1149_* is to be interpreted to mean all names that start with STD_1149_,
for example, STD_1149_1_2013.

B.5.3 VHDL reserved and predefined words

The reserved words shown in the following list are the BSDL subset of VHDL. As BSDL can no longer be parsed
by a VHDL compiler, other VHDL reserved words are no longer reserved in BSDL.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

195
Copyright © 2013 IEEE. All rights reserved.

B.5.3.1 Specifications

Rules

a) The identifiers listed as follows shall be called VHDL (IEEE Std 1076) reserved and predefined words and
shall have a fixed significance in the BSDL language.

b) These identifiers shall not be used for any purpose in a BSDL description other than as defined in BSDL
syntax, or as part of a comment or other unparsed element.

c) A reserved word shall not be used as an explicitly declared identifier.

all
array
attribute
bit
bit_vector
body
buffer
constant
downto
end

entity
generic
in
inout
is
of
others
out
package
port

positive
range
record
signal
string
subtype
to
true
type
use

B.5.4 Identifiers

Identifiers are user-supplied names. BSDL supports three types of identifiers. The most common, and used almost
universally, is the “VHDL identifier,” which follows the rules of VHDL. For mnemonic names, a much less
restrictive “mnemonic identifier” is defined to allow more expressive and meaningful names for the constant values
that may be assigned to registers and register fields. To support register field names, which include the full logical
hierarchy in the field name, the “prefix identifier” is defined to allow for the range of naming conventions of various
languages and tools. This is only used in the various ways of defining an <extended field name> (see B.8.19.1).

B.5.4.1 Specifications

Rules

a) A VHDL identifier shall be represented in the syntax by the token <VHDL identifier> and shall be any
string chosen as a name for an item and conforming to the following:

1) Identifiers shall start with a letter and may contain letters, digits, or, within restrictions, the
underscore character.

NOTE 1—For example, the following are valid identifiers:

BSDL
IEEE_STD_1149_1

2) There shall be no upper limit to the number of characters in an identifier.

3) The underscore character (_) shall not be allowed as the last character in an identifier.

NOTE 2—This rule is derived from VHDL. Example:

IEEE_STD_1149_ -- This is not a valid VHDL identifier.

4) Adjacent underscore characters (__) shall not be allowed.

NOTE 3—This rule is derived from VHDL. Example:

IEEE_STD__1149 -- This is not a valid VHDL identifier.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

196
Copyright © 2013 IEEE. All rights reserved.

b) A mnemonic identifier shall be represented in the syntax by the token <mnemonic identifier> and shall be
any combination of letters, digits, and special characters conforming to the following:

1) Mnemonic identifiers shall include at least one alphabetic character.

2) Mnemonic identifiers shall start with any valid character.

3) Mnemonic identifiers shall not resolve to:

i) A <real>, <integer>, <binary pattern>, <hex pattern>, <decimal pattern>, or <pattern> value.

ii) A single character U.

iii) A constraint expression operator as defined in Table B-5.

iv) A BSDL comment; that is, it shall not start with or contain a double dash.

4) Mnemonic identifiers shall not include special characters other than at sign (@), asterisk (*),
underscore (_), minus sign (-), plus sign (+), vertical bar (|), percent sign (%), tilde (~), and period
(.).

NOTE 4—A valid VHDL identifier is also a valid mnemonic identifier.

NOTE 5—Examples:

 12.5E6 -- Not a compliant mnemonic identifier (resolves to BSDL <real>)
 12.5exp6 -- A compliant mnemonic identifier
 12.5--E6 –- Not a compliant mnemonic identifier (contains double dash)
 12.5__E6 -- A compliant mnemonic identifier
 1010Xx -- Not a compliant mnemonic identifier (resolves to <pattern>)
 1010Xx -- A compliant mnemonic identifier

c) A prefix identifier shall be represented in the syntax by the token <prefix identifier> and shall be any
combination of letters, digits, and the underscore character not starting with a digit.

NOTE 6—A prefix identifier essentially follows the rules of Verilog identifiers except for case sensitivity. Verilog
identifiers are case sensitive, where Fred and FRED are two different identifiers in Verilog but the same identifier in
VHDL and BSDL. Given the use of prefix identifiers in BSDL, this is not expected to be an issue.

NOTE 7—A valid VHDL identifier is also a valid prefix identifier.

NOTE 8—Examples:

My_Reg – A compliant prefix and VHDL identifier
12_5exp6 – Not a compliant prefix identifier (starts with a digit)
_12_5__E6 – A compliant prefix identifier (note use of initial and double underscores)
0x10107f – A compliant prefix identifier

B.5.5 Numeric literals

“Numeric literals” are commonly used definitions for syntax items representing a numerical value

B.5.5.1 Specifications

Rules

a) An integer shall be represented in the syntax by the token <integer> and shall be an unsigned decimal
number consisting only of the digits 0 through 9.

NOTE 1—An integer may start with any number of leading zeros, which is different from a <decimal pattern> defined
below.

b) A real number shall be represented in the syntax by the token <real> and shall be of the form
<integer>.<integer> or <integer>.<integer>E<integer>, all written contiguously without spaces,
underscores, or format effectors; the E is case insensitive.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

197
Copyright © 2013 IEEE. All rights reserved.

NOTE 2—1E3 is not real because it does not contain a decimal point. It is not an integer because it does include a
letter. The number 20.0E6 is real, as is the equivalent 20000000.0.

c) The syntactical token <pattern> shall be a contiguous sequence of one or more 0, 1, X characters
containing no spaces or format effectors; the X is case insensitive.

NOTE 3—For example, 001x00 and XX010X are compliant. However, 100 X00 is not compliant because of the
embedded space.

d) The syntactical token <32-bit pattern> shall be a <pattern> with exactly 32 characters in its character
sequence.

e) The syntactical token <binary pattern> shall be a contiguous string of characters starting with 0b or 0B
followed by one of the set [01xX] followed by zero or more of the characters in the set [01xX_] and
containing no spaces or format effectors.

f) The syntactical token <hex pattern> shall be a contiguous string of characters starting with 0x or 0X
followed by one of the set [0-9a-fA-FxX] followed by zero or more of the characters in the set [0-9a-fA-
FxX_] and containing no spaces or format effectors.

g) The syntactical token <decimal pattern> shall be an unsigned contiguous string of characters of the set [0-
9]; multicharacter values shall not start with 0, shall contain no spaces or format effectors, shall have a
value less than 232 – 1, and shall always match any binary field large enough to hold the most significant 1
bit of the binary equivalent value of the decimal pattern.

B.5.5.2 Description

A pattern generally represents a logical (unsigned binary) value. A low state for each bit is denoted by 0, a high state
is denoted by 1, and a don’t-care value shall be denoted by X or x. When comparing two values, an “X” will never
cause a miscompare for that bit or bits. When setting a value, an “X” will leave the corresponding bit or bits
unchanged.

Lexical ambiguity exists in certain situations and is resolved by context. For example, a <pattern> that starts with an
X can be differentiated from a <VHDL identifier> by context derived from the syntax. Similarly, a <pattern> that
does not include an X can be differentiated from an integer such as 100 (one hundred), again by context derived
from the syntax.

B.5.6 Strings

B.5.6.1 Specifications

Rules

a) A string shall be represented in the syntax by the token <string> or <name string> and shall be defined as a
sequence of zero or more characters from the language character set (see B.5.1.1) enclosed between
quotation marks.

b) A quotation mark character shall not be allowed within a string in BSDL.

NOTE 1—For example:

"Mary had a little lamb" -- Allowed
"Fred said ""HELP""" -- Not allowed
"Fred said 'HELP'" -- Allowed

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

198
Copyright © 2013 IEEE. All rights reserved.

c) A string shall fit on one line since it is a lexical element.

NOTE 2—Therefore, the only compliant VHDL format effector in a string literal is horizontal tabulation.

d) The concatenation operator & shall be used to concatenate strings.

NOTE 3—For example:

"Mary had a little lamb. " &
"Its fleece was white as snow."

is a single string, identical to:

"Mary had a little lamb. Its fleece was white as snow."

e) BSDL shall not permit replacement of the quotation mark with any other character.

NOTE 4—Many character encoding schemes support open and close quotation marks (“ ”) as well as the generic
quotation mark ("). These may all be treated as identical for this definition of a String.

B.5.6.2 Description

Strings are arbitrary sequences of characters selected from the allowed character set (see B.5.1.1) enclosed in
quotation marks. Strings are used extensively in BSDL, and the content of strings contains most of the description of
the test logic. Such descriptive strings have syntactical tokens of the form <name string>, where name is replaced by
a specific name, and the internal structure of the named string is further syntactically defined. These named strings
must still conform to the rules in B.5.6.1. Examples include <conformance string> (see B.8.6.1) or <cell table
string> (see B.8.14.1).

B.5.7 Information tag

An information tag is a lexical element that provides textual information that may be retained by the tools for later
use.

B.5.7.1 Specifications

Rules

a) An <information tag> shall be defined as a sequence of zero or more characters including all alpha-numeric
characters plus special characters except as noted in rule b), and shall be enclosed in chevrons (< >).

b) The right chevron mark character (>), quotation mark ("), double dash (--), and <newline> characters shall
not appear within an information tag.

B.5.7.2 Description

An information tag is the left chevron (<), followed by any sequence of characters not including a right chevron (>),
quote (“), double-dash (--), or <newline>, and terminated by a right chevron. Since an <information tag> can only
appear within a <string>, the quote, and newline characters (vertical tabulation, carriage return, line feed, form feed)
are not permitted within the <information tag>. Information tags always appear within BSDL strings, which may be
concatenated substrings split across multiple lines. While a VHDL comment may not start within a string, the
double-dash is still prohibited within an information tag.

The information tag is intended as a comment that can be processed and retained by tools. It is used, for instance, to
assist in the selection of appropriate mnemonic values, and for error messages in register constraints. Because a
quote is a BSDL string terminator, no quote can be conveyed as text within an information tag.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

199
Copyright © 2013 IEEE. All rights reserved.

"... <This is a valid information tag within a string.> ..."

 "... < The characters between the chevrons are information. > ..."

 "... <The information tag above has leading and trailing spaces.> ..."

 "... <This one contains -- which is illegal.> ..."

 "... <This is a valid information tag " & -- valid VHDL comment
 "within a string that is split across several lines " &
 "with concatenation. The information tag data " &
 "does not include the quotes or newlines.> ..."

 "... <Tags can include 'non-alpha' characters like ?]*:;!0-9&%$.> ..."

 "... <This is NOT a valid information tag (or string)
 because of the embedded newline.> ..."

B.5.8 Comments

B.5.8.1 Specifications

Rules

a) Text between double dash (--) characters and the end of a line shall be treated as a comment.

b) Comment text shall be allowed to contain any special character allowed by VHDL, in addition to those
given in rule a) of B.5.1.1.

c) The entire comment, from the first dash up to but not including the <newline> defining the end of the line,
shall be ignored by the parser.

d) Comments shall appear only where a <newline> is allowed.

NOTE—For example, consider the following:

 "This is all" & -- An example of a string split by a comment
 " a single string"
 "This is not -- A non-compliant string split by a comment
 a single string" -- A string may not have an embedded <newline>

B.6 Syntax definition

B.6.1 BNF conventions

The syntax of BSDL is presented in a modified Extended Backus-Naur Form (BNF) as follows:

a) Any item enclosed in chevrons (i.e., between the character “<” and the character “>”) is the name of a
syntax token that will be defined in this annex, generally within the same syntax description where it is
used.

b) Tokens defined in other syntactical descriptions in this annex are underlined and are links to the location of
their definition.

c) Items enclosed between braces (i.e., between the character “{” and the character “}”) can either be omitted
or included one or more times.

d) Items enclosed between square brackets (i.e., between the character “[” and the character “]”) can be either
omitted or included only one time.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

200
Copyright © 2013 IEEE. All rights reserved.

e) Text (terminal tokens) shown in bold Helvetica type shall be included exactly as it is presented in this
annex, other than case.

f) Where there is a choice of tokens, the choices are separated by a vertical bar (“|”).

g) The symbol “::=” is read as “is defined as.”

h) Whitespace (spaces, tabulation, carriage returns, etc.) is used in these BNF descriptions to provide
enhanced readability and is not part of the syntax. However, whitespace needed for resolving lexical
ambiguity (logical separation) is required as described in B.5.1.

i) The use of parenthesis to group items is not used in this description.

j) To minimize ambiguity between the BNF notation and the special characters required in an input stream,
the following syntax tokens will be used in place of special characters allowed in the parsed input stream:

1) <left bracket> and <right bracket> shall be the bracket characters “[]“.

2) <left paren> and <right paren> shall be the parenthesis characters “()“.

3) <left chevron> and <right chevron> shall be the chevron characters “< >“.

4) <left brace> and <right brace> shall be the curly brace characters “{ }“.

5) <asterisk> shall be the character “*”.

6) <ampersand> shall be the character “&”.

7) <semicolon> shall be the character “;”.

8) <colon> shall be the character “:”.

9) <comma> shall be the character “,”.

10) <period> shall be the character “.”.

11) <quote> shall be the character “"”.

12) <minus sign> shall be the character “-”.

13) <colon-equal> shall be the VHDL variable assignment operator character pair “:=”.

B.6.2 Commonly used syntactic elements

Two commonly used syntax elements are a <port ID> and <instruction name>. A <port ID> identifies a component
signal that may be used to interface to external signals at device I/O pins. An <instruction name> is chosen from a
list of instructions defined by this standard or may be an added instruction uniquely named by the vendor of the
component.

B.6.2.1 Specifications

Syntax

<port ID>::= <port name> | <subscripted port name>
<port name>::= <VHDL identifier>
<subscripted port name>::= <port name> <left paren> <subscript> <right paren>
<subscript>::= <integer>

<instruction name>::= BYPASS | CLAMP | EXTEST | HIGHZ | IDCODE |

INTEST | PRELOAD | RUNBIST | SAMPLE | USERCODE |
ECIDCODE | CLAMP_HOLD | CLAMP_RELEASE | TMP_STATUS |
IC_RESET | INIT_SETUP | INIT_SETUP_CLAMP | INIT_RUN | <VHDL identifier>

NOTE—In earlier editions of this standard, the BSDL reserved word PRELOAD did not exist and SAMPLE was used as an
abbreviated name when the SAMPLE and PRELOAD instructions were merged [see permission h) of 8.1.1 and rule f) of
B.8.11.1].

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

201
Copyright © 2013 IEEE. All rights reserved.

Rules

a) A <port ID> shall identify a single-bit component signal that is used to interface to external signals.

b) A <port name> shall be included in the <logical port description> statement (see B.8.3).

c) For a <subscripted port name>, the <port name> shall be defined as a bit_vector (see B.8.3) and the value
of the <subscript> shall be within the <range> specified for that <port name>.

d) For a <port name> that is not a <subscripted port name>, the <port name> shall be defined as bit (see
B.8.3).

e) A <port ID> of length one defined as a <subscripted port name> shall appear with the subscript everywhere
the identifier appears in the BSDL.

f) An <instruction name> shall be the name of an instruction defined in this standard or a design-specific
instruction name, and <instruction name> shall represent the instruction of the same name.

g) Where the value of <conformance identification> is STD_1149_1_2001, STD_1149_1_1993, or
STD_1149_1_1990, the <instruction name> shall not be any instruction defined in a later version of this
standard.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

202
Copyright © 2013 IEEE. All rights reserved.

B.7 Components of a BSDL description

Figure B-1—Components of a BSDL description

A BSDL description is composed as shown in part in Figure B-1. The following rules and permissions define the
segments of a BSDL description. (Not all possible BSDL elements are shown in the figure, just the common ones.)

B.7.1 Specifications

Rules

a) The entity description: An entity description shall be written for each component and shall specify
component-specific parameters of the test.

b) The Standard BSDL Package and Standard BSDL Package Body: These shall contain three types of
information:

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

203
Copyright © 2013 IEEE. All rights reserved.

1) The Standard BSDL Package shall give a definition of BSDL statements in terms of VHDL constructs.

2) The Standard BSDL Package Body shall give definitions of commonly used types of boundary-scan
register cells.

3) The Standard Package Body shall give definitions of Register_Mnemonics and Register_Fields
used for defining excludable segments and domain control.

Permissions

c) User-specified BSDL packages and BSDL package bodies: Users may provide BSDL packages and
package bodies that define:

1) Boundary-scan register cell designs specific to any group of components.

2) Design-specific test data register descriptions.

d) The standard BSDL Package Body may contain test data register descriptions for registers defined in this
standard.

B.7.2 Description

Typically, the Standard BSDL Package and Standard BSDL Package Body would reside with system-accompanying
software that utilizes BSDL descriptions. Individual BSDL descriptions are not burdened with having to include all
the elements contained in the Standard BSDL Package and Standard BSDL Package Body.

NOTE—The Standard BSDL Package and Standard BSDL Package Body are listed in B.9. They are read-only and would
normally be included with a BSDL-compliant tool and supplied by the tool supplier. They are not typically supplied along with
BSDL files describing a component.

The cell definitions provided in the Standard BSDL Package Body could have been given within the Standard BSDL
Package in a full VHDL implementation. The advantage of a package body is that the information it contains can be
updated without causing the need for recompilation of all entities that reference the package. If a package is
modified, recompilation is necessary. The package with package body structure is a standard practice of BSDL.

User-defined packages may also be provided for a variety of purposes. A vendor of application-specific ICs
(ASICs), for example, could provide a user-specified BSDL package and package body to describe the particular
boundary-scan register cell designs offered. Standard and design-specific test data registers or register segments may
be defined in user-specified BSDL package bodies. Global BSDL extensions also could be provided in user-
specified BSDL package bodies (see B.10 and B.8.24).

B.8 Entity description

The entity description and supporting BSDL packages make up a BSDL model of the component and are, in effect,
the electronic data sheet for its test logic. It contains statements through which parameters that may vary from one
component to another are defined, as discussed in B.3.

B.8.1 Overall syntax of the entity description

B.8.1.1 Specifications

Syntax

<BSDL description>::=
entity <component name> is
<generic parameter> (see B.8.2)
<logical port description> (see B.8.3)
<standard use statement> (see B.8.4)
{<use statement>} (see B.8.5)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

204
Copyright © 2013 IEEE. All rights reserved.

<component conformance statement> (see B.8.6)
<device package pin mappings> (see B.8.7)
[<grouped port identification>] (see B.8.8)
<scan port identification> (see B.8.9)
[<compliance-enable description>] (see B.8.10)
<instruction register description> (see B.8.11)
[<optional register description>] (see B.8.12)
[<register access description>] (see B.8.13)
<boundary-scan register description> (see B.8.14)
[<runbist description>] (see B.8.15)
[<intest description>] (see B.8.16)
[<system clock description>] (see B.8.17)
{<register mnemonics description>} (see B.8.18)
{<register fields description>} (see B.8.19)
{<register assembly description>} (see B.8.21)
{<register constraints description>} (see B.8.22)
{<register association description>} (see B.8.23)
{<power port association description>} (see B.8.23)
{<BSDL extensions>} (see B.8.24)
[<design warning>] (see B.8.25)
end <component name> <semicolon>

<component name>::= <VHDL identifier>

NOTE 1—While VHDL permits some elements within an entity description to be in an arbitrary order, the fixed ordering above
is required for BSDL. This ordering is defined to ease the development of tools that are not themselves required to be fully
VHDL compliant.

Rules

a) The <component name> shall identify a particular integrated circuit.

b) Any <component name> referenced in any attribute statement shall be the same as the component name
declared in the entity description.

Recommendations

c) The <component name> should contain a string unique to the component owner and a string unique among
the components produced by the owner to maximize the probability that it is distinct from the names of all
other components that may be used together on a board or in a system.

NOTE 2—Multiple copies of the same component may exist on a board but are given different reference designators.

B.8.2 Generic parameter statement

The <generic parameter> statement facilitates selection between multiple component packaging options that are
described within the BSDL description (see B.8.7). Each such option defines a mapping between the physical
package pins of the component and the <port ID> elements of the component (see B.6.2).

The component package option relevant to a particular use of a component is identified each time a given BSDL
description is referenced.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

205
Copyright © 2013 IEEE. All rights reserved.

B.8.2.1 Specifications

Syntax

<generic parameter>::= <generic default> | <generic no default>
<generic default>::= generic <left paren> PHYSICAL_PIN_MAP <colon>

string <right paren> <semicolon>
<generic no default>::= generic <left paren> PHYSICAL_PIN_MAP <colon>

string <colon-equal> <default device package type> <right paren> <semicolon>

<default device package type>::= <quote> <pin mapping name> <quote>

Rules

a) If no <default device package type> is specified in the <generic parameter> statement of a BSDL
description, a <pin mapping name> (see B.8.7) shall be specified when the BSDL description is processed.

b) The <default device package type> specified in the <generic parameter> statement shall match a <pin
mapping name> appearing in some <pin mapping> (see B.8.7).

c) A <pin mapping name> specified when a given BSDL description is processed shall match a <pin mapping
name> appearing in some <pin mapping> (see B.8.7) of that BSDL description.

B.8.2.2 Description

In the first alternative <generic parameter> statement syntax, a <pin mapping name> (see B.8.7) that identifies a
component package option is supplied with the BSDL description when it is referenced. In the second alternative
syntax, a value is given for the <default device package type> that is used as the default in the case in which no <pin
mapping name> is supplied with the BSDL description when it is referenced. The <default device package type> is
a quoted name of a <pin mapping name> used to specify the pin mapping for the component (see B.8.7).

B.8.2.3 Examples

generic (PHYSICAL_PIN_MAP: string);

or

generic (PHYSICAL_PIN_MAP: string := "DW");

NOTE—It is recommended that the component package name from the data sheet of a given component be used as the relevant
<pin mapping name>, for example, SSOP_56, PQFP_84, or PGA_18x18.

B.8.3 Logical port description statement

The BSDL port description is a specialization of the VHDL port list. It is used to assign meaningful symbolic names
to the pins of a component. These symbolic names, which are referenced in subsequent statements in the description,
allow the majority of such statements to be independent of a renumbering or other reorganization of the pins of the
component.

B.8.3.1 Specifications

Syntax

<logical port description>::= port <left paren> <pin spec>
{ <semicolon> <pin spec> } <right paren> <semicolon>

<pin spec>::= <identifier list> <colon> <pin type> <port dimension>
<identifier list>::= <port name> { <comma> <port name>}

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

206
Copyright © 2013 IEEE. All rights reserved.

<pin type>::= in | out | buffer | inout | LINKAGE_INOUT | LINKAGE_BUFFER | LINKAGE_IN |
LINKAGE_OUT | LINKAGE_MECHANICAL | POWER_0 | POWER_POS |
POWER_NEG | VREF_IN | VREF_OUT

<port dimension>::= bit | <bit vector spec>
<bit vector spec> ::= bit_vector <left paren> <range> <right paren>
<range>::= <up range> | <down range>
<up range> ::= <integer1> to <integer2>
<down range> ::= <integer2> downto <integer1>
<integer1>::= <integer>
<integer2>::= <integer>

Rules

a) A <range> shall have the value of <integer1> less than or equal to the value of <integer2>.

b) Each <port name> appearing in an <identifier list> of a <logical port description> with a <port dimension>
of bit shall occur only once within the <logical port description> statement.

c) Each <port name> appearing more than once in an <identifier list> of a <logical port description>:

1) Shall have a <port dimension> of bit_vector.

2) The <range> of each appearance shall not overlap with other appearances.

3) Shall have no gaps in the total sequence of all such appearances.

4) The <range> of each appearance shall have the same direction (to or downto).

Permissions

d) Each <port name> appearing more than once in an <identifier list> of a <logical port description> may
have a different <pin type> for each subrange listed in the <identifier list> and can occur in any order in the
input.

B.8.3.2 Description

The definitions of the possible values of <pin type> are given in Table B-2, and <port name> is defined in B.6.2.

Table B-2—Pin types

Value Meaning
in An input-only port that is associated with at least one boundary scan cell

unless explicitly exempted in this standard.
out An output-only port that may be connected to an external bus wire driven by

multiple drivers (e.g., a three-state or open-drain output) and that is
associated with at least one boundary scan cell.

buffer A two-state, output-only port where either state is always actively driven
(e.g., cannot be connected to an external bus wire) and that is associated with
at least one boundary scan cell. See NOTE 1.

inout A bidirectional port that is associated with at least one boundary scan cell. A
bidirectional port is one that is both a system input and a system output.

LINKAGE_OUT A nonboundary scan analog port designed to source and/or sink current and
that has a disable method (not defined or documented in this standard).
Normally, the value on this port would be variable. See NOTE 2 and
NOTE 3.

LINKAGE_IN A nonboundary scan analog port that is not designed to source or sink
current. See NOTE 2 and NOTE 3.

LINKAGE_INOUT A nonboundary scan analog bidirectional. See NOTE 2 and NOTE 3.
LINKAGE_BUFFER A nonboundary scan analog port designed to source and/or sink current and

that does not have a disable method. See NOTE 2 and NOTE 3.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

207
Copyright © 2013 IEEE. All rights reserved.

Value Meaning
LINKAGE_MECHANICAL A nonelectrical port used for positioning, heat sinks, or other nonelectrical

use. There is generally no connection to the silicon. See NOTE 2 and
NOTE 3.

VREF_IN A nonboundary scan input reference voltage port, which would normally be
a constant value and would have to be driven for the component to function
correctly. See NOTE 2 and NOTE 3.

VREF_OUT A nonboundary scan output reference voltage port. See NOTE 2 and
NOTE 3.

POWER_0 A nonboundary scan zero-volt power supply port. These are ports that are
normally associated with GROUND. Keyword GROUND or GND is not
used here to leave these words for signal names. See NOTE 2 and NOTE 3.

POWER_POS A nonboundary scan power supply port that receives a constant potential
with respect to POWER_0 that is greater than zero volts. See NOTE 2 and
NOTE 3.

POWER_NEG A nonboundary scan power supply port that receives a constant potential
with respect to POWER_0 that is less than zero volts. See NOTE 2 and
NOTE 3.

NOTE 1—Where a two-state output port has a three-state mode only to meet the requirements of the HIGHZ
instruction, it is still described as a buffer.

NOTE 2—As of the 2013 version of this standard, nondigital ports are no longer allowed to be grouped into the one
category of “linkage.” This standard now requires the type of linkage port present and classifies reference voltage,
power, and ground ports. The improvement in handling of nondigital ports enables board-level ATPG tools to make
better decisions about the topology when these ports are defined.

NOTE 3—All pin types described as “nonboundary scan” are not “system pins” subject to the provisioning rules in
Clause 11. They can be observed, however, by redundant observe-only boundary cells. See 11.8.

The <port dimension> defines the number of signals that constitute a port. If the <port dimension> is bit, one <port
name> corresponds to that one signal. If the <port dimension> is bit_vector, one <port name> corresponds to a
collection of n signals that are individually referenced by subscripting the port name, i.e., by a <subscripted port
name> (see B.6.2). A <port name> of dimension bit_vector may appear more than once in an <identifier list>, but
the total range, now specified in pieces, must comprise a contiguous range. Breaking a multibit port into multiple
items in an <identifier list> allows a different <pin type> for portions of the total range, such as a multiuse bus that
can drive a 12-bit address or drive or receive an 8-bit data value. The high 4 bits could be <pin type> out, while the
lower 8 bits could be <pin type> inout.

NOTE 4—The signal types bit and bit_vector are signal types known to VHDL and are the only signal types permitted in
BSDL. Also, while VHDL allows multiple, possibly broken (i.e., noncontiguous) ranges to be specified for a bit_vector, BSDL
syntax allows only a single unbroken range, although that range may be split into multiple items in the <identifier list>.

Figure B-2 shows example use of the nonboundary-scan pin types. In the 2001 and earlier versions of this standard
all power, ground, and analog ports were grouped as the type linkage. This version of the standard requires the IC
vendor to classify the ports with more granularity. The purpose is to aid board ATPG tools in improving fault
coverage, cross-checking input data such as netlists, and enabling more detailed and accurate fault coverage reports.
When the boundary-scan cells of IC2 are bidirectional or self-monitoring outputs, nets A, B, C, and D are
automatically tested for shorts because the ATPG tool can read that the ports they are connected to on IC1 are input
ports (LINKAGE_IN) without requiring additional modeling or manual entry from the board test engineer. (In this
case, the designer of IC2 defined his outputs as digital, but the designer of IC1 defined her inputs as analog, which
may indicate a high-speed circuit.)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

208
Copyright © 2013 IEEE. All rights reserved.

Figure B-2—Example use of nonboundary-scan port-types

Similarly, the pull-up and pull-down on the two INPUT ports of IC1 can be identified because the power and ground
nets on the board are now made explicit by the POWER_POS and POWER_0 pin types and not all grouped as
linkage. An expected value can be predicted with high confidence (not all cases) on the INPUT port boundary-scan
cell (shown in Figure B-2 with the small capture-update box on the two input ports) without the user supplying
information about the nature of the nets. If the user does enter information about which nets are power nets, or the
ATPG tool uses heuristics to determine the power and ground nets, the POWER_POS and POWER_0 keywords
enable the cross-checking of the correctness of these data.

Finally, the new pin types enable better classification of fault coverage from the ATPG process. Nets that are power
inputs, for instance, can be placed in a unique class of “potentially untested nets,” thereby informing the user to seek
additional test methods to maximize the board fault coverage.

Note that on IC1, only the two pins marked INPUT are required to have boundary-scan cells but that redundant
observe-only cells may be used to observe the other linkage, vref, and power pins. See 11.8.

B.8.3.3 Example

port(TDI, TMS, TCK: in bit;

TDO: out bit;
IN1, IN2: in bit;
OUT1: out bit;
OUT2: buffer bit;
AOUT : LINKAGE_BUFFER bit; -- analog signal out
OUT3: out bit_vector (1 to 8);
OUT4: out bit_vector (4 downto 1);
SERDES1: out bit;
BIDIR1, BIDIR2, BIDIR3: inout bit;
SERDES_REF : VREF_IN bit;
ANALOG_POWER : POWER_NEG bit;
IO_VCC : POWER_POS bit;
GND : POWER_0 bit;
CORE : POWER_POS bit);

B.8.4 Standard use statement

The <standard use statement> identifies one Standard BSDL Package in which attributes, types, constants, and other
elements are defined, to be referenced elsewhere in the BSDL description.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

209
Copyright © 2013 IEEE. All rights reserved.

Note that what, up to the 2001 version of this standard, were known as the Standard VHDL Package and the
Standard VHDL Package Body are currently known as the Standard BSDL Package and Standard BSDL Package
Body, respectively. This change was made in recognition of the fact that, as of the 2013 version of this standard, the
syntax and semantics of BSDL are no longer a subset and standard practice of VHDL.

B.8.4.1 Specifications

Syntax

<standard use statement>::= use <standard package name> <period> all <semicolon>
<standard package name>::= STD_1149_1_1990 | STD_1149_1_1994 |

STD_1149_1_2001 | STD_1149_1_2013

Rules

a) The <standard package name> shall be the name of the package inside the file and the name of the file,
minus any directory path or extensions, for the Standard BSDL Package and Package Body that contains
the information to be included, and the suffix .all shall indicate that all declarations within the BSDL
package are to be used.

b) The Standard BSDL Package and Standard BSDL Package Body content shall be used when processing a
BSDL description.

c) The <standard use statement> also shall be used for version control (see B.8.4.4).

d) The <standard use statement> shall be provided exactly once in each BSDL entity (see B.8.1) and in both
the package and package body sections of each user-supplied package (see B.10.1).

B.8.4.2 Description

Additional values for <standard package name> may be assigned with future revisions of this annex as the language
evolves. For toolmakers desiring to support the original draft version of BSDL, the value of <standard package
name> would be STD_1149_1_1990 (see B.12.1) for that draft version.

NOTE 1—The construct of the <standard use statement> may not be syntactically complete for use by a given VHDL analyzer.
This is because a library or default working area has not been specified. In such a case, a complete statement is “use
work.STD_1149_1_2013.all;” in which the prefix “work.” tells a VHDL analyzer to find the Standard BSDL Package in the
current work area. The field “work” could be replaced by an arbitrary library name such as “BSCAN.” telling a VHDL analyzer
where in its system of libraries to find the Standard BSDL Package. Since there is no standardization of library structures from
one VHDL environment to another, some editing of BSDL files to specify the location of Standard BSDL Packages is generally
unavoidable if using VHDL parsers to parse BSDL. The specification used in this subclause may cause an error in a VHDL
analyzer, forcing the user to edit the BSDL file for the correct location of the Standard BSDL Package information.

The <standard package name> indicates:

⎯ An instruction to tools to read a standard package that contains BSDL syntax definitions.

⎯ The version of the BSDL language (shown by the year number embedded in the identifier) that was used
when creating the BSDL.

As a general rule, future enhancements to the BSDL language will be designed as extensions to previous versions of
the language. Therefore, the version information contained in the <standard package name> may be used by BSDL-
specific tools to indicate which tool versions will be able to process the information in the input BSDL. For
example, if the input BSDL records the version as “_1994”, tools that can process any language variant “_1994” or
later will be able to process the input BSDL correctly.

NOTE 2—Versions of the BSDL language should not be confused with the version of this standard to which a given IC may
conform. The <component conformance statement> identifies the version of the standard (see B.8.6).

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

210
Copyright © 2013 IEEE. All rights reserved.

Within a specific system processing BSDL descriptions, the Standard BSDL Package may be a file somewhere in
the file system of the host computer. The .all suffix is meaningful to VHDL and is not part of a file name. While
VHDL permits the use of a wider range of suffixes, .all is the only suffix permitted in BSDL.

The content of the Standard BSDL Package is the current definition of the BSDL language and is not intended to be
modified by users.

The <standard use statement> appears in every BSDL description before any <use statement> (see B.8.5) so that
tools that are fully VHDL compliant can locate information relevant to all components that conform to this standard.
(Tools that are limited to the BSDL language always use this information.)

If converting a BSDL originally written using the STD_1149_1_2001 or earlier version into a BSDL using the
STD_1149_1_2013 version, the syntax and rules of the 2013 version will apply. At least, the following changes
would be required:

⎯ Conversion of all LINKAGE ports in the logical port description to the appropriate new types (see B.8.3).

⎯ Addition of appropriate pin types for unconnected pins in the device package pin map (see B.8.7).

⎯ Ensuring that none of the new standard instruction or TDR names are used (see B.5.2).

⎯ Addition of <input spec> to all input ports in the boundary register description (see B.8.14.3.8).

⎯ Changing nonredundant occurrences of the boundary cell function OBSERVE_ONLY to INPUT [see
rule u) of B.8.14.1].

While the new, optional, architectural features, instructions, standard TDRs, and so on cannot be used to describe a
component originally designed to conform to the 2001 version of this standard, the new register description
attributes may be used to document TDRs in components conforming to earlier versions of this standard, including
TDRs with instructions that may have been considered private before, which in turn would enable use of PDL (see
Annex C) to document procedures for testing such components.

B.8.4.3 Examples

use STD_1149_1_2013.all; -- Today

or
use STD_1149_1_2022.all; -- Sometime in the future

The contents of the STD_1149_1_2013 Standard BSDL Package and its associated Standard BSDL Package Body
are listed in B.9. (The contents of the STD_1149_1_1990 Standard VHDL Package and its associated Standard
VHDL Package Body are listed in B.12.1. The contents of the STD_1149_1_1994 Standard VHDL Package and
its associated Standard VHDL Package Body are listed in B.13.1. The contents of the STD_1149_1_2001
Standard VHDL Package and its associated Standard VHDL Package Body are listed in B.14.1. Due to deviations
from VHDL introduced in this version of the standard, the name of the standard Package and Package Body was
changed from VHDL to BSDL.)

B.8.4.4 Version control

At the time this standard was approved, there were multiple versions of BSDL descriptions: the 1990 version (see
B.12), the 1994 version (approved by the IEEE Standards Board and published by the IEEE in 1994; see B.13), the
2001 version (approved by the IEEE Standards Board and published by the IEEE in 2001; see B.14), and later
versions described here. The <standard use statement> indicates whether the BSDL description has been written
using the provisional syntax published in the Proceedings of the International Test Conference in 1990 or according
to this annex. This additional application of the <standard use statement> is intended to provide backward
compatibility to all BSDL descriptions already written and can be used in a similar manner for BSDL descriptions
based on future revisions of this annex. It is intended that a parser handling a form of BSDL described in a version

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

211
Copyright © 2013 IEEE. All rights reserved.

of this annex approved by the IEEE Standards Board and published by the IEEE handles all forms of BSDL
described in previous versions of this annex approved by the IEEE Standards Board and published by the IEEE.

In the 1990 version of BSDL, the following syntactic elements are not supported:

<component conformance statement>
<grouped port identification>
<compliance-enable description>
<runbist description>
<intest description>
<BSDL extensions>

Also, in the 1990 version, cell types BC_0 and BC_7 as originally identified and defined by the 1994 version need
to be specified in a user-supplied BSDL package if they are to be referenced. In the 1990 and 1994 versions, cell
types BC_8, BC_9, and BC_10, which are identified and defined in the 2001 and later versions, need to be
specified in a user-supplied BSDL package if they are to be referenced. In the 2013 version, cell type BC_6 is no
longer supported and would need to be specified in a user-supplied BSDL package if it is referenced.

In the 1990 and 1994 versions, the identifiers KEEPER and PRELOAD were not BSDL reserved words.
KEEPER and PRELOAD become BSDL reserved words as of the 2001 version.

In the 1990, 1994, and 2001 versions, the identifiers LINKAGE_IN, LINKAGE_OUT, LINKAGE_INOUT,
LINKAGE_BUFFER, LINKAGE_MECHANICAL, VREF_IN, VREF_OUT, POWER_0, POWER_POS,
POWER_NEG, TIE0, TIE1, and OPEN, as well as new defined instruction names ECIDCODE, INIT_SETUP,
INIT_SETUP_CLAMP, INIT_RUN, CLAMP_HOLD, CLAMP_RELEASE, TMP_STATUS, and IC_RESET
and attribute names BOUNDARY_SEGMENT, ASSEMBLED_BOUNDARY_LENGTH, SYSCLOCK_
REQUIREMENTS, REGISTER_MNEMONICS, REGISTER_FIELDS, REGISTER_ASSEMBLY,
REGISTER_CONSTRAINTS, REGISTER_ASSOCIATION, and POWER_PORT_ASSOCIATION were not
BSDL reserved words. They become reserved words as of the 2013 version.

Software that processes BSDL descriptions needs to have access to all Standard VHDL or BSDL Packages related to
BSDL. See B.9 and B.12 through B.14 for the ones that are currently defined. Obviously, a BSDL parser would
issue warning or error messages when it encounters unrecognized text.

NOTE—Specific additional attributes may be added via BSDL Extensions (see B.8.24).

B.8.5 Use statement

The optional <use statement> identifies a BSDL package in which specific attributes or constants are defined so that
they can be referenced elsewhere in a BSDL description.

B.8.5.1 Specifications

Syntax

<use statement>::= use <user package name> <period> all <semicolon>
<user package name>::= <VHDL identifier>

Rules

a) Information in a user-specified BSDL package and package body named in a <use statement> shall be used
when processing a BSDL description (see B.10).

b) Moved to B.10 in this version of the standard.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

212
Copyright © 2013 IEEE. All rights reserved.

c) The <user package name> in the <use statement> shall be the name of the package inside the file and the
name of the file not including any directory path or extensions for the BSDL package that contains the
information to be included, and the suffix .all shall indicate that all declarations within the BSDL package
are to be used.

B.8.5.2 Description

The .all suffix is meaningful to VHDL and is not part of a file name. While VHDL permits the use of a wider range
of suffixes, .all is the only suffix permitted in BSDL. See B.10.1 for the content of a user-supplied package.

B.8.5.3 Example

 use Private_Package.all; -- Identifies the proprietary BSDL

-- package of a user, named Private_Package

NOTE—The construct of the <use statement> may not be syntactically complete for use by a given VHDL analyzer. This is
because a library or default working area has not been specified. In such a case, a complete statement is “use
work.Private_Package.all;” in which the prefix “work.” tells a VHDL analyzer to find the user-supplied BSDL package in the
current work area. The field “work.” could be replaced by an arbitrary library name such as “BSCAN.” telling a VHDL analyzer
where in its system of libraries to find the user-supplied BSDL package. Since there is no standardization of library structures
from one VHDL environment to another, some editing of BSDL files to specify the location of a user-supplied BSDL package is
generally unavoidable. This specification may cause an error in a VHDL analyzer, forcing the user to edit the BSDL for the
correct location of the user-supplied BSDL package information.

In full VHDL, two or more use statements may be given that reference VHDL packages that contain different
definitions of the same item, such as a Register Field definition. Later, the ambiguity of which package is being
referenced can be removed by qualifying each reference in a specified manner. This facility is not supported in
BSDL for boundary cell definitions, but it is supported for the register descriptions. See the definition and use of
<package hierarchy> in B.8.20 and B.8.21.

B.8.6 Component conformance statement

The <component conformance statement> identifies the edition of this standard to which the testability circuitry of a
physical component conforms.

It is possible for a component designed in 1990 to be described by the version of BSDL defined by this annex, but
this cannot imply that the component conforms to the rules of IEEE Std 1149.1-2013. For example,
IEEE Std 1149.1-1990 allowed (by omission of rules) two drivers controlled by a single control cell to be disabled
by opposing values loaded into that cell. This is explicitly forbidden starting in IEEE Std 1149.1a-1993. The
<component conformance statement> allows tools to account for changes in the rules that may occur in past and
future editions of this standard.

B.8.6.1 Specifications

Syntax

<component conformance statement>::= attribute COMPONENT_CONFORMANCE of
<component name> <colon> entity is <conformance string> <semicolon>

<conformance string>::= <quote> <conformance identification> <quote>
<conformance identification>::= STD_1149_1_1990 | STD_1149_1_1993 |

STD_1149_1_2001 | STD_1149_1_2013

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

213
Copyright © 2013 IEEE. All rights reserved.

Rules

a) The reserved words:
1) STD_1149_1_1990 shall refer to IEEE Std 1149.1-1990.
2) STD_1149_1_1993 shall refer to IEEE Std 1149.1a-1993.
3) STD_1149_1_2001 shall refer to IEEE Std 1149.1-2001.
4) STD_1149_1_2013 shall refer to IEEE Std 1149.1-2013.

NOTE—Subsequent editions of this annex may add new values to the <conformance identification> element.

b) When the <conformance identification> is for an earlier version (as indicated by the year number in the
version name) of this standard than the <standard package name>, the BSDL shall only document standard
and design-specific features of the test logic as defined in the earlier version of this standard.

c) When the <conformance identification> is for an earlier version of this standard than the <standard package
name>, the BSDL shall not use any reserved words defined in versions later than the version specified in
the <conformance identification>.

B.8.6.2 Description

Some semantic checks described in this annex are influenced by the value that appears in the <conformance
identification> element [see, for example, semantic check in rule p) of B.8.14.1].

A component designed in compliance with the 2001 version of this standard will also comply with the 2013 version.
One exception would be the use of the BC_6 boundary cell, which is no longer defined in the 2013 version of the
Standard Package and would require a user BSDL package defining the cell in order to maintain compliance. Thus,
if it is desired to document such a component using the 2013 version of BSDL, it is reasonable, although not
required, to set the component conformance to 2013 as well.

B.8.6.3 Example

attribute COMPONENT_CONFORMANCE of My_Old_IC:entity is

"STD_1149_1_1990"; -- 1990 component described
-- in this annex

B.8.7 Device package pin mappings

The mapping of logical signals onto the physical pins of a particular component package is defined through use of a
<device package pin mappings> attribute statement and an associated BSDL string.

B.8.7.1 Specifications

Syntax

<device package pin mappings>::= <pin map statement> <pin mappings>
<pin map statement>::= attribute PIN_MAP of <component name> <colon> entity is

PHYSICAL_PIN_MAP <semicolon>
<pin mappings>::= <pin mapping> { <pin mapping> }
<pin mapping>::= constant <pin mapping name> <colon> PIN_MAP_STRING :=

<map string> <semicolon>
<pin mapping name>::= <VHDL identifier>
<map string>::= <quote> <port map> { <comma> <port map> } <quote>
<port map>::= <port name> <colon> <pin or list>
<pin or list>::= <pin desc> | <pin list>
<pin list> ::= <left paren> <pin desc> { <comma> <pin desc>} <right paren>

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

214
Copyright © 2013 IEEE. All rights reserved.

<pin desc> ::= <pin ID> | OPEN | TIE0 | TIE1
<pin ID>::= <VHDL identifier> | <integer>

Rules

a) Within a given <pin mapping>, each <pin ID> shall appear only once.

b) All ports in the <logical port description> of a given BSDL description shall be referenced in each <pin
mapping> of that description, and vice versa.

c) The <port map> for a <port name> defined as bit in the <logical port description> shall be a single <pin
desc>.

d) The <port map> for a <port name> defined as a bit_vector in the <logical port description> shall be a
<pin list> with an ordered list of <pin desc> elements, each associated with one bit of the <port name> in
the order of the bits in the <range> of the <port name>.

e) Each <pin mapping name> shall be unique within a <pin mappings>.

f) Any <port name> element in a <port mapping> element of a given BSDL description shall appear in an
<identifier list> element of the <logical port description> statement of the description.

g) No subscripting of <port name> shall be allowed; only the base name of a port shall appear if the port was
described to be a bit_vector.

h) A <pin desc> of OPEN shall imply that the <port ID> is not electrically connected to a package pin, and
the associated boundary-scan register cells shall capture the same value as if the <port ID> were
unconnected on the board.

i) A <pin desc> of TIE0 or TIE1 shall imply that the <port ID> is not electrically connected to a package pin
but is forced to the specified value either on the integrated circuit or in the package, and the associated
boundary-scan register cells shall capture the specified tie value.

j) A <pin desc> of TIE0 or TIE1 shall only appear on a <port name> associated with a <pin type> of in,
LINKAGE_IN, POWER_0, POWER_POS, or VREF_IN in the <logical port description>.

k) No <pin desc> shall have a value of OPEN, TIE0, or TIE1 if the <portID> is physically connected to a
package pin.

l) No <pin desc> shall have a value of OPEN, TIE0, or TIE1 if the <portID> :

1) Appears in a <TCK stmt>, <TDI stmt>, <TMS stmt>, or <TDO stmt> (see B.8.9).

2) Appears in a <grouped port identification> (see B.8.8), unless both the <representative port> and the
<associated port> have a <pin desc> of OPEN, or one has a <pin desc> of TIE0 and the other has a
<pin desc> of TIE1.

m) No <pin desc> shall have a value of OPEN, TIE0, or TIE1 if the <portID> appears in a <TRST stmt> (see
B.8.9), unless an on-chip POR circuit (see 6.1.3) is provided; in which case, only the values of OPEN or
TIE1 shall be allowed.

n) If the <port ID> appears in the <compliance port list> (see B.8.10) or is otherwise required for initialization
or proper operation of test or system logic, then that <port ID> shall not have a <pin desc> of OPEN, and
if the <pin desc> is TIE0, or TIE1, the implied values shall be a compliant or enabling value.

Permissions

o) A <pin desc> for a single <portID> may have one of the values OPEN, TIE0, or TIE1 in all <pin
mapping> statements.

NOTE—This allows a reduced pin version of a product to be introduced without the full package version.

B.8.7.2 Examples

attribute PIN_MAP of ttl74bct8374: entity is PHYSICAL_PIN_MAP;
constant DW:PIN_MAP_STRING:=

"CLK:1, Q:(2,3,4,5,7,8,9,10), " &

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

215
Copyright © 2013 IEEE. All rights reserved.

"D:(23,22,21,20,19,17,16,15), " &
"GND1:6, VCC1:18, GND2:open, VCC2:open, OC_NEG:24, " &
"TDO:11, TMS:12, TCK:13, TDI:14";

constant FK:PIN_MAP_STRING:=
"CLK:9, Q:(10,11,12,13,16,17,18,19), " &
"D:(6,5,4,3,2,1,26,25), " &
"GND1:15, VCC1:8, GND2:14, VCC2:22, OC_NEG:7, " &
"TDO:20, TMS:21, TCK:23, TDI:24";

constant SM:PIN_MAP_STRING:=
"CLK:9, Q:(open,open,open,open,16,17,18,19), " &
"D:(tie0,tie0,tie0,tie0,2,1,26,25), " &
"GND1:15, VCC1:8, GND2:open, VCC2:open, OC_NEG:7, " &
"TDO:20, TMS:21, TCK:23, TDI:24";

constant DIE_BOND:PIN_MAP_STRING:=
"CLK:Pad01, " &
"Q:(Pad02,Pad03,Pad04,Pad05,Pad06,Pad07,Pad08,Pad09), " &
"D:(Pad10,Pad11,Pad12,Pad13,Pad14,Pad15,Pad16,Pad17), " &
"GND1:Pad18, VCC1:Pad19, GND2:Pad20, VCC2:Pad21, " &
"OC_NEG:Pad22, " &
"TDO:Pad23, TMS:Pad24, TCK:Pad25, TDI:Pad26";

NOTE—Revisions of this standard after IEEE Std 1149.1-2001 support naming no-connect signals with a pin labeled as OPEN,
TIE0, or TIE1. Package variation SM illustrates using TIE0 and OPEN to support a smaller physical package where only the
four pads representing the upper bits of D and Q and a single set of power and ground pins are bonded out.

B.8.7.3 Description

Attribute PIN_MAP is a string that is set to the value of the parameter PHYSICAL_PIN_MAP, which is defined
by the generic statement. VHDL constants are then declared, one for each packaging variation. In the example
description, four packaging variations exist: DW, FK, SM, and DIE_BOND.

The constants identify component packages that are typified for BSDL purposes by the mapping between logical
port names and the physical pins of a component. A BSDL parser looks for the constant with a name matching the
value of PIN_MAP. The standard practice for BSDL mandates that the type of the constant is
PIN_MAP_STRING.

The following is an example of a <map string>:

"CLK:1,Q:(2,3,4,5,7,8,9,10), D:(23,22,21,20,19,17,16,15), " &
"GND:6, VCC:18, OC_NEG:24, TDO:11, TMS:12, TCK:13, TDI:14"

Notice that this is the concatenation of two smaller strings. A BSDL parser reads the contents of the string. It
matches signal names, such as CLK, with the names in the port definition.

For a given <port map>, the <pin list> identifies the physical pin (or set of physical pins) associated with the port
called <port name>. A <pin desc> is either a <pin ID>, a physical pin, or one of the OPEN, TIE0, or TIE1
keywords indicating the port name is not connected to a package pin in this particular pin map. A <pin ID> may be a
number or an alphanumeric identifier because some component packages, such as pin-grid arrays (PGAs), use
coordinate identifiers, such as A07 or H13. Note, however, that names such as 7A and 13H are non-compliant since
they are not valid VHDL identifiers. Obviously, OPEN, TIE0, and TIE1 are reserved words and cannot be used as a
<pin ID>.

If signals such as that having <port name> Q in the example pin map are identified as bit_vector in the <logical
port description>, there must be a one-to-one mapping between the members of that bit_vector and the members of
the <pin list> associated with Q.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

216
Copyright © 2013 IEEE. All rights reserved.

The ordering of items in the <pin list> is significant, and the ordering provides correlation between a given
<subscripted port name> and its associated <pin desc>.

For example, if Q were defined to have members "1 to 8", the physical pin mapped onto port Q(1) in the
example (for the DW component package) would be pin 2, and Q(2) would be pin 3, and so on. If Q were defined to
have members "8 downto 1", Q(1) would be pin 10 and Q(2) would be pin 9, and so on. Nonbonded pads
indicated by OPEN, TIE0, or TIE1 keywords also provide position place holders in providing the correlation
between a given <subscripted port name> and its associated keyword.

Of the four mappings shown in the example, the first three are for packaging variations of a finished IC and the
fourth shows a die-bond mapping for a finished bare die that might be used in a “Multi-Chip Module.”

There may be different numbers of linkage and power ports among packaging variants for a component. In the given
example, the FK package had two more power/ground pins than the DW package. All ports GND1, GND2, VCC1, and
VCC2 must have appeared in the port definition. It is required that all physical linkage and power pins be included in
a <pin mapping>.

Figure B-3 illustrates the intent of the three values for unconnected pins.

Figure B-3—Example of unconnected pin types

In Figure B-3, there are three ports with <port ID> of “A,” “B,” and “C,” respectively. <port ID> “A” has no
electrical connection to the package substrate, so it would have the keyword OPEN in the package pin map and the
boundary-scan register cells associated with this <port ID> would capture exactly the same thing as they would
capture if there were a connection to the board, but there was no electrical connection on the board. <port ID> “B” is
electrically connected to the package substrate, but it is tied to ground in the package and not electrically connected
to a package pin to the board. It would be coded as TIE0 in the package pin map, and associated boundary-scan
register cells would observe a 0 on the port. Similarly, <port ID> “C” is electrically connected to the package
substrate where it is tied to Vdd in the package and is not connected to a package pin to the board. It would be coded
as TIE1 in the package pin map, and associated boundary-scan register cells would observe a 1 on the port. More
complex electrical connections in the package cannot be represented in the package pin map.

B.8.8 Grouped port identification

The optional <grouped port identification> is used to identify system I/O signals that have the special characteristic
of using more than one pin to carry a bit of data and for which the allowed states of the pins are restricted. Typically,
these are differential pairs of signals operating in either the voltage or the current domain. The syntax shown in
B.8.8.1 allows for future expansion if it is later determined that the description of signal groups containing more
than two signals is important.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

217
Copyright © 2013 IEEE. All rights reserved.

In the case of differential pairs where one signal is always the complement of the other (a state restriction), there is a
“Plus” pin (i.e., representative port) and a “Minus” pin (i.e., associated port). This standard states that a differential
pair may need to be treated as an analog circuit with a single boundary-scan register cell providing or receiving data
(see Figure 11-7 and Figure 11-9). However, due to the prevalence of differential signaling and the fact that digital
data are indeed being transmitted, it is desirable to accomplish boundary-scan interconnect testing on each pin of a
differential signal pair. The grouped port identification is used to describe such a situation to test generation
software.

Rule i) of 11.5.1 and rule n) of 11.6.1 mandate that the data provided by or captured by a boundary-scan register cell
have the same polarity as the data bit transmitted by the associated I/O pin. Clearly, the “Minus” signal cannot do
this since it always transmits the complement of the “Plus” signal. The “Plus” signal can be identified to software so
that it can be directly associated with the required boundary-scan register cell. Then the “Minus” signal is linked to
the “Plus” signal to indicate that a pairing exists and that the “Minus” signal is not associated with a required cell in
the boundary-scan register. (The “Minus” signal can, however, be associated with a redundant observe-only cell in
the boundary-scan register. See 11.8.)

Ports have a <grouped port identification> when the state restrictions apply during boundary-scan operation, e.g.,
during EXTEST. If the ports are restricted during normal system operation but not during boundary-scan operation,
then <grouped port identification> will lead software to produce incomplete results, e.g., an inadequate board
interconnect test. Therefore, such ports should not be listed in the PORT_GROUPING attribute.

B.8.8.1 Specifications

Syntax

<grouped port identification> ::= attribute PORT_GROUPING of
<component name> <colon> entity is <group table string> <semicolon>

<group table string>::= <quote> <group table> <quote>
<group table>::= <twin group entry> { <comma> <twin group entry> }
<twin group entry>::= <twin group type> <left paren> <twin group list> <right paren>
<twin group type>::= DIFFERENTIAL_VOLTAGE | DIFFERENTIAL_CURRENT
<twin group list>::= <twin group> { <comma> <twin group> }
<twin group>::= <left paren> <representative port> <comma> <associated port> <right paren>
<representative port>::= <port ID>
<associated port>::= <port ID>

Rules

a) Any <port ID> used in a <grouped port identification> shall have been declared in the <logical port
description> statement with a <pin type> of in, out, buffer, or inout.

b) Removed in this version of the standard; see B.6.2.

c) Any <port ID> appearing as a <representative port> shall also appear as a <port ID> in a <cell spec> in the
subsequent <boundary-scan register description> (see B.8.14).

d) Any <port ID> appearing as an <associated port> shall not appear as a <port ID> in a <cell spec> in the
subsequent <boundary-scan register description> (see B.8.14) unless the <function> of the <cell entry> is
OBSERVE_ONLY.

NOTE—This is an exception to semantic check s) of B.8.14.1.

e) The two ports listed in a <twin group> shall have the same pin type (see Table B-2).

f) Removed in this version of the standard; see B.6.2.

g) The <representative port> pin shall be the positive (“Plus”) pin of a differential pair, and the <associated
port> shall be the negative (“Minus”) pin of a differential pair.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

218
Copyright © 2013 IEEE. All rights reserved.

B.8.8.2 Description

Software must determine how to handle DIFFERENTIAL_CURRENT signals that are directly accessible to tester
resources. The DIFFERENTIAL_VOLTAGE signals typically would be physically similar to other logic signals
being tested. These two keywords help to inform software as to the physical nature of the way data are transmitted.

B.8.8.3 Examples

This example includes a <boundary-scan register description> (see B.8.14) for purposes of illustrating certain
semantic relationships.

entity diff is
generic(PHYSICAL_PIN_MAP:string:= "Pack");

port (CLK:in bit;

D_Pos:in bit_vector(1 to 4);
D_Neg:in bit_vector(1 to 4);
Q_Pos:out bit_vector(1 to 4);
Q_Neg:out bit_vector(1 to 4);
GND : POWER_0 bit;
VCC : POWER_POS bit;
OC_NEG : in bit;
TDO : out bit; TMS, TDI, TCK, TRST : in bit);

-- Get IEEE Std 1149.1-2013 attributes/definitions

use STD_1149_1_2013.all;

attribute COMPONENT_CONFORMANCE of diff : entity is "STD_1149_1_2013";

attribute PIN_MAP of diff : entity is PHYSICAL_PIN_MAP;

constant PACK:PIN_MAP_STRING:="CLK:1, " &

"Q_Pos:(2,3,4,5), " &
"Q_Neg:(7,8,9,10), " &
"D_Pos:(23,22,21,20), " &
"D_Neg:(19,17,16,15), " &
"GND:6, VCC:18, OC_NEG:24, " &
"TDO:11, TMS:12, TCK:13, TDI:14";

attribute PORT_GROUPING of diff : entity is

"Differential_Voltage ((Q_Pos(1),Q_Neg(1)),"& -- Voltage signals
"(Q_Pos(2), Q_Neg(2)),"&
"(Q_Pos(3), Q_Neg(3)),"&
"(Q_Pos(4), Q_Neg(4))),"&

"Differential_Current ((D_Pos(1),D_Neg(1)),"& -- Current signals
"(D_Pos(2), D_Neg(2)),"&
"(D_Pos(3), D_Neg(3)),"&
"(D_Pos(4), D_Neg(4)))";

(... some BSDL deleted for brevity ...)

attribute BOUNDARY_REGISTER of diff : entity is
-- num cell port function safe [input/ccell disval rslt]
 "9 (BC_1, CLK, input, X, OPENX)," &
 "8 (BC_1, OC_NEG, input, X, OPEN1)," & -- Merged input/control
 "8 (BC_1, *, control, 1)," & -- Merged input/control

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

219
Copyright © 2013 IEEE. All rights reserved.

 "7 (BC_1, D_Pos(1), input, X, PULL0)," &
 "6 (BC_1, D_Pos(2), input, X, PULL0)," &
 "5 (BC_1, D_Pos(3), input, X, PULL0)," &
 "4 (BC_1, D_Pos(4), input, X, PULL0)," &
 "3 (BC_1, Q_Pos(1), output3, X, 8, 1, PULL0),"& -- Also bussable
 "2 (BC_1, Q_Pos(2), output3, X, 8, 1, PULL0),"&
 "1 (BC_1, Q_Pos(3), output3, X, 8, 1, PULL0),"&
 "0 (BC_1, Q_Pos(4), output3, X, 8, 1, PULL0)";

end diff;

Software processing this BSDL description example is able to identify four pairs of voltage-differential pins and
four pairs of current-differential pins. Each differential signal is separated into positive and negative pins, with the
positive pins associated with cells in the boundary-scan register.

B.8.9 Scan port identification

The scan port identification statements identify the TAP of the component.

B.8.9.1 Specifications

Syntax

<scan port identification>::= <scan port stmt> { <scan port stmt> }
<scan port stmt>::= <TCK stmt> | <TDI stmt> | <TMS stmt> | <TDO stmt> | <TRST stmt>
<TCK stmt>::= attribute TAP_SCAN_CLOCK of <port ID> <colon> signal is

<left paren> <clock record> <right paren> <semicolon>
<TDI stmt>::= attribute TAP_SCAN_IN of <port ID> <colon> signal is true <semicolon>
<TMS stmt>::= attribute TAP_SCAN_MODE of <port ID> <colon> signal is true <semicolon>
<TDO stmt>::= attribute TAP_SCAN_OUT of <port ID> <colon> signal is true <semicolon>
<TRST stmt>::= attribute TAP_SCAN_RESET of <port ID> <colon> signal is true <semicolon>
<clock record>::= <real> <comma> <halt state value>
<halt state value>::= LOW | BOTH

Rules

a) The <port ID> occurring in a <TDO stmt> shall have a <pin type> of out in the <logical port description>
statement.

b) The <port ID> occurring in a <TCK stmt>, a <TDI stmt>, a <TMS stmt>, or a <TRST stmt> shall have a
<pin type> of in in the <logical port description> statement.

c) No <port ID> in the <scan port identification> shall later appear in the <boundary-scan register
description> (see B.8.14).

NOTE 1—This is an exception to semantic check s) of B.8.14.1.

d) A given <port ID> shall occur at most once in the <scan port identification>.

e) No value of a <port ID> element in the <scan port identification> shall have appeared as a <representative
port> or as an <associated port> in a <twin group> (see B.8.8).

f) The <TCK stmt>, <TMS stmt>, <TDI stmt>, and <TDO stmt> shall appear exactly once in a <scan port
identification>.

g) The <TRST stmt> shall either not appear, or shall appear exactly once in the <scan port identification>.

NOTE 2—These rules assure that exactly four or five statements, in any order, are found in the <scan port identification>.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

220
Copyright © 2013 IEEE. All rights reserved.

B.8.9.2 Description

The statements identify specific logical signals of the component as being signals of the TAP. A <clock record> is a
pair consisting of:

— A real number that gives the maximum operating frequency for TCK in hertz. In the following example,
20.0 MHz is specified as the maximum operating frequency.

— A VHDL type that has one of two values—LOW and BOTH—which specifies the state(s) in which the
TCK signal may be stopped without causing loss of data held in the test logic. BOTH indicates that the
clock can be stopped in either state. Components that allow TCK to be stopped only in the high state do not
conform to this standard.

Examples

attribute TAP_SCAN_IN of TDI : signal is true;
attribute TAP_SCAN_OUT of TDO : signal is true;
attribute TAP_SCAN_MODE of TMS : signal is true;
attribute TAP_SCAN_RESET of TRST : signal is true;
attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, BOTH);

Signal names TDI, TDO, TMS, TRST, and TCK are those that were used in the <logical port description> in the
above example (see B.8.8.3). The names used in the above examples are those defined in this standard; however,
arbitrary names could have been used.

NOTE—The function of each signal is specified by the attribute name rather than by the value of a <port ID> element in the
<scan port identification>.

B.8.10 Compliance-enable description

This portion of a BSDL description appears in the description of a component if the optional compliance-enable
feature described by this standard (see 4.8) has been implemented in that component. Otherwise, improper operation
of the part may occur during an automatically generated test.

B.8.10.1 Specifications

Syntax

<compliance-enable description> ::= attribute COMPLIANCE_PATTERNS of
<component name> <colon> entity is <compliance pattern string> <semicolon>

<compliance pattern string>::= <quote> <left paren> <compliance port list> <right paren>
<left paren> <pattern list> <right paren> <quote>

<compliance port list>::= <port ID> { <comma> <port ID> }
<pattern list>::= <pattern> { <comma> <pattern> }

NOTE 1—A number of <pattern> elements may be specified, reflecting the fact that there may be multiple combinations of bits
that enable compliance. For convenience, a <pattern> may contain X bits to reduce the size of a <pattern list>. As an example,
the <pattern list> 1111X, 0XXX0 specifies 10 unique bit patterns that enable compliance.

Rules

a) The <port ID> elements in a <compliance port list> shall be positionally associated with the bits in a
<pattern>.

NOTE 2—Thus, the first appearing <port ID> is associated with the first (leftmost) bit in <pattern> and so on.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

221
Copyright © 2013 IEEE. All rights reserved.

b) The number of <port ID> elements in the <compliance port list> shall be equal to the number of bits in
each <pattern> within the <pattern list>.

c) No <port ID> value shall occur more than once in the <compliance port list>.

d) No <port ID> value in the <compliance port list> shall also appear as a <port ID> value in the <scan port
identification> (see B.8.9).

e) Each <port ID> in the <compliance port list> shall have a <pin type> value in the <logical port
description> of in.

f) A <port ID> value in the <compliance port list> shall not appear in the <boundary-scan register
description> (see B.8.14) unless the <function> of the <cell entry> associated with the <port ID> is
OBSERVE_ONLY.

NOTE 3—This is an exception to semantic check s) of B.8.14.1.

g) Removed in this version of the standard; see B.6.2.

h) No <port ID> value in the <compliance port list> shall appear as a <port ID> in the <grouped port
identification> (see B.8.8).

Permissions

i) A <port ID> value in the <compliance port list> may appear in the <boundary-scan register description>
(see B.8.14) if the <function> of the <cell entry> associated with the <port ID> is OBSERVE_ONLY.

NOTE 4—This is an exception to semantic check s) of B.8.14.1.

B.8.10.2 Description

The following example is given for a component that implements an LSSD test mode as well as a standard boundary
scan. When the LSSD test mode is used, the test logic defined by this standard becomes configured as a part of a
scan path such that LSSD techniques can be used to verify the operation of the complete component. Thus, the
LSSD test mode takes priority over the IEEE 1149.1 test mode, and the control pins are compliance-enable pins.

B.8.10.3 Examples

attribute COMPLIANCE_PATTERNS of LSSD_IC: entity is
"(LSSD_A, LSSD_B, LSSD_P, LSSD_C1, LSSD_C2) (00011)";

Software that generates tests using test facilities defined by this standard must assure that any compliance-enable
conditions are first set up before exercising the TAP of the affected IC. Any compliance-enable pattern (provided as
a <pattern> within the <pattern list>) must be held constant for the duration of all boundary-scan testing.

B.8.11 Instruction register description

The next segment of the BSDL description concerns the component-dependent characteristics of the instruction
register. The details specified to characterize the implementation of the instruction register in a particular component
are:

— Length. The instruction register will be at least two bits long. Its length is not otherwise limited.

— Instructions. The register is required to support certain instructions. A designer may add any or all of the
optional instructions defined by this standard and/or any number of design-specific instructions. Also, this
standard provides for private instructions, which may be marked as such to warn applications not to use
them in order to prevent unsafe or undocumented behavior.

— Instruction binary codes (opcodes). The BYPASS instruction is decoded from a bit pattern fixed by this
standard [see rule b) of 8.4.1]. Bit patterns for other instructions are be specified by the test logic designer.
Each instruction may be decoded from several bit patterns.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

222
Copyright © 2013 IEEE. All rights reserved.

— Instruction capture. On passing through the Capture-IR controller state, the instruction register will load
data from its parallel input. In some register stages, certain fixed values are required, but in other register
stages, design-dependent values may be loaded.

BSDL provides a means of describing these characteristics and takes advantage of opportunities for semantic
checks, thus, verifying that the component is in compliance with this standard (that is, it has implemented the
required instruction binary codes properly).

The characteristics of the instruction register that are specified using BSDL are its length, the opcodes, the pattern
captured in the Capture-IR controller state, and whether any given instruction is public or private.

B.8.11.1 Specifications

Syntax

<instruction register description>::=
 <instruction length stmt>

<instruction opcode stmt>
<instruction capture stmt>
[<instruction private stmt>]

<instruction length stmt>::= attribute INSTRUCTION_LENGTH of <component name>

<colon> entity is <integer> <semicolon>
<instruction opcode stmt>::= attribute INSTRUCTION_OPCODE of <component name>

<colon> entity is <opcode table string> <semicolon>
<instruction capture stmt>::= attribute INSTRUCTION_CAPTURE of <component name>

<colon> entity is <pattern list string> <semicolon>
<instruction private stmt>::= attribute INSTRUCTION_PRIVATE of <component name>

<colon> entity is <instruction list string> <semicolon>
<opcode table string>::= <quote> <opcode description> { <comma> <opcode description> } <quote>
<opcode description>::= <instruction name> <left paren> <opcode list> <right paren>
<opcode list>::= <opcode> { <comma> <opcode> }
<opcode> ::= <pattern>
<pattern list string>::= <quote> <opcode list> <quote>
<instruction list string>::= <quote> <instruction list> <quote>
<instruction list>::= <instruction name> { <comma> <instruction name> }

Rules

a) The integer value of the attribute INSTRUCTION_LENGTH shall be greater than or equal to 2, and this
value shall be interpreted as the length of the instruction register.

b) All <opcode> elements shall have length equal to that of the instruction register.

c) The <opcode> element having a value of all 1s shall decode to BYPASS and shall not be defined explicitly
for any other instruction.

d) Where the value of <conformance identification> is not STD_1149_1_1990 or STD_1149_1_1993, an
<opcode> element for EXTEST shall be defined, and the <opcode description> in which it is defined shall
have EXTEST as the value of its <instruction name> element.

NOTE 1—Where a device conforms to the 2001 edition or later of this standard, as indicated by a <conformance
identification> value of, the all 0s opcode is not mandated for EXTEST. Therefore, an opcode bit pattern for EXTEST is
required to be explicitly defined. Furthermore, if the all 0s opcode is not otherwise assigned, it decodes to BYPASS.

e) Where the value of <conformance identification> is STD_1149_1_1990 or STD_1149_1_1993, the
<opcode> element made up of all 0s shall decode to EXTEST and shall not be defined explicitly for any
other instruction.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

223
Copyright © 2013 IEEE. All rights reserved.

NOTE 2—Where a device conforms to earlier editions of this standard, as indicated by a <conformance identification>
value of STD_1149_1_1990 or STD_1149_1_1993, the all 0s opcode is mandated for EXTEST and so it is
explicitly defined as such or presumed by implication.

f) Where the value of <conformance identification> is not STD_1149_1_1990 or STD_1149_1_1993, an
opcode for SAMPLE shall be defined, and the <opcode description> in which it is defined shall have
SAMPLE as the value of its <instruction name> element.

g) Where the value of <conformance identification> is not STD_1149_1_1990 or STD_1149_1_1993, an
opcode for PRELOAD shall be defined, and the <opcode description> in which it is defined shall have
PRELOAD as the value of its <instruction name> element.

h) Where the value of <conformance identification> is STD_1149_1_1990 or STD_1149_1_1993, an
opcode for SAMPLE/PRELOAD shall be defined, as follows:

1) At least one <opcode description> shall have SAMPLE as the value of its <instruction name>
element.

2) Any <opcode description> that has PRELOAD as the value of its <instruction name> element shall
contain only such values for <pattern> as have been defined for any <opcode description> that fulfills
the requirement for rule h1).

NOTE 3—Where a device conforms to earlier editions of this standard, as indicated by a <conformance identification>
value of STD_1149_1_1990 or STD_1149_1_1993, the functions of SAMPLE and PRELOAD were required to be
implemented in a merged fashion, SAMPLE/PRELOAD. Therefore, every opcode that is defined for SAMPLE is
implicitly defined for PRELOAD. Furthermore, where an opcode is defined for PRELOAD, it must have a binary value
that matches one defined for SAMPLE.

i) Where permission h) of 8.1.1 is met, the length of the selected registers shall be identical for each of the
instructions that share the same opcode.

j) Where permission h) of 8.1.1 is not met, opcodes containing X bits shall not be ambiguous (i.e., decodable
as two or more different instructions); that is, if there are two <opcode description> elements and two
<pattern> elements such that an X appears in each of the two <opcode description> elements, the two
<pattern> elements shall differ in some character position in which neither pattern contains the character X.

k) The <pattern> value in the <instruction capture stmt> shall have a length equal to that of the instruction
register, and the two least significant bits of this <pattern> shall be 01.

l) Only design-specific instructions shall be defined as private.

m) Any <instruction name> appearing in an <instruction list> shall appear only once in the <instruction list>

and shall also appear in the <opcode table string>.

n) Where the value of <conformance identification> is not STD_1149_1_1990, STD_1149_1_1993, or
STD_1149_1_2001, and the <opcode table string> contains an instruction name of CLAMP_HOLD,
CLAMP_RELEASE, or TMP_STATUS, the <opcode table string> shall contain all three instruction
names.

o) Where the value of <conformance identification> is not STD_1149_1_1990, STD_1149_1_1993, or
STD_1149_1_2001, and the <opcode table string> contains an instruction name of INIT_SETUP or
INIT_SETUP_CLAMP, the <opcode table string> shall contain both instruction names.

B.8.11.2 Description

To summarize, the purpose of each attribute is as follows:

INSTRUCTION_LENGTH: The <instruction length stmt> defines the length of the instruction register and, hence,
the number of bits that each opcode pattern must contain in subsequent statements of the <instruction register
description>.

INSTRUCTION_OPCODE: The <instruction opcode stmt> is a BSDL string containing instruction identifiers and
their associated bit patterns. The rightmost bit in the pattern is that closest to TDO (i.e., that shifted in first).
Each <opcode description> is such a pair. This standard mandates the existence of BYPASS, SAMPLE,

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

224
Copyright © 2013 IEEE. All rights reserved.

PRELOAD, and EXTEST instructions, with a mandatory bit pattern for BYPASS. Decoding of bit patterns that
are not explicitly listed must default to the BYPASS instruction [see rule d) of 8.1.1].

INSTRUCTION_CAPTURE: The <instruction capture stmt> specifies the bit pattern that is loaded into the
instruction register when the TAP controller passes through the Capture-IR state. This bit pattern is shifted out
whenever a new instruction is shifted in. This standard mandates that the two least significant bits must be 01.
The remainder of this bit pattern is design specific, and the presence of X bits indicates bits that are not
deterministic.

INSTRUCTION_PRIVATE: The optional <instruction private stmt> identifies instructions that are private and
potentially unsafe for use by other than the manufacturer of the component. By definition, the effects of these
instructions are undefined to the general public; their use should be avoided. Note that failure to follow
warnings about private instructions can result in damage to the component, circuit board, or system.

B.8.11.3 Examples

attribute INSTRUCTION_LENGTH of My_IC: -- Must be first
entity is 4;

attribute INSTRUCTION_OPCODE of My_IC: -- Must be second
entity is

"EXTEST (0011), " &
"EXTEST (1011), " &
"BYPASS (1111), " &
"SAMPLE (0001, 1000), " &
"PRELOAD(1001, 1000)," &
"HIGHZ (0101), " &
"SECRET (1010) ";

attribute INSTRUCTION_CAPTURE of My_IC: -- Must be third
entity is "0001";

attribute INSTRUCTION_PRIVATE of My_IC: -- Optional
entity is "Secret";

NOTE 1—In the above example, BYPASS was shown to be decoded from 1111. Because this is the mandatory pattern specified
by this standard, its expression is redundant and not required. In addition to any explicitly assigned patterns, all unassigned
patterns will also be decoded as BYPASS [see rule d) of 8.1.1].

NOTE 2—For devices designed to conform to editions of this standard before IEEE Std 1149.1-2001, EXTEST had a mandatory
pattern of all zeros (for example, “0000”) and so, where the value of <conformance identification> in a given BSDL description
is STD_1149_1_1990 or STD_1149_1_1993, the expression of this mandatory decode is redundant and not required. For
devices designed to conform to all later editions of this standard, EXTEST has no mandatory bit pattern and so, where the value of
<conformance identification> in a given BSDL description is not STD_1149_1_1990 or STD_1149_1_1993, EXTEST and
its bit pattern must occur in the <instruction opcode stmt>.

NOTE 3—Also, notice that EXTEST is given on two lines with two decodes. This shows that multiple lines may be used for
each instruction if needed (for instance, when this attribute is written by a computer program).

NOTE 4—As would be required in the case that the <conformance identification> were STD_1149_1_2001,
STD_1149_1_2013, or later, the above example illustrates the specification of a pattern for PRELOAD. It also illustrates
options for SAMPLE and PRELOAD instructions both where the same pattern is used for both and where unique patterns are used
for each. It should be further noted that where a pattern for SAMPLE is the same as a pattern for PRELOAD, all rules for both
instructions must be met. This combination is equivalent to the SAMPLE/PRELOAD instruction in previous editions of this
standard.

B.8.12 Optional device register description

This clause defines which components are documented by the BSDL by specifying one or more bit pattern values
returned in response to selection of the optional device identification register instructions—IDCODE and, if

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

225
Copyright © 2013 IEEE. All rights reserved.

implemented, USERCODE. If the value returned matches a value documented by these attributes, then the BSDL
describes that component.

B.8.12.1 Specifications

Syntax

<optional register description> ::= <optional register stmt> [<optional register stmt>]
<optional register stmt> ::= <idcode statement> | <usercode statement>
<idcode statement>::= attribute IDCODE_REGISTER of <component name>

<colon> entity is <quote> <32-bit pattern list> <quote> <semicolon>
<usercode statement>::= attribute USERCODE_REGISTER of <component name>

<colon> entity is <quote> <32-bit pattern list> <quote> <semicolon>
<32-bit pattern list> ::= <32-bit pattern> { <comma> <32-bit pattern> }

Rules

a) If a device identification register is specified by inclusion of an <idcode statement>, the least significant bit
in any <32-bit pattern> element within the <idcode statement> shall be 1.

b) A single <idcode statement> shall appear in a BSDL description if and only if IDCODE appears as the
value of an <instruction name> element in an <opcode description> of the <instruction opcode stmt> (see
B.8.11).

c) A single <usercode statement> shall appear in a BSDL description if and only if both IDCODE and
USERCODE appear as the value of <instruction name> elements in an <opcode description> of the
<instruction opcode stmt> (see B.8.11).

d) A bit pattern in the manufacturer code shall conform to the specifications in 12.2.1.

Recommendations

e) When an <idcode statement> lists more than one <32-bit pattern>, the first <32-bit pattern> in the list
should be the value of the most recent change and should not include the character X.

Permissions

f) An <idcode statement> may list every device ID code for which the BSDL is applicable.

g) A <usercode statement> may list every device user code for which the BSDL is applicable.

NOTE—Such lists create a one-to-many relationship between the BSDL and the components it describes. There is no
implication that a single component may return multiple ID code values.

B.8.12.2 Description

Only one IDCODE_REGISTER attribute and one USERCODE_REGISTER attribute may appear in a single
BSDL, although order is not important. The coding of IDCODE_REGISTER values is defined in 12.2.1, and not
repeated here. If USERCODE_REGISTER appears, then IDCODE_REGISTER must also appear, as the
USERCODE_REGISTER defines multiple ways of programming a single type of programmable component.

It may be desirable to include in a single BSDL a list of all of the device identification register and usercode register
values for which a particular BSDL is valid. The alternative is having multiple BSDL files that differ only by the
value of the device identification register and/or usercode register.

For a new device, the manufacturer provides a new BSDL for the device. For later versions of the device, if the
previous BSDL is otherwise applicable, the manufacturer may modify the existing BSDL to include a new device
identification register pattern, or may issue a new BSDL. In some cases, an X in the version or part-number codes

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

226
Copyright © 2013 IEEE. All rights reserved.

will be sufficient to specify all allowable codes. In other cases, a comma-separated list of values will be required to
describe all applicable device identification register patterns for which the BSDL is applicable.

B.8.12.3 Examples

attribute IDCODE_REGISTER of My_IC: entity is
"0011" & -- Version
"1111000011110000" & -- Part number
"00001010100" & -- Identity of the manufacturer
"1"; -- Required by IEEE STD 1149.1-1990

In the above example, only one device ID is listed in the BSDL.

attribute IDCODE_REGISTER of My_IC: entity is

 -- latest version
 "0100" & -- Version code 0100
 "1111000011110000" & -- Part number
 "00001010100" & -- Identity of the manufacturer
 "1," & -- Required by IEEE STD 1149.1

 -- older versions
 "001X" & -- Version codes 0011 and 0010
 "1111000011110000" & -- Part number
 "00001010100" & -- Identity of the manufacturer
 "1"; -- Required by IEEE STD 1149.1

In the above example, devices with device ID versions 0100, 0011, and 0010 are compatible with the BSDL, and
version 0100 is the most recent.

attribute USERCODE_REGISTER of My_IC: entity is
"10XX" & "0011" & "1100" & "1111" & -- Start 1st 32-bit pattern
"0000" & "0000" & "0000" & "1111,"& -- End 1st 32-bit pattern

"111X" & "0011" & "1001" & "1000" & -- Start 2nd 32-bit pattern
"0000" & "0100" & "1001" & "1000"; -- End 2nd 32-bit pattern

In the above example, two user codes are described. In all of these examples, concatenation is used to delimit fields
within the codes.

The <idcode statement> and <usercode statement> define one or more specific components documented by the
BSDL. When the codes are read from components on a board, the value read is compared to the values supplied by
these attributes to help verify that the correct BSDL is being used for that component on the board. This allows a
single BSDL to document more than one component, and all components documented by the BSDL may be
specified using either multiple patterns or X bits within a pattern.

For the IDcode register, it is also possible that a single component type may be sourced from different manufacturers
with different manufacturer fields or that a component may be released in different versions from the same
manufacturer, all without needing a different BSDL.

An X can also be used to mask subfields within a code that are not important for testing purposes; in this case, X
specifies a “don’t care” position in the pattern.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

227
Copyright © 2013 IEEE. All rights reserved.

B.8.13 Register access description

All instructions place a test data register between TDI and TDO. Design-specific instructions may access test data
registers mandated by this standard or design-specific registers. This standard allows a designer to place additional
test data registers, referenced by design-specific instructions, in the component.

It is important for test development software to know of the existence and length of all public test data registers and
the names of their associated instructions.

B.8.13.1 Specifications

Syntax

<register access description> ::= attribute REGISTER_ACCESS of
<component name> <colon> entity is <register access string> <semicolon>

<register access string>::= <quote> <register association> { <comma> <register association> } <quote>
<register association>::= <register> <left paren> <instruction capture list> <right paren>
<instruction capture list>::= <instruction capture> { <comma> <instruction capture> }
<instruction capture>::= <instruction name> [CAPTURES <pattern>]
<register>::= <std fixed register> | <std var register> | <design specific register>
<std fixed register>::= BOUNDARY | BYPASS | DEVICE_ID | TMP_STATUS
<std var register>::= <std var reg name> [<left bracket> <reg length> <right bracket>]
<std var reg name>::= ECID | INIT_DATA | INIT_STATUS | RESET_SELECT
<design specific register>::= <VHDL identifier> [<left bracket> <reg length> <right bracket>]
<reg length>::= <integer> | <asterisk>

Rules

a) The association of the BYPASS, CLAMP, EXTEST, HIGHZ, IDCODE, INTEST, PRELOAD, SAMPLE,
USERCODE, CLAMP_HOLD, CLAMP_RELEASE, and TMP_STATUS instructions with registers is
mandated by this standard, and those registers either have lengths that are fixed and mandated by this
standard or lengths that are defined elsewhere in BSDL. Descriptions of these assignments (a <register
association>) are redundant and not needed in BSDL, but if such descriptions are given:

1) They shall be checked against the mandatory assignment specified in this standard, and an error is
issued if they are not correct.

2) They shall not have a “CAPTURES <pattern>” element in their description. These capture data are
specified either in this standard or elsewhere in BSDL.

3) They shall not have a register length specification in their description.

b) A <register association> shall be given for the ECIDCODE, IC_RESET, INIT_SETUP,
INIT_SETUP_CLAMP, and INIT_RUN instructions, and:

1) They shall be checked against the mandatory register assignment specified in this standard, and an error
is issued if they are not correct.

2) They shall not have a “CAPTURES <pattern>” element in their description. These capture data are
specified either in this standard or elsewhere in BSDL.

3) They shall have a register length specification in their description.

NOTE 1—The association of registers with the ECIDCODE, IC_RESET, INIT_SETUP, INIT_SETUP_CLAMP, and
INIT_RUN instructions is mandated by this standard, but the length is not mandated.

c) Any public instruction (an instruction whose name appears in the <instruction opcode stmt> but does not
appear in the <instruction private stmt> [see B.8.11]) not listed in rule a) or rule b) in this subclause shall
have an associated test data register defined.

d) The <reg length> of each <std var register> or <design specific register> shall be specified on the first
appearance in a <register association>, and shall be greater than 0 or the deferred value of asterisk (*);

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

228
Copyright © 2013 IEEE. All rights reserved.

furthermore, if the <register> appears in more than one <register association>, subsequent appearances shall
either not define the length again or define it identically.

e) All instructions, the names of which appear as the value of an <instruction name> element in any
<instruction capture> element of the <register access string>, shall appear as an <instruction name> element
in an <opcode description> element in the <instruction opcode stmt> (see B.8.11).

f) Any <instruction name> element shall appear in only one <instruction capture list> within the <register
access string>.

g) The <pattern> value in an <instruction capture> element shall contain the same number of bits as the
<register> in the same <register association>.

h) When a design-specific <register> is defined by either a REGISTER_FIELDS or a
REGISTER_ASSEMBLY attribute, the <reg length> for that register in the REGISTER_ACCESS
attribute shall have a deferred value of <asterisk> (*), and a “CAPTURES <pattern>” element shall not be
included.

NOTE 2—Both the length and the capture value, if any, are defined in the REGISTER_FIELDS and
REGISTER_ASSEMBLY attributes. See B.8.19, B.8.20, and B.8.21.

i) When a design-specific <register> is implemented as a variable-length register, the <reg length> for that
register in the REGISTER_ACCESS attribute shall be either the length after the TAP controller is reset, as
specified in 6.1.3.1, or a deferred value of <asterisk> (*).

NOTE 3—The reset of the TAP controller by either a power-up signal or the TRST* TAP pin will force both the Reset*
and CHReset* signals as well.

B.8.13.2 Examples

attribute REGISTER_ACCESS of ttl74bct8374: entity is
"BOUNDARY (READBN, READBT, CELLTST), " &
"BYPASS (TOPHIP, SETBYP, RUNT, TRIBYP), " &
"MEMBIST[*] (MBIST)," &
"BCR[2] (SCANCN, SCANCT CAPTURES 0X)";

B.8.13.3 Description

In this example, READBN, READBT, CELLTST, TOPHIP, SETBYP, RUNT, TRIBYP, MBIST, SCANCN, and
SCANCT must have been defined in the <instruction opcode stmt> (see B.8.11). The first three instructions select the
boundary-scan register, while the next four instructions select the bypass register. The MBIST instruction selects the
design-specific MEMBIST register for which the length and possible capture value are deferred until defined by
either a REGISTER_FIELDS or a REGISTER_ASSEMBLY attribute. The last two instructions (SCANCN and
SCANCT) select a two-bit design-specific register called BCR. The SCANCT instruction also shows a capture value
0X that will be loaded into BCR when passing through the Capture-DR controller state. No capture value is specified
for the SCANCN instruction.

By identifying the association between instructions and test data registers, the length of the test data register scan
sequence can be determined for a given instruction. The lengths and associations to standard instructions of the
mandatory boundary-scan register, bypass register, and instruction register, as well as the optional device
identification register, are fixed by the standard or known from other BSDL statements. Instructions defined by this
standard that select predefined registers with a fixed length are not required to be listed in the
REGISTER_ACCESS description. Each instruction must have an associated test data register except for private
instructions (see B.8.11), for which the identification of the selected register is optional.

The specification of the length of a register may be deferred by using the asterisk character (*) in place of a numeric
length. In that case, the register must be defined in either a REGISTER_FIELDS or a REGISTER_ASSEMBLY
attribute (see B.8.19 and B.8.21, respectively).

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

229
Copyright © 2013 IEEE. All rights reserved.

As of the 2013 version of this standard, variable-length registers are permitted. If such registers are associated with a
public instruction, then the default length after a reset must be defined.

Note that this standard allows user instructions to reference several registers at once if they are concatenated [see
permission h) of 9.2.1]. In BSDL, the logical register resulting from such a concatenation is treated as if it were a
separate register with a distinct name and length.

B.8.14 Boundary-scan register description

The boundary-scan register description may be defined either of two ways. It can consist of a single list of
boundary-scan register cells numbered 0 to RegLength-1 (where the total number of cells in the boundary-scan
register is RegLength), or it can consist of several boundary-scan register segment descriptions, each a list of
boundary-scan register cells numbered 0 to SegLength-1 (where the total number of cells in the segment is
SegLength). The cells may be listed in any order, but all must be defined. Cell 0 is closest to TDO.

The boundary-scan register cells can vary in design and purpose. Clause 11 shows many example cell designs, but
many others are possible under the rules of this standard.

When there are several boundary-scan register segments defined, a REGISTER_ASSEMBLY statement (see
B.8.19) is used to define the construction of the full boundary-scan register, including segment-select or domain-
control cells (see 9.4), which are placed before the segment they control.

The list of cells is the same regardless of whether the cell description is part of a full boundary-scan register
description or a boundary-scan register segment description.

The characteristics of each cell design used in a component are specified before the cells can be referenced in the
<boundary-scan register description>. For the example cell designs included in this standard, cell descriptions are
contained in the Standard BSDL Package STD_1149_1_2013 (see B.9). Cells defined in this BSDL package are
referenced through a simple set of names listed in Table B-3.

Table B-3—List of cells defined in the Standard BSDL Package and relevant figure numbers

Name Figuresa Comments
BC_0 Special cell Degenerate formb
BC_1 Figure 11-19, Figure 11-31, Figure 11-35c,

Figure 11-35d, Figure 11-37c, Figure 11-47d
Design usable for many functions

BC_2 Figure 11-15, Figure 11-32, Figure 11-36c,
Figure 11-36d, Figure 11-38c, Figure 11-39c,
Figure 11-40(output), Figure 11-42c

INTEST unsupported on Output2

BC_3 Figure 11-16 Input or Internal only
BC_4 Figure 11-17, Figure 11-18, Figure 11-40(input) Input, Observe_Only, Clock, or Internal only
BC_5 Figure 11-47c Combined Input/Control
BC_7 Figure 11-38d Bidirectional

BC_8 Figure 11-41, Figure 11-42d
Simpler bidirectional, lacking INTEST support;
captures the signal at the corresponding pin even
while operating in output mode

BC_9 Figure 11-33

Output that captures the signal at the
corresponding pin for EXTEST and captures the
signal driven from the system logic for INTEST
and SAMPLE

BC_10 Figure 11-34
Simpler output, lacking INTEST support; always
captures the signal at the corresponding pin
instead of the signal driven from the system logic

a The suffix “c” is used to denote a control cell shown in a cited figure. The suffix “d” denotes a data cell.
b BC_0 is a cell that captures the value specified by the rules of this standard and that captures a don’t-care value whenever this standard allows
options. It can be used whenever there is uncertainty about the exact behavior of a compliant cell.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

230
Copyright © 2013 IEEE. All rights reserved.

The method of describing cells other than those depicted in this standard is described in B.10. When such cell
designs are to be used, their descriptions must be given in a user-supplied BSDL package and BSDL package body.

Several rules must be observed when combining cells to create a boundary-scan register conformant to this standard.
Adherence to some rules can be checked during processing of the BSDL description of a component. For example,
some cell designs may be used only on a component input. Some will not support the INTEST instruction—this is
allowable if INTEST does not appear in the <instruction opcode stmt> (see B.8.11). Some cells require the aid of
another to control three-state enables or the direction of signal flow.

A very general cell design from this standard (see Figure 11-19 and Figure 11-31) is shown in Figure B-4.
Figure B-5 shows a symbolic representation of the same cell design.

Figure B-4—Cell design corresponding to Figure 11-19 and Figure 11-31

Figure B-5—Symbolic representation of a boundary-scan register cell

The design in Figure B-4 consists of a parallel input (PI), a parallel output (PO), a multiplexer controlled by a mode
signal, and two flip-flops. The mode signal is a function of the current instruction. A serial input (SI) and a serial
output (SO) form the shift path through the cell. The mode signal is a logic 0 or 1 that tells a cell what test function
to perform (see Table 11-3). Note that the symbolic representation does not include:

— The multiplexer controlled by signal Shift-DR

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

231
Copyright © 2013 IEEE. All rights reserved.

— The mode signal and multiplexer

— The clock signals, Clock-DR, and Update-DR

These parts of the cell design do not need to be considered in BSDL because the control and operation of boundary-
scan register cells are fully defined by this standard. Thus, Figure B-5 is a full representation of the cell design
shown in Figure B-4 for the purposes of BSDL. The parallel input and output are shown in the figure, and they are
connected to various places depending on the application. The two flip-flops are labeled C (for Capture) and U (for
Update) to represent their uses. The C flip-flop captures data from the system data input of the cell in the Capture-
DR controller state and lies on the shift register path. The U flip-flop loads data from the C flip-flop in the Update-
DR controller state. The shift path is shown because many such cells will be linked together in a shift chain that
makes up the boundary-scan register. The shift path links only the C flip-flops.

One cell design, shown in Figure 11-18 in this standard, is a cell with observe capability and no control capability. It
has a symbol without a U flip-flop (Figure B-6). This cell can be used at a system input pin, and it has the advantage
of a lower propagation delay in some implementations, or as a redundant observer on a system output pin. However,
it does not support the optional INTEST instruction at a nonclock input.

Figure B-6—Symbolic representation of a boundary-scan register cell without an update stage

B.8.14.1 Specifications

Syntax

<boundary-scan register description> ::= <fixed boundary stmts> | <segment boundary stmts>
<fixed boundary stmts> ::= <boundary length stmt> <boundary register stmt>
<segment boundary stmts> ::= <assembled boundary length stmt> <boundary register segments>

<boundary length stmt> ::= attribute BOUNDARY_LENGTH of

<component name> <colon> entity is <register length> <semicolon>
<register length> ::= <integer>

<boundary register stmt> ::= attribute BOUNDARY_REGISTER of

<component name> <colon> entity is <cell table string> <semicolon>
<cell table string> ::= <quote> <cell table> <quote>

<assembled boundary length stmt> ::= attribute ASSEMBLED_BOUNDARY_LENGTH of

<component name> <colon> entity is
<left paren> <reset length> <comma> <register length> <right paren> <semicolon>

<reset length> ::= <integer>

PI

SO

SI

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

232
Copyright © 2013 IEEE. All rights reserved.

<boundary register segments> ::= <boundary register segment> { <boundary register segment> }
<boundary register segment> ::= attribute BOUNDARY_SEGMENT of

<component name> <colon> entity is <boundary segment string> <semicolon>
<boundary segment string>::= <quote> <boundary segment list>

{ <comma> <boundary segment list> } <quote>
<boundary segment list>::= <boundary segment name>

<left bracket> <boundary segment length> <right bracket>
<left paren> <cell table> <right paren>

<boundary segment name> ::= <VHDL identifier>
<boundary segment length> ::= <integer>

<cell table> ::= <cell entry> { <comma> <cell entry> }
<cell entry> ::= <cell number> <left paren> <cell info> <right paren>
<cell number> ::= <integer>
<cell info> ::= <cell spec> [<comma> <input or disable spec>]
<cell spec> ::= <cell name> <comma> <port ID or null> <comma> <function> <comma> <safe bit>
<cell name> ::= <VHDL identifier>
<port ID or null> ::= <port ID> | <asterisk>
<function> ::= INPUT | OUTPUT2 | OUTPUT3 | CONTROL |

CONTROLR | INTERNAL | CLOCK | BIDIR | OBSERVE_ONLY
<safe bit>::= 0 | 1 | X
<input or disable spec> ::= <input spec> | <disable spec>
<input spec> :: = EXTERN0 | EXTERN1 | PULL0 | PULL1 | OPEN0 | OPEN1 | KEEPER |

OPENX | EXPECT1 | EXPECT0
<disable spec>::= <ccell> <comma> <disable value> <comma> <disable result>
<ccell>::= <integer>
<disable value>::= 0 | 1
<disable result>::= WEAK0 | WEAK1 | PULL0 | PULL1 | OPEN0 | OPEN1 | KEEPER | Z

Rules

a) The value of the integers <register length>, <boundary segment length>, and <reset length> shall be greater
than zero.

b) For every <cell entry> element, the <cell number> element and the optional <ccell> element of the
<disable spec> element shall have a value in the range from 0 to <register length> minus 1 for a <cell
table> in a <cell table string>, or <boundary segment length> minus 1 for a <cell table> in a <boundary
segment list>.

c) Every <integer> with a value from 0 to <register length> minus 1 or <boundary segment length> minus 1,
as applicable, shall appear as a <cell number> in some <cell entry> of the <cell table>.

d) Only a pair of merged cells (see B.11.2.3) shall correspond to two <cell entry> elements containing
identical <cell number> elements in the <cell table>; moreover:

1) The only possible mergers shall be of cells with <function> equal to INPUT and cells with <function>
equal to OUTPUT2, OUTPUT3, CONTROL, or CONTROLR.

2) The value of the <cell name> element in both <cell entry> elements shall be equal.

3) The <safe bit> values for these two cells shall be identical unless one value is X.

4) The <data source> values of the <capture descriptor> values (see B.10.1) for these two cells shall be
identical for all supported instructions.

e) Every <cell name> appearing in the <cell table> shall be the name of a cell described in either the Standard
BSDL Package or a user-supplied BSDL package.

f) While <cell entry> elements may be listed in the <cell table> in any order of <cell number>, the order of
scan of boundary-scan cells shall be in numerical order of the <cell number>, with the <cell number> value
of 0 being closest to TDO.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

233
Copyright © 2013 IEEE. All rights reserved.

g) Removed in this version of the standard; see B.6.2.

h) A <port ID or null> shall have the value asterisk (*) when, in the same <cell spec> element, the <function>
element has the value CONTROL, CONTROLR, or INTERNAL.

i) Any <cell entry> element containing a <function> element equal to INPUT, CONTROL, CONTROLR,
INTERNAL, OBSERVE_ONLY, or CLOCK shall not also contain a <disable spec> element, and any
<cell entry> element containing a <function> equal to CONTROL, CONTROLR, INTERNAL,
OUTPUT2, OUTPUT3, or BIDIR shall not also contain an <input spec> element.

j) Any <cell entry> element containing a <function> element equal to OUTPUT3 or BIDIR also shall contain
a <disable spec> element, and any <cell entry> element containing a <function> element equal to INPUT
or CLOCK shall also contain an <input spec> element.

NOTE 1—It is possible for two or more <cell entry> elements with <function> INPUT (or CLOCK) to have the same
<port ID>. These would normally have the same <input spec> value, but there may be situations such as two mutually
exclusive I/O macros, which connect to the same pin, where the entries could have different <input spec> values.

k) Any <cell entry> element containing a <function> element equal to OUTPUT2 and containing a <disable
spec> element shall satisfy the following conditions:

1) The value of <cell number> shall equal the value of <ccell>. (This implies that an OUTPUT2 cell may
control itself.)

2) The value of the <disable value> shall be equivalent to the (weak) logical value of the <disable result>;
that is, when the <disable value> is 0, the <disable result> shall be WEAK0 or PULL0, and when the
<disable value> is 1, the <disable result> shall be WEAK1 or PULL1.

l) Any <cell entry> element containing a <function> element equal to BIDIR and a <ccell> element value
equal to the value of the <cell number> element (implying a bidirectional cell that controls itself) shall have
the value of the <disable value> equivalent to the (weak) logical value of the <disable result> element; that
is, when the <disable value> is 0, the <disable result> shall be WEAK0 or PULL0, and when the <disable
value> is 1, the <disable result> shall be WEAK1 or PULL1.

m) For any <cell entry> element containing a <function> element equal to CONTROL or CONTROLR, the
value of the <cell number> element of that <cell entry> shall appear as the value of the <ccell> element of
the <disable spec> element of some other <cell entry> elements.

n) For any <cell entry> containing a <function> element equal to CONTROL or CONTROLR, the value of
the <safe bit> element of that <cell entry> shall be equal to the value of the <disable value> element of the
<disable spec> element of the other <cell entry> elements that satisfy semantic check m) of this subclause
(i.e., the controlled cells).

o) The <ccell> element of a <disable spec> element shall have only the values permitted under the conditions
of semantic check k) through semantic check m) of this subclause.

p) When the value of <conformance identification> (see B.8.6) is not STD_1149_1_1990, and two distinct
<disable spec> elements in the <cell table> have <ccell> elements with a common value, the values of the
<disable value> elements of these two <disable spec> elements shall also be equal.

NOTE 2—Starting with the 1993 revision, a single control cell is not allowed to enable some drivers while
simultaneously disabling others.

q) Removed in this version of the standard.

r) Removed in this version of the standard.

s) Excepting those elements explicitly mentioned in the following list, all <port ID> elements having a <pin
type> value of in, out, buffer, or inout in the <logical port description> (see B.8.3) shall appear as <port
ID> elements in the <boundary register stmt> or in the assembled boundary-scan register with all
excludable segments included; specifically exempted from this check are any <port ID> elements satisfying
any of the following conditions:

1) Rule d) of B.8.8.1 (grouped ports)

2) Rule c) of B.8.9.1 (scan port identification)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

234
Copyright © 2013 IEEE. All rights reserved.

3) Rule f) of B.8.10.1 (compliance-enable description)

NOTE 3—This semantic check means all nonexempt system pins must be associated with cell(s) in the boundary-scan
register. This semantic check also means that all <scan port identification> pins must not be associated with cells in the
boundary-scan register. <Grouped ports> and <compliance-enable descriptions> may appear in the boundary-scan
register description.

NOTE 4—Semantic check cc) and semantic check s) of this subclause state which <port ID> elements in the <logical
port description> must appear in the <boundary register stmt>, and vice versa. The next semantic checks state the
properties that must exist for <function> elements within <cell entry> elements.

t) Moved to Permissions in this version of the standard [see permission bb) in this subclause].

u) For any <port ID> element that is not an <associated port> or an element of a <compliance port list> or a
<port ID> element in a <scan port stmt> appearing in one or more <cell entry> element of the <boundary
register stmt>, when the <pin type> in the <pin spec> of that <port ID> is:

1) in, the <function> of at least one <cell entry> shall be INPUT or CLOCK unless the <port ID> is a
<representative port>; in that case there shall be one and only one <cell entry> with a <function>
INPUT or CLOCK.

NOTE 5—The cell of a <representative port> described with <function> INPUT or CLOCK is the cell on the
single ended output of a differential receiver. Additional cells on a <representative port> are described with
<function> OBSERVE_ONLY.

2) out, the <function> of exactly one <cell entry> shall be OUTPUT2 or OUTPUT3; furthermore, when
the <function> is OUTPUT2, the <cell entry> shall have a <disable spec> according to semantic
check k) of this subclause.

3) buffer, the <function> of exactly one <cell entry> shall be OUTPUT2, and the <cell entry> shall not
contain a <disable spec>.

4) inout, the <function> of the <cell entry> shall be BIDIR, OUTPUT2, OUTPUT3, or INPUT;
furthermore, if the <function> value is BIDIR, no other <cell entry> containing the same <port ID>
shall have the <function> BIDIR, OUTPUT2, or OUTPUT3; furthermore, if the <function> of the
<cell entry> is OUTPUT2 or OUTPUT3, no other <cell entry> containing the same <port ID> shall
exist with the <function> value of BIDIR, OUTPUT2, or OUTPUT3, and at least one other <cell
entry> containing the same <port ID> but a different <cell number> shall exist with the <function>
value of INPUT; furthermore, if the <function> of the <cell entry> is INPUT, one other <cell entry>
containing the same <port ID> but a different <cell number> shall exist with the <function> value of
OUTPUT2 or OUTPUT3.

NOTE 6—Additional OBSERVE_ONLY cells may monitor the state of any I/O pin other than TAP scan pins.

v) The <function> in a <cell entry> shall be an existing <cell context> (see B.10.1) within the <capture
descriptor> of the cell named by <cell name>.

w) If INTEST occurs as the value of an <instruction name> element in an <opcode description> element of
the <instruction opcode stmt>, then, for each <port ID> element satisfying semantic check s) in this
subclause, a <cell entry> shall exist that references that <port ID> and that possesses INTEST support
capability.

NOTE 7—For this semantic check, a given <cell entry> does not possess INTEST support capability unless the
<capture descriptor list> (see B.10.1) of the cell design named by the <cell name> element meets one of the following
conditions:

— For a <function> element value of INPUT, CLOCK, OUTPUT2, OUTPUT3, CONTROL, or
CONTROLR, a <capture descriptor> element contains a <cell context> element value that matches the
<function> element value and has a <capture instruction> element value of INTEST.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

235
Copyright © 2013 IEEE. All rights reserved.

— For a <function> element value of BIDIR, one <capture descriptor> element contains a <cell context>
element value of BIDIR_IN and another <capture descriptor> element contains a <cell context> element
value of BIDIR_OUT, and both such <capture descriptor> elements have a <capture instruction> element
value of INTEST.

NOTE 8—For this semantic check, a given <cell entry> does not possess INTEST support capability if its <function>
element value is OBSERVE_ONLY. An OBSERVE_ONLY cell cannot provide INTEST support capability.

x) The <disable result> values of OPEN0 and OPEN1 shall only be used in a <cell entry> element
containing a <function> element equal to BIDIR and a <ccell> element value not equal to the value of the
<cell number> element (the bidirectional cell does not control itself) and shall describe the behavior of the
input path associated with the BIDIR when the <disable result> of the driver would otherwise be Z.

y) When <segment boundary stmts> are used to define boundary-scan register segments, each <boundary
segment name>:

1) Shall be unique within the BSDL.

2) There shall be a <register assembly description> (see B.8.19) defining the BOUNDARY register.

3) Every <boundary register segment> shall appear exactly once as a <boundary instance> in the
<register assembly description>.

z) When the boundary-scan register is assembled from segments, then in the <assembled boundary length
stmt>, the <reset length> shall be the minimum length of the register with all excludable segments
excluded, and the <register length> shall be the length with all excludable segments included.

NOTE 9—The <register length> documents the total number of cells in the boundary register, not the maximum
achievable length, which could be less due to mutually exclusive excludable segments.

aa) When the value of <conformance identification> is STD_1149_1_2001, STD_1149_1_1993 or
STD_1149_1_1990, the attributes BOUNDARY_SEGMENT and ASSEMBLED_BOUNDARY_
LENGTH shall not appear in the BSDL.

Permissions

bb) Except TAP pins, all <port ID> elements having a <pin type> value of in, out, buffer, or inout in the
<logical port description> (see B.8.3) may appear as <port ID> elements with a <function> value of
OBSERVE_ONLY in the <boundary register stmt> or in the assembled boundary-scan register with all
excludable segments included.

NOTE 10—A <port ID> required to appear in the <boundary register statement> by rule s) in this subclause may
additionally appear as allowed by this permission.

cc) If a <port ID> has a <pin type> value beginning with the word LINKAGE_ (except
LINKAGE_MECHANICAL), POWER_, or VREF_, the given <port ID> may appear in the <boundary
register stmt> in a <cell entry> only with a <function> value of OBSERVE_ONLY and an <input spec>
value of either EXPECT0 or EXPECT1. (See B.8.14.3.8 for the definition of EXPECT0 and EXPECT1.)

B.8.14.2 Examples

Example 1

The syntax of BSDL requires a boundary-scan register description, and it further requires that the description be in
one of two forms. It may be a flat, fixed-length register as shown in the following example:

attribute BOUNDARY_LENGTH of ttl74bct8374: entity is 18;

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

236
Copyright © 2013 IEEE. All rights reserved.

The <boundary length stmt> defines the number (LENGTH) of cells in the boundary-scan register. This number
must match the number of <cell entry> elements in the <boundary register stmt>, which describes the structure of
the boundary-scan register. Some cells may require two lines of description (see B.11.2.3).

attribute BOUNDARY_REGISTER of ttl74bct8374: entity is
--
-- num cell port/* function safe [ccell disval rslt]
--

"17 (BC_1, CLK, input, X, PULL1)," &
"16 (BC_1, OC_NEG, input, X, OPEN1)," &
"16 (BC_1, *, control, 1)," &
. . .
. . .
"3 (BC_1, Q(5), output3, X, 16, 1, PULL1)," &
"2 (BC_1, Q(6), output3, X, 16, 1, PULL1)," &
"1 (BC_1, Q(7), output3, X, 16, 1, PULL1)," &
"0 (BC_1, Q(8), output3, X, 16, 1, PULL1)";

Example 2

The second form of description is a segmented register, possibly with excludable segments, as shown in this
example:

Attribute ASSEMBLED_BOUNDARY_LENGTH of Chip_2013 : entity is (41,47);

The first number in this attribute represents the number of cells in the boundary-scan register with all excludable
segments excluded, as would be the case after a reset. This is the minimum possible length. The second number is
the same as described in the first example; the total number of cells in the boundary-scan register with all excludable
segments included. This is the maximum possible length.

Attribute BOUNDARY_SEGMENT of Chip_2013 : entity is
 "north [11] ("&
 -- num cell port function safe [ccell disval rslt]
 "10 (BC_1, *, controlr, 1), "&
 "9 (BC_1, N_D(0), input, X, PULL0), "&
 "8 (BC_1, N_D(1), input, X, PULL0), "&
 "7 (BC_1, N_Q(1), output3, X, 10, 1, PULL0), "&
 ...
 "0 (BC_1, N_Q(8), output3, X, 10, 1, PULL0)), "&
 "south [11] ("&
 -- num cell port function safe [ccell disval rslt]
 "10 (BC_1, *, controlr, 1), "&
 "9 (BC_1, S_D(0), input, X, PULL0), "&
 "8 (BC_1, S_D(1), input, X, PULL0), "&
 "7 (BC_1, S_Q(1), output3, X, 10, 1, PULL0), "&
 ...
 "0 (BC_1, S_Q(8), output3, X, 10, 1, PULL0)), "&
 "west [11] ("&
 -- num cell port function safe [ccell disval rslt]
 "10 (BC_1, *, controlr, 1), "&
 "9 (BC_1, W_D(0), input, X, PULL0), "&
 "8 (BC_1, W_D(1), input, X, PULL0), "&
 "7 (BC_1, W_Q(1), output3, X, 10, 1, PULL0), "&
 ...
 "0 (BC_1, W_Q(8), output3, X, 10, 1, PULL0))";

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

237
Copyright © 2013 IEEE. All rights reserved.

Attribute BOUNDARY_SEGMENT of Chip_2013 : entity is
 "east1 [6] ("&
 -- num cell port function safe [ccell disval rslt]
 "5 (BC_1, *, controlr, 1), "&
 "4 (BC_1, E_D(0), input, X, PULL0), "&
 ...
 "0 (BC_1, E_Q(4), output3, X, 5, 1, PULL0)), "&
 "east2 [6] ("&
 -- num cell port function safe [ccell disval rslt]
 "5 (BC_1, *, controlr, 1), "&
 "4 (BC_1, E_D(1), input, X, PULL0), "&
 ...
 "0 (BC_1, E_Q(8), output3, X, 5, 1, PULL0))";

See B.8.21 for the REGISTER_ASSEMBLY attribute that puts these segments together to form the boundary-scan
register. Suffice it for this example to say that only the “east2” segment is excludable, so the minimum length of the
boundary-scan register is 11 + 11 + 11 + 6 + 2 + 0 = 41, and the maximum length is 11 + 11 + 11 + 6 + 2 + 6 = 47.
The “2” in these additions account for the domain-control and segment-select cells, defined in the Standard BSDL
Package Body in B.9, and which must be included in the Boundary-Scan register to control the excludable segment.

B.8.14.3 Description

By processing the <boundary-scan register description>, it is possible for software to check that every nonlinkage,
nonpower, non-TAP controller, non-compliance-enable, nongrouped port name in the port statement has been
named by a <port ID> of the <boundary-scan register description>. Missing <port ID> values (other than the
linkage, vref, and power type ports, TAP controller and compliance-enable ports, and grouped ports) identify digital
system signals lacking corresponding cells in the boundary-scan register, which indicates a noncompliant device or
an error in entering the BSDL description.

See B.11 for more information given by example for describing the boundary-scan register.

The <boundary register description> contains a <cell table> within which there is a list of elements (<cell entry>),
each with two fields. The <cell entry> elements may be listed in any order, but all are listed:

— The <cell number> element must be in the range from 0 to LENGTH-1, where LENGTH is the length of the
boundary-scan register (<register length>) or the length of the boundary-scan register segment (<boundary
segment length>).

— The <cell info> contains a list of four, five, or seven elements contained within parentheses. (In the above
example, the elements are labeled—cell, port, function, safe, ccell, disval, and rslt—as
indicated by the commented header.)

All <cell entry> elements include values for the first four elements of the second field. Only <cell entry> elements
observing inputs have one additional element, which defines how the input behaves when undriven (<input spec>).
Only <cell entry> elements for cells that drive system outputs that can be set to an inactive drive state (e.g., open-
collector or three-state outputs) have the three additional elements of the second field, which specify how the output
may be disabled (<disable spec>). If the <function> element is OUTPUT3 or BIDIR, the three elements of the
<disable spec> must be defined. If the <function> element is BIDIR, the action of placing the relevant driver in the
inactive drive state is taken as equivalent to setting the cell to operate as a receiver. If the <function> element is
OUTPUT2, the last three elements may or may not be defined, depending on whether the described driver is an
asymmetrical driver, e.g., open-collector (VHDL <pin type> equal to out) or capable of actively driving both states
(VHDL <pin type> equal to buffer), respectively.

The <cell spec>, <input spec>, and <disable spec> elements are defined in the following subclauses.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

238
Copyright © 2013 IEEE. All rights reserved.

B.8.14.3.1 <cell name> element

This identifies the cell design used. It must match a cell described in the Standard BSDL Package or in a user-
supplied BSDL package.

B.8.14.3.2 <port ID or null> element

This element identifies the system input or output connected to a given cell. Any name supplied for this element
must match one specified in the <logical port description>. A cell serving as an output control or internal cell has an
asterisk (*) supplied for this element. Either a <port name> element with the corresponding <port dimension>
previously described as bit or a <subscripted port name> must be supplied as the value of a <port ID or null>
element.

B.8.14.3.3 <function> element

This element defines the primary function of the relevant cell. Table B-4 lists the possible values of the <function>
element.

Table B-4—Function element values and meanings

Value Meaning Example figure in

this standarda
INPUT A cell observing a system logic input, which may have

either control-and-observe capability (required to support
INTEST) or observe-only capability

Figure 11-19
Figure 11-17
Figure 11-18

CLOCK Cell at a clock input Figure 11-18
OUTPUT2 A cell that drives a two-state (either symmetric or

asymmetric) output
Figure 11-31

OUTPUT3 A cell that drives data to a three-state output Figure 11-35d
CONTROL A cell that controls a three-state enable or direction

control
Figure 11-35c

CONTROLR A control cell that is forced to its disable state in the Test-
Logic-Reset controller state

Figure 11-37c

INTERNAL Cell not associated with a device signal pin that captures
constants 1, 0, or X

—

BIDIR A reversible cell for a bidirectional pin Figure 11-38d
OBSERVE_ONLY Additional cell observing any device signal or pin Figure 11-18

a The suffix “c” is used to denote a control cell shown in a cited figure. The suffix “d” denotes a data cell.

Notice that many of the cell designs of this standard are somewhat general, meaning they can be used in more than
one context. For example, the <function> element in a description of the cell depicted in Figure 11-31 can have as
its value INPUT, OUTPUT2, OUTPUT3, CONTROL, or INTERNAL. The value of the <function> element has
important implications in describing a given cell (see B.10.1).

An INPUT function indicates that the cell has observe capability (control-and-observe capability if INTEST is
implemented in the device) and is connected to a system logic input pin. This pin must have a <pin type> value of in
or inout only.

A CLOCK function indicates a cell with observe capabilities that is connected to a system logic input clock pin that
allows support of INTEST and RUNBIST [see rule g1) of 11.5.1]. This pin must have a <pin type> of in.

An OUTPUT2 function indicates that the cell (which must have control-and-observe capability) provides data for a
two-state (symmetric or asymmetric) driver and is connected to a <port ID> with a <pin type> value of out, buffer,
or inout.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

239
Copyright © 2013 IEEE. All rights reserved.

An OUTPUT3 function indicates that the cell (which must have control-and-observe capability) provides data for a
three-state driver and is connected to a <port ID> with a <pin type> value of out or inout.

A CONTROL function indicates that the cell (which must have control-and-observe capability) provides output
enable control and/or direction control to one or more output drivers or bidirectional pins. A CONTROL cell must
not be referenced to a <port ID> in the <cell spec> element; see B.11.2.3 for details on system input pins that are
used to control system output drivers.

A CONTROLR function is identical to a CONTROL function with the exception that it also has the capability to
be reset or cleared to the safe value when the TAP passes through the Test-Logic-Reset state and the TMP
controller (if provided) is in the Persistence-Off state (see Figure 11-37).

A BIDIR function indicates a control-and-observe cell that is connected to a <port ID> with <pin type> inout.

An INTERNAL function indicates that the cell is either a placeholder cell that has gone unused because of the
programming of user-programmable logic or a cell that sits at the interface between digital and analog portions of
the core circuitry of a component [see rule b) of 11.4.1]. An INTERNAL cell must not reference a <port ID>.

An OBSERVE_ONLY function indicates that the cell does not have an update stage and is an additional cell that
can monitor any kind of system pin not exempted by semantic checks [rule c) of B.8.9.1 (scan port identification)].

Clause 11 effectively classifies <port ID> signals as input, clock, two-state output, three-state output, and
bidirectional pins. For a system pin classified as:

⎯ An input pin, a cell with a <function> of INPUT is required. Additional cells with <function> INPUT or
OBSERVE_ONLY may be connected to the input pin. If INTEST is a supported instruction, there must be
at least one cell with control capability and <function> of INPUT connected to the input pin.

⎯ A clock pin, there are two cases:

i) At least one cell must have a <function> of CLOCK. Additional cells with <function>
OBSERVE_ONLY also may be connected to the pin. This case is used where external clocking must
be supplied to support INTEST or RUNBIST.

ii) At least one cell must have a <function> of INPUT. Additional cells with <function> INPUT (see
Figure 11-12) or OBSERVE_ONLY also may be connected to the clock pin. This case is used where
clocking must be supplied by shifting to support INTEST [see rule g3) of 11.5.1].

⎯ A two-state output pin, one cell must have a <function> of OUTPUT2. Additional cells with <function>
OBSERVE_ONLY also may be connected to the pin or the output of the system logic.

⎯ A three-state output pin, one cell must have a <function> of OUTPUT3. Additional cells with <function>
OBSERVE_ONLY also may be connected to the pin or the outputs of the system logic.

⎯ A bidirectional pin, there are two cases:

i) A single cell with <function> BIDIR is attached to the pin. Additional cells with <function>
OBSERVE_ONLY also may be connected to the pin or outputs of the system logic.

ii) A two-cell structure is used to create bidirectionality; one of these cells must have a <function> of
either OUTPUT2 or OUTPUT3, and the other cell must have a <function> of INPUT. Additional
cells with <function> of INPUT or OBSERVE_ONLY also may be connected to the pin or the
outputs of the system logic.

Clause 11 classifies system logic (different from system pin) input signals and output signals as input, clock, output
data, and output control. For a system logic signal classified as:

⎯ Input or clock, there are two cases:

i) Cell provisions are the same as noted for system input or clock pins.

ii) For system logic receiving data from analog circuitry, cells with <function> INTERNAL are
connected, but they must not be referenced to a system pin in the <cell spec> element.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

240
Copyright © 2013 IEEE. All rights reserved.

⎯ Output data or output control, there are two cases:

i) Cell provisions must be the same as noted for system pins above; additional cells with <function>
INTERNAL also may be connected, but they must not be referenced to a system pin in the <cell spec>
element.

ii) For system logic providing data to analog circuitry, cells with <function> INTERNAL must be
connected, but they must not be referenced to a system pin in the <cell spec> element.

Clause 11 also specifies that cells may exist that are connected neither to system pins nor to system logic due to the
programming of programmable system logic (see 11.8). Such cells must have <function> values of INTERNAL.

B.8.14.3.4 <safe bit> element

This element supplies a value that should be loaded into the shift/capture stage (and the update stage if it exists) of a
given cell when board-level test generation software might otherwise choose a value randomly.

The <safe bit> value is not intended to force software to use particular values for cells. Rather, it provides values for
cells where software would otherwise choose a 0 or 1 at random. An X signifies that the value does not matter and
that test generation software may assign either a 1 or a 0 in a case where there is no value that the algorithm
requires.

For control cells, the <safe bit> value must be that which turns off the associated drivers. Other examples where the
<safe bit> value might be defined as 0 or 1 (rather than X) are:

— The value that an output should have during INTEST that minimizes driver current.

— A preferred value to present to on-chip logic at a component input during EXTEST.

— The value that should be presented to unconnected <portID> (i.e., identified by an OPEN, TIE0, or TIE1 in
the applicable pin map) ports.

NOTE—See B.8.14.3.8 for the definition of <input spec>. The location of the description was moved to the end of this clause to
preserve the numbering in this clause.

B.8.14.3.5 <ccell> element

For the relevant <port ID>, this element identifies the <cell number> of the control cell that can disable the output.

B.8.14.3.6 <disable value> element

This element gives the value that must be scanned into the control cell identified by the previous <ccell> element to
disable the port named by the relevant <port ID>.

B.8.14.3.7 <disable result> element

For a <cell spec> with a <function> of OUTPUT2, OUTPUT3, or BIDIR, the <port ID> element is the name of a
signal driven out of the component. If the driver of that signal can be disabled, the value of the <disable result>
element within the same <cell info> specifies the condition of the signal when the driver is disabled. The
permissible values are:

— A weak 0 internal pull down (PULL0)

— A weak 1 internal pull up (PULL1)

— A weak 0 external pull down (WEAK0)

— A weak 1 external pull up (WEAK1)

— A weak state memory of the last strongly driven logic state (KEEPER)

— A received value of 0 when the external net is undriven by any source, weak or strong (OPEN0)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

241
Copyright © 2013 IEEE. All rights reserved.

— A received value of 1 when the external net is undriven by any source, weak or strong (OPEN1)

— A high impedance state (Z)

The values WEAK1 and WEAK0 would be used for asymmetrical drivers, such as TTL open-collector or ECL
open-emitter outputs, when a pull-down or a pull-up is required external to the component.

The values PULL0 and PULL1 are used to describe symmetrical drivers and bidirectional drivers that have a high
impedance state and an internal weak pull-down or pull-up. Fault coverage is improved when the bidirectional driver
has a weak pull-down on the input and is described as PULL0 rather than as Z. The Z high-impedance state
description should be avoided with bidirectional drivers and drivers with a high-impedance mode that float to a
predetermined logic state. The values PULL0 and PULL1 are also used for asymmetrical drivers, such as TTL
open-collector or ECL open-emitter outputs or bidirectional outputs when a pull-down or a pull-up is internal to the
component.

The value KEEPER would be used for drivers that maintain a weakly driven memory (H, L) of the strongly driven
state (1, 0) last seen on the board network to which such a driver is connected.

NOTE 1—It must be emphasized that bus keepers generally do not retain a reliable logic state useful as part of a logic
implementation. Indeed, any glitch or system noise on a “kept” bus may upset the state of any connected keepers. Drivers with
bus keepers can be thought of as types that disable to a high-impedance state that always stays out of the forbidden voltage zone
between defined low and high logic values. Just as a high-impedance state conveys no information useful to test and diagnosis,
neither does a kept state. Implementers of board or system application software will likely choose the same treatment of the
<disable result> values KEEPER and Z.

NOTE 2—The keeper feature is an important parametric option in the design of a device’s drivers. IC vendors using such drivers
would want to verify their action on an IC tester. By giving the ability for BSDL to denote the existence of such drivers, IC test
software can automatically set up tests (at the logical level) for these features that are similar to hysteresis measurements. Of
course, the analog parameters of a keeper, like other analog information, is not described in BSDL.

The values OPEN0 and OPEN1 are used to describe the behavior of the receiver of a boundary cell with the
function of BIDIR when the driver and the external net are undriven by any source (the net has a resolved state of
Z). This is identical to the same behavior described for these keywords in B.8.14.3.8.

B.8.14.3.8 <input spec> element

For a <cell info> with a <function> INPUT or CLOCK, the <port ID> element is the name of a signal received into
the component. The <input spec> is required and the value specifies the behavior of the receiving circuits when that
signal is not driven. For example, the source of the signal on the board may be disabled, the connection of the pin to
the board may be open due to a defect, or the pin may simply not be connected on the board, or the pin map for the
package may mark the pin as OPEN.

For a <cell spec> with a function of OBSERVE_ONLY, the <port ID> element is the name of the port being
observed and the following apply: The <input spec> is prohibited for digital signal pins also observed by a
nonredundant INPUT or CLOCK cell unless the observe-only cell is observing a fault condition. The <input spec>
is required for any pin that does not have a required cell on it. For nondigital pins, and for digital pins where the
redundant observe-only cell is observing a fault condition, the value of <input spec> must be either EXPECT1 or
EXPECT0, indicating the value captured when a fault is not detected (“good machine” value).

The permissible values are:

⎯ A weak 0 internal pull down (PULL0)

⎯ A weak 1 internal pull up (PULL1)

⎯ A received value of 0 when the signal is undriven (OPEN0)

⎯ A received value of 1 when the signal is undriven (OPEN1)

⎯ A 0 external pull or tie down (EXTERN0) for a signal not connected to a driving source

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

242
Copyright © 2013 IEEE. All rights reserved.

⎯ A 1 external pull or tie up (EXTERN1) for a signal not connected to a driving source

⎯ A “kept” state memory of the last strongly driven logic state (KEEPER)

⎯ An indeterminate value when the signal is undriven (OPENX)

⎯ A fault detector no-fault condition captured as a 1 (EXPECT1)

⎯ A fault detector no-fault condition captured as a 0 (EXPECT0)

The values PULL0 and PULL1 are used to describe receivers that have an internal weak pull-down or pull-up
circuit, either passive or active, which is relatively high impedance, but will source or sink sufficient current or
voltage to the board net to establish a valid logic value in the absence of a strong driver or a conflicting weak source.

The values OPEN1 and OPEN0 are used to describe receivers that will produce a known output to the system logic
and boundary-scan register cell when the associated pin is not connected or completely undriven. It does not imply
the sourcing or sinking of any significant current or voltage to the board net, if any, and therefore cannot affect the
value seen on the net by other inputs. An example appears in the LVDS differential standard where the receiver is
required to identify an unconnected input pair and an output of 1 in that case.

The values EXTERN0 and EXTERN1 are used to describe receivers that require board-level termination if they are
not connected to a driver source. They could cause excessive currents or other anomalous behavior if not driven or
terminated (usually due to the input floating to the V-threshold). As long as the input signal has a driver source, this
designation can be ignored. However, in board test, the driver source may not be present and this designation will
provide a warning to the board test engineers that termination is required for reliable operation.

The value KEEPER would be used for receivers that maintain a weakly (relatively high impedance) driven memory
of the state last seen on the board network to which such a driver is connected. Typically, a keeper will source or
sink sufficient current or voltage to the board net to establish a valid logic value in the absence of a strong driver or a
conflicting weak source. As with output pins, this designation provides no information of any practical use for defect
detection or diagnosis, but it does prevent anomalous behavior due to an undriven or unterminated input. The
cautionary notes about keepers in the previous clause apply here as well.

The value OPENX is used to describe receivers that do not fit into any of the other designations. They may produce
an unpredictable output when the associated pin is not connected to any driving source, strong or weak. As with the
Z designation for output pins, this designation provides no information of any practical use for defect detection or
diagnosis.

The values EXPECT1 and EXPECT0 are only used with an optional OBSERVE_ONLY cell that observes the
output of a fault detection circuit. Such fault detection circuits are required in order to observe nondigital pins, but
they may also be used with digital pins. The value implied by the keyword is the expected value for a defect-free
circuit.

Figure B-7 illustrates an input with an explicit pull-up, which biases the input pin when it is open or undriven. This
type of input would use the PULL1 keyword. The insert (dashed) box shows a pull-down alternative to the pull-up
that would be described by the PULL0 keyword.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

243
Copyright © 2013 IEEE. All rights reserved.

Figure B-7—Cell on an input, which pulls to a logic 1

Cell 0 in the example BSDL boundary-scan register description below could describe an input cell similar to
Figure B-7. Cells 1, 2, and 3 all are associated with a single bidirectional port called MyBidi. Cell 1 in the example
inherits its undriven behavior (PULL0, in this case) from the OUTPUT3 cell, cell 2, driving the same port:

--num cell port/* function safe [input/ccell disval rslt]
" 0 (BC_1, MyInput, input, X, PULL1), "&
" 1 (BC_1, MyBidi, input, X, PULL0), "&
" 2 (BC_1, MyBidi, output3, 0, 3, 0, PULL0), "&
" 3 (BC_1, *, control, 0), "&

The <input spec> provides valuable information to the ATPG process and the board test engineer. Figure B-8
illustrates some of the test coverage improvements achieved by the use of <input spec> when the IC is on a board.
The function of each pin is shown with the <input spec>, where appropriate, in parenthesis.

The upper left input is tied to 2.5 V power through an external pull-up resistor. Without an <input spec> of OPEN0,
the presence of an open on this pin cannot be determined. When the input pin is defined by the IC vendor as
OPEN0, an ATPG tool can predict a different capture value when the pin is open than when it is properly
connected.

Figure B-8—Illustration of use of <input spec> for an IC

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

244
Copyright © 2013 IEEE. All rights reserved.

The other five inputs on the left side are connected to a passive connector by nets A through E. Without an <input
spec> on these pins, the test engineer is forced to populate or drive the connector in order to prevent undriven inputs
from introducing noise in an IEEE 1149.1 assisted on-chip test or a board-level IEEE 1149.1 assisted at-speed test
such as SERDES PRBS. With the <input spec>, the test engineer knows that the undriven inputs are not floating and
hence additional actions to prevent noise during at-speed tests are not needed.

Nets F–I depict an input (F), a two-state output (G), and two bidirectional pins (H and I) connected to another
connector. The three bidirectional pins H, I, and J may have been designed to be bidirectional for test, but inputs in
mission mode. Such design usually improves test coverage on a board. However, the last bidirectional pin (J) is
connected to a signal source that cannot be controlled during test. All three pins are shown connected to a single
control cell, so the uncontrolled signal source on pin J prevents driving signals on any of the three pins. This
illustrates how potential board-level conflicts can limit tests of IEEE 1149.1 bidirection outputs during the ATPG
process. With the <input spec>, ATPG can correctly set expected data for the input on nets F, H, and I to be a logic
zero; hence, any shorts that exist from net G (or any other driven net that may be present) to F, H, I, or J can be
detected at the inputs, even if H and I are not driven.

Component designers are encouraged to design ICs with predictable inputs rather than with an <input spec> of
OPENX, or a bidirectional with a <disable result> of OPENX or Z, whenever possible.

Figure B-9 shows a portion of a component showing three possible fault detection circuits and their associated
OBSERVE_ONLY cells.

Figure B-9—Illustration of use of fault detection boundary cells for an IC

Cells 1, 2, and 4 are OBSERVE_ONLY cells. Cells 1 and 2 have an <input spec> value of EXPECT1. (Cell 3 is
the required INPUT cell for the mission mode output of the differential receiver.)

Input “Vref_HSDL” is <pin type> of VREF_IN, and a comparator circuit verifies that the signal is above a
threshold relative to the Vdd of the I/O. As long as this reference voltage is present, the comparator outputs a 1,
which is captured in cell 1. Cell 1 has an <input spec> value of EXPECT1. A window comparator could also have
been provided to determine whether the reference was within a valid range.

C

C

C

+

-

Vref_HSDL

Vdda_PLL

Diff_P

Diff_N

“Inputs open”

to System

to System

to
System

IC1

SO

SI

3

C

4

2

1

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

245
Copyright © 2013 IEEE. All rights reserved.

Cell 2 uses a normal digital receiver to monitor the “Vdda_PLL” input of <pin type> POWER_POS. The
VDDA_PLL supply is essentially the same as the digital Vdd, so it will appear to be a valid logic 1. Cell 2 has an
<input spec> value of EXPECT1.

The differential receiver is designed to the LVDS protocol, and as part of that standard, the receiver is capable of
detecting when the inputs are open. In that situation, the output of the receiver is forced to 0 and, hence, would have
an <input spec> of OPEN0 on cell 3. However, this is an ambiguous fault indication for diagnosis of a failing
interconnect test. In this case, the “Inputs Open” signal (1 means the inputs are open) has been brought out of the
receiver and is captured in cell 4, which has an <input spec> of EXPECT0.

These are just a few simple examples to illustrate possible ways of providing some test coverage of nondigital pins.
They certainly are not definitive. To complete the example, the cells of Figure B-9 could be defined as shown in the
following part of a boundary-scan register description:

...
--num cell port/* function safe [input]
" 1 (BC_4, Vref_HSDL, observe_only, X, EXPECT1), "& -- Vref above minimum
" 2 (BC_4, Vdda_PLL, observe_only, X, EXPECT1), "& -- Power present
" 3 (BC_1, Diff_P, input, 0, OPEN0), "&
" 4 (BC_4, Diff_P, observe_only, X, EXPECT0), "& -- Diff pair connected
...

This example can be further expanded by using the REGISTER_MNEMONICS (see B.8.18) and
REGISTER_FIELDS (see B.8.19) attributes to provide machine-readable information to the test engineer. When
desired, the value captured in boundary cells 1, 2, and 4 can cause the appropriate message from the mnemonic
<information tag> to be presented to the test engineer. If there were multiple pins with the same type of fault
detection circuits, such as multiple differential pairs, all could be listed in the one “DiffPins” field and use the same
mnemonic.

attribute REGISTER_MNEMONICS of ROO_Example : entity is
 "Vref_Range ("&
 " Pass (1) <Vref above minimum>, "&
 " Fail (0) <Vref below minimum or open> "&
 "), "&
 "PLL_Power ("&
 " Pass (1) <PLL Vdd present>, "&
 " Fail (0) <PLL Vdd absent or open> "&
 "), "&
 "Diff_open ("&
 " Open (1) <Differential inputs open/undriven>, "&
 " Connected (0) <Differential inputs driven> "&
 ")" ;

attribute REGISTER_FIELDS of ROO_Example : entity is
 Boundary [289] ("&
 "(Vref [1] IS (1 to 1) captures(Vref_Range(-))), "&
 "(PLLpwr [1] IS (2 to 2) captures(PLL_Power(-))), "&
 "(DiffPins [1] IS (4 to 4) captures(Diff_open(-))), "&
 ...

B.8.15 RUNBIST description

The goal of this portion of a BSDL description is to provide support for the RUNBIST instruction as specified within
this standard. The intent is to describe only those aspects of the RUNBIST instruction that this standard specifies. In
some cases, this may not completely define the built-in self-test (BIST) operational environment. In such cases,
additional information must be supplied externally.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

246
Copyright © 2013 IEEE. All rights reserved.

Note that the following features of a BIST implementation are not supported explicitly by BSDL:

⎯ Timing-related information (beyond active clock and number of clock cycles)

⎯ Frequency and phase relationship(s) of clock(s)

B.8.15.1 Specifications

Syntax

<runbist description> ::= attribute RUNBIST_EXECUTION of <component name>
<colon> entity is <quote> <runbist spec> <quote> <semicolon>

<runbist spec> ::= <wait spec> <comma> <pin state> <comma> <signature spec>
<wait spec> ::= WAIT_DURATION <left paren> <duration spec> <right paren>
<duration spec> ::= <clock cycles list> | <time and clocks>
<time and clocks> ::= <time> [<comma> <clock cycles list>]
<clock cycles list> ::= <clock cycles> { <comma> <clock cycles> }
<time> ::= <real>
<clock cycles> ::= <port ID> <integer>
<pin state> ::= OBSERVING <condition> AT_PINS
<condition> ::= HIGHZ | BOUNDARY
<signature spec> ::= EXPECT_DATA <det pattern>
<det pattern> ::= <bit> { <bit> }
<bit> ::= 0 | 1

Rules

a) A <det pattern> shall be a contiguous sequence of one or more 0 and 1 characters containing no spaces or
format effectors.

NOTE 1—For example, 001100 and 110101 are compliant. However, 100 X00 is not compliant because of the
embedded space and the X character.

b) Time shall be specified in seconds (via the value of the <time> element), where:
1) Both time and clock cycles are specified, they shall be interpreted as the maximum of the time

specified or the time required to apply the required number of clock cycles.
2) More than one clock is specified, the duration shall be the time required for all of the clock inputs to

receive the specified number of clock cycles.

c) The number of bits in the value of the <det pattern> element of the <signature spec> element shall be equal
to the length of the register whose name appears in the <register> element of that <register association>
element of the <register access description> in which RUNBIST appears as the value of an <instruction
name> element:

1) If the value of the associated <register> element is BOUNDARY, the register length shall be specified
by the value of the <integer> element of the <boundary length stmt>.

2) If the value of the associated <register> element is not BOUNDARY, the register length shall be
specified by the explicitly defined value of the <integer> element in that same <register> element.

d) Any value of <port ID> in the <wait spec> statement shall:

1) Appear as the value of <port ID> in the <TCK stmt> of the BSDL description (see B.8.9).

2) Appear as the value of <port ID> in a <cell spec> of the <boundary register stmt> in which the
<function> element has the value CLOCK (see B.8.14).

e) If the <runbist description> statement occurs in a BSDL description, RUNBIST shall be the value of some
<instruction name> element in the <opcode table> of the <instruction opcode stmt>.

f) Values of <time> and <clock cycles> shall be greater than 0.

g) A given <port ID> shall not appear more than once in the <runbist description> element.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

247
Copyright © 2013 IEEE. All rights reserved.

NOTE 2—The existence of RUNBIST in the INSTRUCTION_OPCODE table does not require <runbist description>
to be specified in a BSDL description.

B.8.15.2 Examples

Example 1

attribute RUNBIST_EXECUTION of BIST_IC1: entity is
"Wait_Duration (1.0e-3)," &
"Observing HIGHZ At_Pins," &
"Expect_Data 010101";

In this example, the value of <time> in the <wait spec> is specified at 1 ms, which is the minimum duration the
device needs to stay in the Run-Test/Idle controller state. Also, note that the output pins are forced to high
impedance, which implies that there is no need to initialize the update latches of the boundary-scan register.

Example 2

attribute RUNBIST_EXECUTION of BIST_IC2: entity is
"Wait_Duration (TCK 23000)," &
"Observing HIGHZ At_Pins," &
"Expect_Data 010101";

In this example, the device needs to wait in the Run-Test/Idle controller state for the duration sufficient for the
application of 23 000 clock cycles at TCK.

Example 3

attribute RUNBIST_EXECUTION of BIST_IC3: entity is
"Wait_Duration (1.0e-3, TCK 23000)," &
"Observing HIGHZ At_Pins," &
"Expect_Data 010101";

In this example, <wait spec> is to be interpreted as 1 ms. or the time required for TCK to receive 23 000 cycles,
whichever is greater.

Example 4

attribute RUNBIST_EXECUTION of BIST_IC4: entity is
"Wait_Duration (CLK 100000, SYSCK 24000)," &
"Observing BOUNDARY At_Pins," &
"Expect_Data 010101";

In this example, <wait spec> is to be interpreted as the time required for CLK and SYSCK to receive 100 000 and
24 000 clock cycles, respectively. Also note that the boundary-scan register is visible at the pins, indicating that it
needs to be initialized before the execution of RUNBIST.

B.8.16 INTEST description

The goal of this portion of a BSDL description is to describe:

⎯ How test patterns are to be applied to the component when the INTEST instruction is selected (i.e., the
source of clock pulses for the component and the time for which the test logic must remain in the Run-
Test/Idle controller state to permit execution of each applied test)

⎯ The external behavior of the component while the INTEST instruction is selected

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

248
Copyright © 2013 IEEE. All rights reserved.

Note that the test patterns themselves are not specified and are assumed to be provided by an alternative method not
specified in this annex. For INTEST, the duration is not the duration for the entire test (as is the case of RUNBIST,)
but the time required for the application of a single vector. With the application of each vector via the boundary-scan
register, this standard permits the device to execute a single step of the operation that may require several clock
cycles to complete. Otherwise, the interpretation of <pin spec> is identical to that in RUNBIST_EXECUTION. The
syntax of the <wait spec> and <pin spec> elements is given in B.8.15.

B.8.16.1 Specifications

Syntax

<intest description>::= attribute INTEST_EXECUTION of <component name>
<colon> entity is <quote> <intest spec> <quote> <semicolon>

<intest spec>::= <wait spec> <comma> <pin state>

Rules

a) Any value of <port ID> in the <wait spec> statement shall:

1) Appear as the value of <port ID> in the <TCK stmt> of the BSDL description (see B.8.9).

2) Appear as the value of <port ID> in a <cell spec> of the <boundary register stmt> in which the
<function> element has the value CLOCK (see B.8.14).

b) If the <intest description> statement occurs in a BSDL description, INTEST shall be the value of some
<instruction name> element in the <opcode table> of the <instruction opcode stmt>.

c) Values of <time> and <clock cycles> in the <wait spec> shall be greater than 0.

d) A given value of <port ID> shall not appear more than once in the <intest description> element.

NOTE—The existence of INTEST in the INSTRUCTION_OPCODE table does not require <intest description> to be
specified in a BSDL description.

B.8.16.2 Examples

Example 1

attribute INTEST_EXECUTION of IC1: entity is
"Wait_Duration (1.0e-3)," &
"Observing HIGHZ At_Pins";

In this example, the value of <time> in the <wait spec> is specified as 1 ms, which is the minimum duration the
device needs to stay in the Run-Test/Idle controller state. Also, note that the output pins are forced to high
impedance.

Example 2

attribute INTEST_EXECUTION of IC2: entity is
"Wait_Duration (TCK 250)," &
"Observing HIGHZ At_Pins";

In this example, the device needs to wait in the Run-Test/Idle controller state for a duration sufficient for the
application of 250 clock cycles of TCK to permit the device to complete one step of operation.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

249
Copyright © 2013 IEEE. All rights reserved.

Example 3

attribute INTEST_EXECUTION of IC3: entity is
"Wait_Duration (CLK 100, SYSCK 200)," &
"Observing BOUNDARY At_Pins";

In this example, <wait spec> is to be interpreted as the time required for CLK and SYSCK to receive 100 and 200
clock cycles, respectively. Also note that the state of the pins is controlled by the data held in the boundary-scan
register.

B.8.17 System clock requirements attribute

The SYSCLOCK_REQUIREMENTS attribute is used to describe the use of system clocks for various
instructions, and to define the required minimum and maximum frequency. These definitions allow test engineers to
know what resources will be needed for specific tests.

B.8.17.1 Specifications

Syntax

<system clock description> ::= attribute SYSCLOCK_REQUIREMENTS
of <entity target> is <system clock description string> <semicolon>

<system clock description string>::= <quote> <system clock requirement>

{ <comma> <system clock requirement> } <quote>
<system clock requirement>::= <left paren> <port ID> <comma> <min freq> <comma> <max freq>

<comma> <clocked instructions> <right paren>
<min freq> ::= <real>
<max freq> ::= <real>
<clocked instructions> ::= <clocked instruction> { <comma> <clocked instruction> }
<clocked instruction> ::= RUNBIST | INTEST | INIT_SETUP | INIT_SETUP_CLAMP | INIT_RUN |

ECIDCODE | IC_RESET | <VHDL identifier>

Rules

a) The SYSCLOCK_REQUIREMENTS attribute shall be provided if any system clock input (other than
TCK) is required for execution of an instruction.

b) The <port ID> shall have a <pin type> of in, inout, LINKAGE_IN, or LINKAGE_INOUT in the <logical
port description>.

c) If the <port ID> has a <pin type> of in, it shall also have a <function> of CLOCK in the associated <cell
entry> of the boundary-scan register description.

d) If the <port ID> appears in a <grouped port identification>, it shall be a <representative port>.

e) If the <port ID> is defined as a bit vector in the <logical port description>, then the <port ID> shall include
an index that lies within the defined <range>.

f) The <max freq> value shall be greater than or equal to the <min freq> value.

g) If <clocked instruction> is a <VHDL identifier> and not the name of an instruction defined in this standard,
it shall be an <instruction name> in the <instruction opcode statement> (see B.8.11).

h) Where the value of <conformance identification> is STD_1149_1_2001, STD_1149_1_1993, or
STD_1149_1_1990, the <clocked instructions> list shall include only RUNBIST and INTEST
instructions.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

250
Copyright © 2013 IEEE. All rights reserved.

B.8.17.2 Description

A complex IC may have multiple system clock inputs, and different ones may be needed for different tests. The
documentation of sequential processes, which would use these clocks, is now done with PDL (see Annex C), so a
BSDL attribute is used to specifically describe clocks, which may be used in PDL, and to associate those clocks with
the instructions that will require them. Where a system clock is used in PDL, it must reference a clock defined in the
SYSCLOCK_REQUIREMENTS attribute.

Note that, of the instructions defined in this standard, the BYPASS, PRELOAD, SAMPLE, EXTEST, CLAMP,
CLAMP_HOLD, CLAMP_RELEASE, TMP_STATUS, IDCODE, USERCODE, and HIGHZ instructions do not allow
the use of system clocks. The standard instructions RUNBIST, INTEST, INIT_SETUP, INIT_SETUP_CLAMP,
INIT_RUN, ECIDCODE, and IC_RESET do allow, but do not require, the use of system clocks. Design-specific
instructions can use system clocks as required and documented. This attribute is required only if an instruction
defined in the component uses a system clock for execution.

The minimum and maximum frequency (at the component pin) is documented for the use of the test engineer.

B.8.17.3 Examples

Attribute SYSCLOCK_REQUIREMENTS of MyChip : entity IS
 "(F125MHz_in, 120.0e6, 130.0e6, INIT_RUN, ECIDCODE), "&
 "(SerDesClk, 198.5e6, 201.5e6, SerDes_Loopback, SerDes_BER) ";

B.8.18 Register mnemonics description

Register mnemonics provide meaningful text names (and text descriptions) for values that may be loaded into a
TDR or a part of a TDR. While not required as a part of the documentation of the test logic on an IC, they can
provide important improvements by moving the tables in component specification documents, which list all the
binary values used in a TDR and their effects, to the machine- and human-readable BSDL description of the test
logic. This is expected to aid those that have to set up test values long after the IC designers have moved on, and
reduce errors and test development time.

In addition, these values may be supplied by an IP provider in a BSDL Package Body format to their IC design
customers. These Packages may be used directly, aiding the IC designer in building up the documentation of the IC
and preserving the intent of the IP provider. Note that multiple occurrences of <register mnemonic description> are
allowed that support multiple sources with no requirement to merge them.

Finally, tool providers may take advantage of this information to provide a more productive environment for
development of test for IC and higher level assemblies.

B.8.18.1 Specifications

Syntax

<register mnemonics description>::= attribute REGISTER_MNEMONICS of
<target> is <register mnemonics string> <semicolon>

<target>::= <entity target> | <package target>
<entity target>::= <component name> <colon> entity
<package target>::= <user package name> <colon> package
<register mnemonics string>::=

<quote> <mnemonic definition> { <comma> <mnemonic definition> } <quote>
<mnemonic definition>::= <mnemonic group name> <left paren> <mnemonic list> <right paren>
<mnemonic group name>::= <VHDL identifier>
<mnemonic list>::= <mnemonic assignment> { <comma> <mnemonic assignment> }
<mnemonic assignment>::= <mnemonic identifier>

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

251
Copyright © 2013 IEEE. All rights reserved.

<left paren> <pattern specification> <right paren> [<information tag>]
<pattern specification>::= <binary pattern> | <hex pattern> | <decimal pattern> | others

Rules

a) When the <target> is an <entity target>, the <component name> shall match the <component name> of the
containing <BSDL description> (see B.8.1.1).

b) When the <target> is a <package target>, the <user package name> shall match the <user package name>
of the containing <user package> (see B.10.1).

c) All <mnemonic group name> elements that appear in a <mnemonic definition> shall be unique within the
containing package or entity.

d) All <mnemonic identifier> elements that appear in a <mnemonic list> shall be unique within that list.

e) Within a <mnemonic list>, there shall be at least one <mnemonic assignment> containing a <binary
pattern>, <hex pattern>, or <decimal pattern>.

f) Every <binary pattern>, <hex pattern>, or <decimal pattern> (enumerated or implied by X characters in a
value) that appears in a <mnemonic list> shall have binary equivalent values that are unique within that list;
that is, every pair of such binary equivalent values shall differ in at least one bit position where both
contain only 0 or 1.

NOTE 1—A <mnemonic list> does not need to contain every possible value, either explicitly or implicitly.

NOTE 2—None of the multiple patterns implied by X characters in a pattern value may be included elsewhere in the
<mnemonic list>.

g) The others keyword shall only appear in the last <mnemonic assignment> element of a <mnemonic list>,
when it appears at all.

h) The others keyword shall represent all patterns that have not appeared or been implied in any <mnemonic
assignment> element of a <mnemonic list>.

NOTE 3—The others keyword can be used even if all possible patterns have already appeared or been implied. This
usage is consistent with VHDL.

i) The others keyword shall be interpreted as assigning a <mnemonic identifier> and possibly an optional
<information tag> to those values of a <mnemonic definition> that are not used for assigning values to a
register field.

B.8.18.2 Description

Mnemonics are grouped based on the register or register field they are intended to be used with. Within each group,
each mnemonic name is associated with a unique binary, hexadecimal, or decimal pattern. Binary and hexadecimal
patterns are allowed to include the X value.

Each mnemonic group has a name that follows the rules of VHDL identifiers, and each value has a name that is
allowed to be much more free form and descriptive. In fact, the names of mnemonic values (<mnemonic identifier>
in the syntax) may contain any valid characters other than PDL or Tcl formatting characters [see rule b4) of B.5.4.1].
A mnemonic therefore may contain periods or start with a number, unlike VHDL identifiers. Mnemonic identifier
names must be unique within a group, but they need not be between groups. Mnemonic group names, on the other
hand, need to be unique within a BSDL or a Package. If the same mnemonic group name is used in two different
Packages, or in a BSDL and a Package used in that BSDL, then the Package name can be prefixed to the mnemonic
group name to differentiate them. See <mnemonic association> in B.8.20.1.

Multiple mnemonic groups may be defined, and a given mnemonic group may be associated with more than one
register or register field.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

252
Copyright © 2013 IEEE. All rights reserved.

The information tag (enclosed by chevrons) is descriptive and mostly free-form, and it is intended to provide
additional information to assist users in picking the correct value to write to or read from a TDR during test. See
B.5.7 for more information.

B.8.18.3 Examples

Example 1

This example is a REGISTER_MNEMONICS attribute as found in a BSDL:

 attribute REGISTER_MNEMONICS of INIT_Example : entity is
 "SerDes_Protocol ("&
 " off (0) <Powered down>, "&
 " Resvd1 (1) <Reserved for future use>, "&
 " SATA (2) <Serial Advanced Technology Attachment>, "&
 " SRIO (3) <Serial RapidIO>, "&
 " Resvd2 (4) <Reserved for future use>, "&
 " XAUI (5) <10 Gbps Attachment Unit Interface>, "&
 " Resvd3 (0b11X) <Undefined behavior - Do Not Use> "&
 "), "&
 "SerDes_TX_Outputs ("& -- Output driver swing level
 " off (0b00) <Powered down>, "&
 " Full_Swing (0b01) <100% Vdd Swing>, "&
 " 75%_Swing (0b10) <75% Vdd Swing>, "&
 " 52.7%_Swing (0b11) <52.7% Vdd Swing - Not valid for XAUI> "&
 "), "&
 "SerDesClockSettings ("& -- Only 2 valid settings
 " 125Mhz (0x07), "&
 " 100Mhz (0x15), "&
 " Invalid (Others) <Undefined behavior - Do Not Use> "&
 ")" ;
In the first mnemonic group (named SerDes_Protocol), all of the eight possible values are enumerated explicitly or
implicitly. The three bit fields named “Resvd1”, “Resvd2”, and “Resvd3” could have been omitted if desired as it is
not required to enumerate all possible patterns, although, again, specific information tags were desired for these
decodes. In the case of “Resvd3”, an X bit appears, but the two patterns implied, “110” and “111”, do not appear
elsewhere in the list, satisfying the rules.

In the third group (SerDesClockSettings), the “others” keyword is used to assign a specific information tag to the
30 possible decodes (assuming it is assigned to a 5-bit register field) not already described explicitly. Note that the
highest order 1 bit in the binary equivalent of the hexadecimal values specified will fit within a 5-bit field.

The mnemonic identifier “off” is used in both mnemonic groups SerDes_Protocol and SerDes_TX_Outputs, which
have patterns of differing lengths. This is acceptable within a single BSDL or combination of BSDL and a User
Package since within their mnemonic definitions, they are unique and of the same pattern lengths as their related
patterns within that mnemonic definition.

Example 2

This example shows the same mnemonic attribute example provided in a user package (see B.10). The actual
information content of the attribute is identical. Additional information (other than register mnemonics) may be
provided in the package.

package MyCorp_SERDES_1_2_3 is
 use STD_1149_1_2013.all;
 -- { deferred constant } (see B.10) may be given here
end MyCorp_SERDES_1_2_3;

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

253
Copyright © 2013 IEEE. All rights reserved.

package body MyCorp_SERDES_1_2_3 is

 use STD_1149_1_2013.all;

 -- { extension declaration } (see B.8.24) may be given here
 attribute REGISTER_MNEMONICS of INIT_Example : entity is
 "SerDes_Protocol ("&
 " off (0b000) <Powered down>, "&
 " SATA (0b010) <Serial Advanced Technology Attachment>, "&
 " SRIO (0b011) <Serial RapidIO>, "&
 " XAUI (0b101) <10 Gbps Attachment Unit Interface>, "&
 " Resvd1 (0b100) <Reserved for Future Use>, "&
 " Resvd2 (0b11X) <Undefined behavior - Do Not Use> "&
 "), "&
 "SerDes_TX_Outputs ("& -- Output driver swing level
 " off (0b00) <Powered down>, "&
 " Full_Swing (0b01) <100% Vdd Swing>, "&
 " 75%_Swing (0b10) <75% Vdd Swing>, "&
 " 52.7%_Swing (0b11) <52.7% Vdd Swing - Not valid for XAUI> "&
 "), "&
 "SerDesClockSettings ("& -- Only 2 valid settings
 " 125Mhz (0b00111), "&
 " 100Mhz (0b10101), "&
 " Invalid (Others) <Undefined behavior - Do Not Use> "&
 ")" ;
 -- { Register fields description } (see B.8.19) may be given here
 -- { Register assembly description } (see B.8.19) may be given here
 -- { <cell description constant> } (see B.10.1) may be given here

end MyCorp_SERDES_1_2_3 ;

Example 3

Some additional mnemonic descriptions, as they might be specified in a BSDL, which will be referenced in
REGISTER_FIELDS and REGISTER_ASSEMBLY attribute examples:

 attribute REGISTER_MNEMONICS of INIT_Example : entity is

 "SerDesCXVddSelLevel ("&
 " 1.8v (1) <1.8V power supply used>, "&
 " 1.5v (0) <1.5V power supply used> "&
 "), "&

 "Switch ("& -- Simple On/Off single bit field.
 " off (1) <Turn feature off ('0')>, "&
 " on (0) <Turn feature on ('1')> "&
 "), "&

 "PLLConfigValues ("&
 " PLLsOff (0b000) <All PLLs off>, "& -- Stop PLLs to save power
 " PLL1on (0b001) <Only PLL1 on>, "&
 " PLL2on (0b010) <Only PLL2 on>, "&
 " PLL12on (0b011) <PLL1 & PLL2 on>, "&
 " PLL3on (0b100) <Only PLL3 on>, "&
 " PLL13on (0b101) <PLL1 & PLL3 on>, "&

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

254
Copyright © 2013 IEEE. All rights reserved.

 " PLL23on (0b110) <PLL2 & PLL3 on>, "&
 " PLL123on (0b111) <All PLLs on> "&
 "), "&

-- IO voltage configuration. These input pins are read in the init_data
-- register because they must be set at power-up and checked before test.
 "IO_VSEL_Decodes ("&
 "B33_C33_L33 (0b00000) <BVdd=3.3V, CVdd=3.3V, LVdd=3.3V>, "&
 "B33_C33_L25 (0b00001) <BVdd=3.3V, CVdd=3.3V, LVdd=2.5V>, "&
 "B33_C33_L18 (0b00010) <BVdd=3.3V, CVdd=3.3V, LVdd=1.8V>, "&
 "B33_C25_L33 (0b00011) <BVdd=3.3V, CVdd=2.5V, LVdd=3.3V>, "&
 "B33_C25_L25 (0b00100) <BVdd=3.3V, CVdd=2.5V, LVdd=2.5V>, "&
 "B33_C25_L18 (0b00101) <BVdd=3.3V, CVdd=2.5V, LVdd=1.8V>, "&
 "B33_C18_L33 (0b00110) <BVdd=3.3V, CVdd=1.8V, LVdd=3.3V>, "&
 "B33_C18_L25 (0b00111) <BVdd=3.3V, CVdd=1.8V, LVdd=2.5V>, "&
 "B33_C18_L18 (0b01000) <BVdd=3.3V, CVdd=1.8V, LVdd=1.8V>, "&
 "B25_C33_L33 (0b01001) <BVdd=2.5V, CVdd=3.3V, LVdd=3.3V>, "&
 "B25_C33_L25 (0b01010) <BVdd=2.5V, CVdd=3.3V, LVdd=2.5V>, "&
 "B25_C33_L18 (0b01011) <BVdd=2.5V, CVdd=3.3V, LVdd=1.8V>, "&
 "B25_C25_L33 (0b01100) <BVdd=2.5V, CVdd=2.5V, LVdd=3.3V>, "&
 "B25_C25_L25 (0b01101) <BVdd=2.5V, CVdd=2.5V, LVdd=2.5V>, "&
 "B25_C25_L18 (0b01110) <BVdd=2.5V, CVdd=2.5V, LVdd=1.8V>, "&
 "B25_C18_L33 (0b01111) <BVdd=2.5V, CVdd=1.8V, LVdd=3.3V>, "&
 "B25_C18_L25 (0b10000) <BVdd=2.5V, CVdd=1.8V, LVdd=2.5V>, "&
 "B25_C18_L18 (0b10001) <BVdd=2.5V, CVdd=1.8V, LVdd=1.8V>, "&
 "B18_C33_L33 (0b10010) <BVdd=1.8V, CVdd=3.3V, LVdd=3.3V>, "&
 "B18_C33_L25 (0b10011) <BVdd=1.8V, CVdd=3.3V, LVdd=2.5V>, "&
 "B18_C33_L18 (0b10100) <BVdd=1.8V, CVdd=3.3V, LVdd=1.8V>, "&
 "B18_C25_L33 (0b10101) <BVdd=1.8V, CVdd=2.5V, LVdd=3.3V>, "&
 "B18_C25_L25 (0b10110) <BVdd=1.8V, CVdd=2.5V, LVdd=2.5V>, "&
 "B18_C25_L18 (0b10111) <BVdd=1.8V, CVdd=2.5V, LVdd=1.8V>, "&
 "B18_C18_L33 (0b11000) <BVdd=1.8V, CVdd=1.8V, LVdd=3.3V>, "&
 "B18_C18_L25 (0b11001) <BVdd=1.8V, CVdd=1.8V, LVdd=2.5V>, "&
 "B18_C18_L18 (0b11010) <BVdd=1.8V, CVdd=1.8V, LVdd=1.8V>, "&
 "Reserved (others) <Reserved -- Do Not Use!> "&
 "), "

-- Mnemonics for INIT_STATUS
 "InitCompletionValue (Completed (0b00), "&
 "Running (0b10), "&
 "Stopped (0b01), "&
 "NotStarted (0b11)), "&

 "ErrorCode (NoError (0b00), "&
 " Err1 (0b01), "&
 " Err2 (0b10), "&
 " Err3 (0b11))";

B.8.19 Register fields description

The register description attributes define the possible hierarchical construction of a TDR, identifying fields within a
TDR and such characteristics as the type of TDR cell used in each field, how the fields are reset and to what value,
and what values should be written to or expected to be read from the fields. These fields may then be explicitly
addressed by the Procedural Description Language (PDL) defined in Annex C.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

255
Copyright © 2013 IEEE. All rights reserved.

These definitions may be included in the BSDL for a component, or in a BSDL user package body possibly
provided by an IP supplier. The intent is to allow the IP or component designer to document the important
characteristics of standard and public TDRs, or TDR segments, so that software can more easily be written to
interact with the fields in the TDRs, and the results of operations involving the fields in the TDRs can be more easily
predicted.

The register description attributes are optional. Including them in a component BSDL provides documentation of
previously unknown structural details of the TDRs, making it practical for component and IP designers to support
built-in test logic functions in board and system test. Among the standard TDRs, this capability allows support for
programming the init_data register, which may vary from use to use in the board test environment, defining the
types of resets controlled by the reset_select register, and allowing reasonably automated control of power or other
domains and related excludable or selectable segments.

Like the register mnemonics attribute, the register description attributes may be defined in the BSDL or in a user
package body. One exception is that the boundary-scan register can only be defined in the BSDL because the port
names are required for the definition of the cells in the boundary segments or register. See B.8.14. Note that multiple
occurrences of the register description attributes are allowed, which supports multiple sources of user package files
with no requirement to merge them.

The REGISTER_FIELDS attribute defines and names fields within a register or register segment. The total length
of the register or register segment is stated explicitly. By selecting specific bits of the register or register segment,
the REGISTER_FIELDS attribute allows the definition of fields in a much larger register or register segment, and
the definition of fields where the bits of the field are not contiguous in the register or register segment.

B.8.19.1 Specifications

Syntax

<register fields description> ::= attribute REGISTER_FIELDS of <target> is
<register fields string> <semicolon>

<register fields string>::= <quote> <register field list> { <comma> <register field list> } <quote>
<register field list>::= <reg or seg name> <left bracket> <reg or seg length> <right bracket>

<left paren> <register fields> <right paren>
<reg or seg name>::= <TDR> | <segment name>
<TDR>::= BOUNDARY | BYPASS | DEVICE_ID | TMP_STATUS |

ECID | INIT_DATA | INIT_STATUS | RESET_SELECT | <design specific TDR name>
<segment name>::= <VHDL identifier>
<design specific TDR name>::= <VHDL identifier>
<reg or seg length>::= <integer>
<register fields>::= <left paren> <register field element> <right paren>

{ <comma> <left paren> <register field element> <right paren> }
<register field element>::= <register field> | <prefix statement>
<register field>::= <extended field name> <field length> is <bit list and options>
<extended field name> ::= <prefix string> <field name>
<prefix string>::= { <prefix identifier> <period> }
<field name>::= <VHDL identifier>
<field length>::= <left bracket> <integer> <right bracket>
<bit list and options>::= <bit list> { <field options> }
<field options> ::= <type assignment> | <value assignment> | <reset assignment>
<bit list>::= <left paren> [<bit field> { <comma> <bit field> }] <right paren>
<bit field>::= <range> | <integer>
<prefix statement>::= PREFIX <integer> <prefix name>
<prefix name> ::= <prefix identifier> | <minus sign>

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

256
Copyright © 2013 IEEE. All rights reserved.

Rules

a) When the <target> of a <register fields statement> is an <entity target>, and when the <reg or seg name>
also appears as a <register> element in a <register association> in the <register access description> or is
otherwise defined by this standard, the <reg or seg length> shall:

1) Match the specified length of a register defined in this standard (e.g., length 32 for DEVICE_ID).

2) Match the length of the register as specified in the <register access description>.

3) Define the length of the register when the length in the <register access description> is deferred (*).

b) When the <target> of a <register fields statement> is a <package target> or when the <reg or seg name>
does not appear as a <register> element in a <register association> in the <register access description> or is
not otherwise defined by this standard, the length of <reg or seg name> shall be the <reg or seg length>.

c) The bits within a <register field list> shall be numbered from the value of <reg or seg length> minus one
down to zero, regardless of any ordering within the <bit list>, and with the bit numbered zero closest to
TDO.

d) If one or more of the <prefix statement> is included in a <register field list>, then the <integer> value of
each such statement shall be interpreted as the hierarchical level in ascending <integer> value order from
left to right, and shall have effect until another <prefix statement> with the same or lower <integer> value
is encountered or until the end of the <register field list>.

e) If one or more of the <prefix statement> is included in a <register field list>, then, at any time an <extended
field name> is specified, one effective <prefix statement> shall have an <integer> value of 0, and all
integer values from 0 to the highest value currently active shall have been specified by a <prefix
statement>.

f) If a <prefix statement> is included in a <register field list> with a <prefix name> of <minus sign>, then the
hierarchical level, as specified by the <integer> value, and all higher numbered hierarchical levels, shall be
unspecified.

g) If one or more <prefix statement> is included in a <register field list>, then the <prefix string> of each such
effective statement shall be prepended in ascending order of the <integer> value, with a period as separator,
to the prefix string and field name in all subsequent <register field> statements to form the extended field
name.

h) An <extended field name> shall be unique within a given <BSDL description> or <user package>.

NOTE 1—Since the Standard Package is used in every BSDL and BSDL Package, names in that package are “global”
and are reserved.

i) An <extended field name> shall be composed of zero or more <prefix identifier> fields in parent-to-child
hierarchical order, followed by a <field name>, all separated by periods.

j) The <field length> shall be equal to the total number of bits in the <bit list> for that field.

k) If the <field length> is zero, then the <bit list> shall be an empty list “()”.

l) All bit numbers listed in the <bit list>, either as an <integer> or within a <range>, shall be unique within
the <bit list> and numerically less than the associated <reg or seg length>.

NOTE 2—Any bit of a test data register may be referenced in more than one <register field> but not more than once
within a <register field>.

B.8.19.2 Description

The REGISTER_FIELDS attribute associates names with subsets of bits of a register named in the
REGISTER_ACCESS attribute, or defined in this standard, or with subsets of bits of a newly named register
segment when the name is not listed in the REGISTER_ACCESS attribute nor defined in this standard. Note that a
segment may be excludable per 9.4 or not excludable.

The subset of bits for a field may be a single bit up to the entire register or register segment. The bits of a field may
be listed in contiguous order or randomly ordered. All the bits of the register or register segment may be included in

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

257
Copyright © 2013 IEEE. All rights reserved.

the set of fields, or only a sparse subset of a longer register. Register or register segment bits may appear in more
than one field. The register or register segment is of length L, and the range of the register or register segment bits
for assigning to fields is assumed to be (L-1 DOWNTO 0), where bit 0 is closest to TDO in the scan chain.

In a similar way, the new named field is of length L, and when referring to bits of the field, they are assumed to have
a range of (L-1 DOWNTO 0), and to be associated one-to-one, in order left to right, to the list of bits of the
register or register segment in the field definition. The field may then be referred to by name, and any value assigned
to the bits of the field will be mapped to the bits of the register or register segment.

For example, a simple register or register segment with all bits assigned to fields would look like the following. The
numbers after the “IS” are the bit numbers from the register or register segment range.

NOTE—For clarity, no assignments are shown in these small examples. See B.8.20 for a description of and examples with
assignments.

 attribute REGISTER_FIELDS of MEMB_example : package is
 "MBist [6] ("&
 "(Algorithm [3] IS (5 DOWNTO 3)), "&
 "(Command [1] IS (2)), "&
 "(Status [2] IS (1 DOWNTO 0)) "&
 ")";

There is significant and deliberate redundancy in the specification. The specified length of the register or segment
name (MBist) and the range of (5 DOWNTO 0) is used to check the bit assignments of each field and to place each
bit of each field within the register or register segment. In this case, a 6-bit segment was divided into three fields, all
contiguous, and all bits of the segment were assigned to a field.

The bits of the register or register segment need not all be used, nor must all bits assigned to a field be contiguous, as
shown in the following.

 attribute REGISTER_FIELDS of init_example : entity is
 "init_seg [56] ("&
 -- First 36 bits are not defined.
 "(Observe_IO_VSEL [5] IS (19 downto 15)), "&
 "(PLLPower [3] IS (5,3,1)), "&
 -- Rest of IP configuration register
 "(IPConfig [12] IS (14 downto 6,4,2,0)))";

Bits of the register or register segment may also be assigned to more than one field. For example, the previous
example may be altered as shown in the following. Bits 5, 3, and 1 are assigned to two fields. This might be done to
allow setting the entire field to a default value and then overriding that default value just for the bits of the
PLLPower field.

 attribute REGISTER_FIELDS of init_example : entity is
 "init_seg [56] ("&
 -- First 36 bits are not used.
 "(Observe_IO_VSEL [5] IS (19 downto 15)), "&
 "(PLLPower [3] IS (5,3,1)), "&
 -- All of IP configuration register
 "(IPConfig [15] IS (14 downto 0)))";

Normally, BSDL only deals with the scan chain in terms of a chain name and the bit positions within the chain.
There is another form of hierarchy that can be important to the designer or test engineer when performing debug or
diagnosis: the logical hierarchy of the register field bits. The chain may cross many logical hierarchy boundaries in
the logical netlist without that fact being recorded. However, for understanding of the effect of a value placed in or
captured by a specific field, the engineer may want to know the logical hierarchy.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

258
Copyright © 2013 IEEE. All rights reserved.

One simple way to put the logical hierarchy into the register field definitions is to simply include the entire logical
hierarchy in the field name. There are two problems with this, as follows: First, a field name is defined as a <VHDL
identifier>, which does not allow any of the characters normally used to delimit the hierarchy; and second, such a
name is often such a long string as to be unwieldy. The remedy for both of these problems is the PREFIX keyword
and values in the REGISTER_FIELDS attribute.

The PREFIX keyword takes two parameters: a number, which is the level within the logical hierarchy, and a logical
hierarchy name for that level, which is normally the logical instance name of that level from the design source. The
fully qualified logical hierarchy for a register field is each of the prefix values, in numerical order, concatenated with
a period between them, and finally a period and the field name. This logical hierarchy is just an extension of the
field name and is completely independent of the register assembly hierarchy.

 attribute REGISTER_FIELDS of My_Chip : Entity is
 "Internal_Chain_33 [511] ("&
 "(Prefix 0 TOP), "&
 "(Prefix 1 n1), "&
 "(Prefix 2 IO_Lane1), "&
 "(Prefix 3 RX_cntl), "&
 "(Prefix 4 deskew), "&
 "(Sequencer.state_machine_reg_Q [6] IS (510,509,508,501,502,505)), "&
 "(Command_reg_Q [8] IS (504,498,500,503,499,495,507,506)), "&
 "(Status_reg_Q [5] IS (493,492,497,494,496)), "&
 ...
 ")";

In this example, note that when any level PREFIX is changed, the values of the lower numbered (higher in the
hierarchy, containing) levels are retained and higher numbered (lower in the hierarchy, contained) levels are deleted.
The order in which the levels are specified is therefore important. The extended field names are unique, even though
the field name itself may be the same. The full extended field name for the three fields defined above would be:

 TOP.n1.IO_Lane1.RX_cntl.deskew.Sequencer.state_machine_reg_Q
 TOP.n1.IO_Lane1.RX_cntl.deskew.Command_reg_Q
 TOP.n1.IO_Lane1.RX_cntl.deskew.Status_reg_Q

B.8.19.3 Examples

Referring to the register mnemonics that were defined in B.8.18.3, the following extensive example of init_data and
init_status registers are defined flat (without hierarchy) using the REGISTER_FIELDS attribute.

NOTE—This extended example shows assignments for completeness; see B.8.20 for specifications and a description of the
assignments.

attribute REGISTER_FIELDS of INIT_Example : entity is

-- Register Fields for INIT_DATA register
-- Bits (144 downto 140) observe the IO_VSEL pins, and are read-only bits.
-- All other bits are write-only.

-- The value captured from the IO_VSEL pins must be verified to be set
-- correctly prior to test with the Observe_IO_VSEL bits when the
-- init_data register is scanned.

 "init_data [180] ("&
 -- Unused bits do not need to be referenced.
 -- Observed in init_data because must be set at power-up.
 "(Observe_IO_VSEL [5] IS (144 downto 140) "&

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

259
Copyright © 2013 IEEE. All rights reserved.

 "CAPTURES (IO_VSEL_Decodes (*)) NOPO), "&

 -- Enable PLLs
 "(PLLPower [3] IS (130,128,126) "&
 "CHRESET "&
 "RESETVAL(PLLConfigValues (PLL123on)) "&
 "DEFAULT (PLLConfigValues (PLL123on)) "&
 "SAFE (PLLConfigValues (PLLsOff)) " &
 "NoPI), "&

 -- IP configuration register, see chip release documentation.
 -- No mnemonic provided, ******
 "(IPConfig [12] IS (139 downto 131,127,129,125) "&
 "CHReset "&
 "ResetVal(0xd29) "&
 " Default(0xd29) "&
 " Safe(0xd29)), "&

 -- Transceiver Channels (18 in all)
 "(SerDesChannel_00 [3] IS (124 downto 122) "&
 "DEFAULT (SerDes_Protocol(*)) nopi), "&
 "(SerDesChannelTX_00 [2] IS (121 downto 120) "&
 "DEFAULT (SerDes_TX_Outputs(*)) nopi), "&

 "(SerDesChannel_01 [3] IS (119 downto 117) "&
 "DEFAULT (SerDes_Protocol(*)) nopi), "&
 "(SerDesChannelTX_01 [2] IS (116 downto 115) "&
 "DEFAULT (SerDes_TX_Outputs(*)) nopi), "&

--
-- Three additional channels removed for ease of reading.
--

 "(SerDesChannel_05 [3] IS (99 downto 97) "&
 "DEFAULT (SerDes_Protocol(*)) nopi), "&
 "(SerDesChannelTX_05 [2] IS (96 downto 95) "&
 "DEFAULT (SerDes_TX_Outputs(*)) nopi), "&

 "(SerDesClkChannel1 [5] IS (94 downto 90) "&
 "DEFAULT (SerDesClockSettings (125Mhz)) nopi), "&

 "(SerDesClkChannel2 [5] IS (89 downto 85) "&
 "DEFAULT (SerDesClockSettings (125Mhz)) nopi), "&

 "(SerDesChannel_06 [3] IS (85 downto 87) "&
 "DEFAULT (SerDes_Protocol(*)) nopi), "&
 "(SerDesChannelTX_06 [2] IS (86 downto 85) "&
 "DEFAULT (SerDes_TX_Outputs(*)) nopi), "&

--
-- Nine additional channels removed for ease of reading.
--

 "(SerDesChannel_16 [3] IS (34 downto 32) "&
 "DEFAULT (SerDes_Protocol(*)) nopi), "&
 "(SerDesChannelTX_16 [2] IS (31 downto 30) "&
 "DEFAULT (SerDes_TX_Outputs(*)) nopi), "&

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

260
Copyright © 2013 IEEE. All rights reserved.

 "(SerDesChannel_17 [3] IS (29 downto 27) "&
 "DEFAULT (SerDes_Protocol(*)) nopi), "&
 "(SerDesChannelTX_17 [2] IS (26 downto 25) "&
 "DEFAULT (SerDes_TX_Outputs(*)) nopi), "&

 "(SerDesClkChannel3 [5] IS (24 downto 20) "&
 "DEFAULT (SerDesClockSettings (125Mhz)) nopi), "&

 -- Power level supplied to SerDes internal gates;
 -- No default value or ports specified
 "(SerDesCXVddSel [1] IS (19) "&
 "DEFAULT (SerDesCXVddSelLevel (*)) nopi), "&

 -- Power up SerDes Test Receivers to enable correct SAMPLE operation
 "(SerDesSamplePowerUp [1] IS (18) "&
 "DEFAULT (Switch (off)) nopi), "&

 -- 2^^10 possible decodes, which apply to 1->150 pins.
 -- See Reference Manual, Clause 17.8.
 "(DDRTermSel [10] IS (17 downto 8) nopi), "&

 -- Reserved Field, which must be set to "00000000"
 "(ReservedField [8] IS (7 downto 0) "&
 "DEFAULT (0) " &
 " SAFE (0) nopi) " &
 "), " &

-- Register Fields for INIT_STATUS register -
-- These bits are read-only per the standard
 "init_status [4] ("&
 "(INITCompletionStatus [2] IS (0 to 1) nopo), "&
 "(INITErrorStatus [2] IS (2 to 3) nopo))" ;

A longer version of the PREFIX example is next. First is a simplified listing of an internal scan chain from an ATPG
tool, with the number being the position relative to scan-out:

...
510 TOP.n1.IO_Lane1.RX_cntl.deskew.Sequencer.state_machine_reg_Q(5)
509 TOP.n1.IO_Lane1.RX_cntl.deskew.Sequencer.state_machine_reg_Q(4)
508 TOP.n1.IO_Lane1.RX_cntl.deskew.Sequencer.state_machine_reg_Q(3)
507 TOP.n1.IO_Lane1.RX_cntl.deskew.Command_reg_Q(1)
506 TOP.n1.IO_Lane1.RX_cntl.deskew.Command_reg_Q(0)
505 TOP.n1.IO_Lane1.RX_cntl.deskew.Sequencer.state_machine_reg_Q(0)
504 TOP.n1.IO_Lane1.RX_cntl.deskew.Command_reg_Q(7)
503 TOP.n1.IO_Lane1.RX_cntl.deskew.Command_reg_Q(4)
502 TOP.n1.IO_Lane1.RX_cntl.deskew.Sequencer.state_machine_reg_Q(1)
501 TOP.n1.IO_Lane1.RX_cntl.deskew.Sequencer.state_machine_reg_Q(2)
500 TOP.n1.IO_Lane1.RX_cntl.deskew.Command_reg_Q(5)
499 TOP.n1.IO_Lane1.RX_cntl.deskew.Command_reg_Q(3)
498 TOP.n1.IO_Lane1.RX_cntl.deskew.Command_reg_Q(6)
497 TOP.n1.IO_Lane1.RX_cntl.deskew.Status_reg_Q(2)
496 TOP.n1.IO_Lane1.RX_cntl.deskew.Status_reg_Q(0)
495 TOP.n1.IO_Lane1.RX_cntl.deskew.Command_reg_Q(2)
494 TOP.n1.IO_Lane1.RX_cntl.deskew.Status_reg_Q(1)
493 TOP.n1.IO_Lane1.RX_cntl.deskew.Status_reg_Q(4)
492 TOP.n1.IO_Lane1.RX_cntl.deskew.Status_reg_Q(3)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

261
Copyright © 2013 IEEE. All rights reserved.

...
383 TOP.n1.IO_Lane2.RX_cntl.deskew.Sequencer.state_machine_reg_Q(5)
382 TOP.n1.IO_Lane2.RX_cntl.deskew.Sequencer.state_machine_reg_Q(4)
381 TOP.n1.IO_Lane2.RX_cntl.deskew.Sequencer.state_machine_reg_Q(3)
380 TOP.n1.IO_Lane2.RX_cntl.deskew.Command_reg_Q(1)
379 TOP.n1.IO_Lane2.RX_cntl.deskew.Command_reg_Q(0)
378 TOP.n1.IO_Lane2.RX_cntl.deskew.Sequencer.state_machine_reg_Q(0)
377 TOP.n1.IO_Lane2.RX_cntl.deskew.Command_reg_Q(7)
376 TOP.n1.IO_Lane2.RX_cntl.deskew.Command_reg_Q(4)
375 TOP.n1.IO_Lane2.RX_cntl.deskew.Sequencer.state_machine_reg_Q(1)
374 TOP.n1.IO_Lane2.RX_cntl.deskew.Sequencer.state_machine_reg_Q(2)
373 TOP.n1.IO_Lane2.RX_cntl.deskew.Command_reg_Q(5)
372 TOP.n1.IO_Lane2.RX_cntl.deskew.Command_reg_Q(3)
371 TOP.n1.IO_Lane2.RX_cntl.deskew.Command_reg_Q(6)
370 TOP.n1.IO_Lane2.RX_cntl.deskew.Status_reg_Q(2)
369 TOP.n1.IO_Lane2.RX_cntl.deskew.Status_reg_Q(0)
368 TOP.n1.IO_Lane2.RX_cntl.deskew.Command_reg_Q(2)
367 TOP.n1.IO_Lane2.RX_cntl.deskew.Status_reg_Q(1)
366 TOP.n1.IO_Lane2.RX_cntl.deskew.Status_reg_Q(4)
365 TOP.n1.IO_Lane2.RX_cntl.deskew.Status_reg_Q(3)
...

Next is the REGISTER_FIELDS attribute as a tool might have reconstructed the fields from the above listing. The
extended field names are unique, even though the other level(s) may be the same due to multiple copies of part of
the hierarchy within a single register.

 attribute REGISTER_FIELDS of My_Chip : Entity is
 "Internal_Chain_33 [1511] ("&
 "(Prefix 0 TOP), "&
 "(Prefix 1 n1), "&
 ...
 "(Prefix 2 IO_Lane1), "&
 "(Prefix 3 RX_cntl), "&
 "(Prefix 4 deskew), "&
 "(Sequencer.state_machine_reg_Q [6] IS (510,509,508,501,502,505)), "&
 "(Command_reg_Q [8] IS (504,498,500,503,499,495,507,506)), "&
 "(Status_reg_Q [5] IS (493,492,497,494,496)) "&
 "(Prefix 2 IO_Lane2), "& -- Prefix 3 & 4 are deleted
 "(Prefix 3 RX_cntl), "& -- and have to be re-defined
 "(Prefix 4 deskew), "& -- even if they don’t change

 "(Sequencer.state_machine_reg_Q [6] IS (383,382,381,374,375,378)), "&
 "(Command_reg_Q [8] IS (377,371,373,376,372,368,380,379)), "&
 "(Status_reg_Q [5] IS (366,365,370,367,369)), "&
 ...
 ")";

B.8.20 Register field assignment description

For each field, the type of TDR cells used may be described by type assignment keywords. For each field, values
that the register will assume under specific conditions may be assigned using either binary patterns or mnemonics.
These assignments can be used in the REGISTER_FIELDS attribute or the REGISTER_ASSEMBLY attribute,
or both, as defined in B.8.19 and B.8.21.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

262
Copyright © 2013 IEEE. All rights reserved.

B.8.20.1 Specifications

Syntax

<value assignment>::= <value keyword> <left paren> <assignment> <right paren>
<value keyword>::= CAPTURES | DEFAULT | SAFE | RESETVAL | <user extension>
<user extension>::= USER <colon> <user keyword>
<user keyword>::= <VHDL identifier>
<assignment>::= <assignment value> | <asterisk> | <minus sign>
<assignment value>::= <binary pattern> | <hex pattern> | <decimal pattern> | <mnemonic association>
<mnemonic association>::= [PACKAGE <package hierarchy> <colon>] <mnemonic group name>

<left paren> <mnemonic default> <right paren>
<mnemonic default>::= <mnemonic identifier> | <asterisk> | <minus sign>

<type assignment>::= NOPI | NOPO | NOUPD | MON | PULSE0 | PULSE1 | DELAYPO |

NORETAIN | SHARED | <user extension>

<reset assignment>::= PORRESET | TRSTRESET | TAPRESET | CHRESET |

DOMPOR | HIERRESET | <local reset assignment>
<local reset assignment>::= <reset type> <left paren> <reset ident> <right paren>
<reset type::= RESETOUT | RESETIN
<reset ident>::= <VHDL identifier>

<domain assignment>::= <association type> <left paren> <association name> <right paren>
<association type>::= DOMAIN | DOMAIN_EXTERNAL | SEGMENT
<association name>::= <VHDL identifier>

Rules

a) A <value assignment> defined both in a <register assembly statement> and in the <register fields
statement> of a hierarchical register description shall not change the value assigned in the
REGISTER_FIELDS attribute for either of the value keywords CAPTURES or RESETVAL except
when:

1) The value in the <mnemonic default> assignment was deferred (*) or don’t care (-).

2) The bit to be changed to 0 or 1 was defined in the <register field statement> as X.

NOTE 1—DEFAULT and SAFE values can be modified as desired as they do not represent the structural details of
the register.

b) If a <value keyword> of RESETVAL is provided for a field, a <reset assignment> shall be provided for
the field within the hierarchical register description.

c) Multiples of <value assignment>, if specified within a <bit list and options>, <instance and options>, or
<field and options>, shall contain no more than one of each <value keyword> option.

d) The most significant 1 bit in the binary equivalent value of <assignment value> shall be located within the
specified length of the associated register field.

NOTE 2—This allows a HEX value to be assigned to a register field with a length that is not an exact multiple of 4, as
long as the excess most significant bits are 0. This can also be thought of as the equivalent decimal value being less
than 2**length.

e) If the binary equivalent value of <assignment value> has fewer bits than the specified length of the
associated register field, the bits of the <value assignment> shall be right justified (closest to TDO) in the
field and the remaining high-order bits set to 0 for the DEFAULT and SAFE keywords and to X for the
CAPTURES or RESETVAL keywords.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

263
Copyright © 2013 IEEE. All rights reserved.

f) The following combinations of <value keywords> and <type assignments> shall not be used:

1) CAPTURES with NOPI.

2) DEFAULT or SAFE with NOPO.

g) Multiples of <type assignment>, when specified within a <bit list and options>, <instance and options>, or
<field and options>, shall contain no more than one of each <type assignment> option and the following
combinations shall not be used:

1) MON, PULSE1, PULSE0, or DELAYPO with either NOUPD or NOPO.

2) PULSE1 with PULSE0.

h) No more than one <reset assignment> option of PORRESET, TRSTRESET, TAPRESET, CHRESET,
or HIERRESET shall be specified within a <bit list and options>, <instance and options>, or <field and
options>.

NOTE 3—DOMPOR, RESETOUT, and RESETIN can be be used in combination with any one of the other <reset
assignment> options.

i) For excludable segments controlled by an on-chip domain controller, at least one DOMCTRL field per
domain and at least one SEGSEL field per excludable segment:

1) Shall be instantiated in an <instance and value> of a <register assembly list>.

2) Shall all have a <domain assignment> of DOMAIN.

3) Shall all have the same <association name>.

j) For excludable segments controlled by an off-chip domain controller, at least one SEGSEL field per
excludable segment shall:

1) Be instantiated in an <instance and value> of a REGISTER_ASSEMBLY attribute.

2) Have a <domain assignment> of DOMAIN_EXTERNAL.

3) Have a REGISTER_ASSOCIATION attribute provided with a <port list> associating this field with
the <port ID> of one or more controlling ports.

k) All of the set of SEGSEL, SEGSTART, and SEGMUX field instances controlling a single excludable
segment shall have a <domain assignment> of SEGMENT and have the same <association name>.

l) The <reset assignment> keyword of DOMPOR shall only be used with a field contained in an excludable
segment; and furthermore, the SEGSEL controlling the containing excludable segment shall have a
<domain assignment> of DOMAIN or DOMAIN_EXTERNAL.

m) The <reset assignment> keyword of HIERRESET shall only be used with a field contained in an
excludable segment.

n) The <reset assignment> keyword of RESETOUT shall only be used with a single bit field, which:

1) Shall have one and only one of the other <reset assignment> keywords.

2) Shall have a RESETVAL <values assignment> keyword with an <assignment value> of 1.

3) Shall have a <type assignment> keyword of either PULSE1 or PULSE0 (see Figure 9-11).

4) Shall have a <reset ident> that is unique among all uses of RESETOUT.

o) The <reset assignment> keyword of RESETIN shall have a <reset ident> that matches the <reset ident> of
a RESETOUT <reset assignment> keyword on another cell.

p) For a single bit register field with both RESETOUT and RESETIN keywords, the reset output associated
with the <reset ident> of the RESETOUT keyward shall not, directly or indirectly, cause the activation of
the reset input assosiated with the RESETIN keyword.

NOTE 4—This means that if one local reset resets another, they must be in a strict hierarchical tree without any loops.

q) When the DOMAIN_EXTERNAL <domain assignment> is used with a SEGSEL field instance in a
<register assembly list>, no DOMCTRL field instance shall have the same <association name>.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

264
Copyright © 2013 IEEE. All rights reserved.

r) Each instance of the DOMCTRL and SEGSEL fields in a <register assembly list> shall have a <reset
assignment>, and shall not have a <type assignment>, <value assignment>, or <field selection
assignment>.

s) No instance of the SEGSTART or SEGMUX fields in a <register assembly list> shall have a <type
assignment>, <value assignment>, or <reset assignment>.

t) Only instances of the SEGSEL, SEGSTART, and DOMCTRL fields in a <register assembly list> shall
have a <domain assignment>.

NOTE 5—SEGSEL, SEGSTART, SEGMUX, and DOMCTRL fields are defined in the Standard BSDL Package
Body; see B.9.

u) The <mnemonic group name> used in a <value assignment> shall be defined in a <register mnemonics
description> statement contained in the current BSDL or package, or in a user-supplied package referenced
by a Use statement in the current file.

v) Within a <value assignment>, any <value keyword> of DEFAULT, SAFE, or RESETVAL using a
<mnemonic group name> shall use the same <mnemonic group name>.

NOTE 5—A <mnemonic group name> used in a <value assignment> establishes a link between the register field and
the <mnemonic group name>. The <mnemonic group name> used with DEFAULT, SAFE, or RESETVAL provides
mnemonic values for writing to the field while the <mnemonic group name> used with CAPTURES provides
mnemonic values for reading from the field. The same <mnemonic group name> or different ones may be used for
reading and writing.

w) The <mnemonic identifier> used in a <value assignment> shall be defined, and a member of the
mnemonics group named in the assignment shall be associated with a <binary pattern>, <hex pattern>, or
<decimal pattern>.

NOTE 6—This means that a <mnemonic identifier> associated with the others keyword cannot be used in a <value
assignment>.

x) An asterisk (*) used as the <mnemonic default> for the <mnemonic group name> in a <value assignment>
shall associate the <mnemonic group name> with the field and indicate that the value is required, but
deferred.

y) A minus-sign (-) used as the <mnemonic default> for the <mnemonic group name> in a <value
assignment> shall associate the <mnemonic group name> with the field without assigning a value.

Recommendations

z) The SAFE value assignment should be used for default values when the component is in test mode with
the system logic held in a safe state.

aa) The DEFAULT value assignment should be used for default values when the component is in mission
mode.

bb) Any field with a <reset assignment> keyword of RESETOUT should also have a <reset assignment> of
one of CHRESET, DOMPOR, PORRESET, or RESETIN.

NOTE 7—Use of these <reset assignment> keywords ensures that the fields are both reset at power-up and that resets
during test operation are independent of the TAP controller Test-Logic-Reset state.

cc) Any field with a <reset assignment> keyword of RESETIN should have its reset implemented with
synchronous reset techniques rather than with asynchronous reset techniques.

NOTE 8—This is to meet common IC Design For Test guidelines that asynchronous resets not be generated solely
from internal logic.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

265
Copyright © 2013 IEEE. All rights reserved.

B.8.20.2 Description

Values to be written or read may be assigned to a named field using PDL (see Annex C) or other language capable
of reading and using BSDL and performing scans of TDRs. Fixed or default values also may be assigned with
assignment keywords in each field definition.

When mnemonics are used as the values to be written or read, an association is defined between the TDR field and a
specific mnemonic group. The <mnemonic group name>, if any, used with DEFAULT, SAFE, or RESETVAL
keywords (only one mnemonic group can be used with these three keywords for a TDR field) is interpreted as
providing mnemonic values for writing to the field; the <mnemonic group name>, if any, used with CAPTURES is
interpreted as providing mnemonic values to be captured and read from the TDR field.

Different keywords describe the structure of the cells of the TDR field (which help in understanding and debugging
interactions) and specify values to be shifted into or out of the register under specific circumstances. For clarity, the
structural keywords (type and domain) are discussed first, followed by the value keywords.

The boundary-scan register is structurally defined with an ordered list of required values in the
BOUNDARY_REGISTER or BOUNDARY_SEGMENT attributes (see B.8.14). Here, TDRs are specified with
optional keywords or keyword-value pairs. Structural definition of the register fields in the BSDL or Packages is not
required, but the information may simplify use and debug of the TDR, and simplify test programming and
application.

The default TDR structure, if none of the type assignment keywords are used, is a Capture-Shift-Update cell (see
Figure 9-6) without the optional reset to the update stage. The keywords NOPI, NOPO, and NOUPD restrict the
capabilities of the scan-capture-update cells defined in 9.2, as shown in Figure 9-7 through Figure 9-9. The
PULSE0, PULSE1, and MON keywords add the capabilities illustrated in Figure 9-10 and Figure 9-11. The
DELAYPO keyword adds the capability for a delayed output, normally to avoid a race condition, as shown in
Figure 9-19.

Whether or not the cell can be asynchronously reset, and the type of reset signal connected, is defined by the
mutually exclusive keywords PORRESET, TRSTRESET, TAPRESET, and CHRESET. There is also the
HIERRESET keyword for excludable fields, which are reset by the segment-switching cell, and DOMPOR
keyword for excludable fields in a power domain that are reset when the domain is powered up. Whether the reset
applies to the shift stage or the update stage is determined by the NOUPD keyword, not allowing a description of a
TDR cell that resets both stages.

Additionally, it is possible to generate local reset signals from a single bit register field. This local reset field is
required to have a reset specified for it, and when the local reset field is reset, the output from the field is activated to
reset the cells that it controls. This means that a global reset, such as TRSTRESET, will cause all fields with any
reset specified to be reset simultaneously; yet by scanning a bit into this field, only the locally controlled cells will
be reset. The single bit local reset field would have the RESETOUT keyword and a reset identifier. Every field
reset by a local reset would have the RESETIN keyword with the reset identifier that identifies the field controlling
its reset. It is possible for a local reset field to have both the RESETIN and RESETOUT keywords, with different
reset identifiers, so that hierarchical local resets are allowed. This distribution must be a strict tree with no loops.

Finally, the SHARED type keyword indicates that the TDR cell is shared with mission logic and should never be
scanned when in mission mode. This is a structural characteristic of the register field, but primarily it affects test
programs.

The RESETVAL keyword indicates both the fixed value of the field after the reset, and that a reset signal is
required (as specified by the PORRESET, TRSTRESET, TAPRESET, CHRESET, HIERRESET, DOMPOR,
and RESETIN keywords). The CAPTURES keyword indicates that the field captures one or more fixed bits. The
domain keywords are used only with the predefined DomCtrl and SegSel cells and are used to define the fixed
relationship among the excludable segments, the domain-control cell, and the domain controller.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

266
Copyright © 2013 IEEE. All rights reserved.

The TDR cell structural <type assignment> keyword definitions are:

NOPI (No Primary Input) The TDR contents do not change during the Capture-DR TAP controller
state (the cell does not capture). See Figure 9-7 and Figure 9-9 for examples of a TDR cell
that would be described by this keyword.

NOPO (No Primary Output) The TDR contents do not affect any test or functional logic. See
Figure 9-8 and Figure 9-9, which would be described by this keyword if the optional PO was
not implemented.

NOUPD (No Update Stage) The parallel outputs, if any, of the register change during the Shift-DR, not
the Update-DR, TAP controller state. If the field also has a reset assignment, then the reset
applies to the shift stage. NOPO implies NOUPD. See Figure 9-8 and Figure 9-9.

MON (Self-Monitoring) The shift-capture stage captures the value in the Update stage, allowing
verification of the value currently being driven on PO. MON implies NOPI. MON is
incompatible with NOUPD and NOPO. See Figure 9-10 and Figure 9-11.

PULSE1 When a 1 is shifted into the cell, the output will go high (1) for a single TCK cycle after the
Update-DR TAP controller state and then return to low (0). PULSE1 is incompatible with
NOUPD and NOPO. See Figure 9-11.

PULSE0 When a 1 is shifted into the cell, the output will go low (0) for a single TCK cycle after the
Update-DR TAP controller state and then return to high (1). PULSE0 is incompatible with
NOUPD and NOPO. See Figure 9-11.

DELAYPO Any change in state of the output will occur up to two TCK cycles after the update stage
changes state. This is required for all of the fields that control excludable or selectable
segments, to avoid race conditions on update actions, but it may be used to document any
register field that includes such a delay.

NORETAIN The register field cells may not hold their value when excluded or not selected, either as a
selectable register segment or simply not selected for scan by the active instruction.

SHARED The register field cells are shared with mission mode logic and if scanned during mission
mode could interfere with mission mode operation. Also, the data scanned into such register
fields cannot be assumed to be held during mission mode.

The structural <reset assignment> keyword definitions are:

PORRESET (Power-on or Power-up Reset) The register contents and parallel outputs change in response
to the on-chip POR signal, also used to reset the TAP controller (see 6.1.3).

TRSTRESET The register contents and parallel outputs change in response to the TRST* TAP port, also
used to reset the TAP controller (see 6.1.3).

TAPRESET The register contents and parallel outputs change when the TAP controller enters the Test-
Logic-Reset state, regardless of the state of the TMP controller, if it is provided. Either an on-
chip POR or TRST* TAP port assertion will also force this reset.

CHRESET (Clamp-hold Reset) The register contents and parallel outputs change when the TAP
controller enters the Test-Logic-Reset state and the Persistence controller is in the Persistence-
Off state. Either an on-chip POR or a TRST* TAP port assertion will also force this reset.
Note that the use of this keyword is an error if the optional TMP controller is not provided.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

267
Copyright © 2013 IEEE. All rights reserved.

DOMPOR (Domain Power-on or Power-up Reset) The parallel output of a SEGSEL, contained in an
excludable segment that may be powered-down, will be reset in response to a power-up reset
signal local for the domain being powered-up. Note that this only occurs at power-up for the
domain. (See Figure 9-16.)

HIERRESET (Hierarchical Reset) The parallel output of a SEGSEL, contained in an excludable segment,
is reset when the containing excludable segment is excluded. (See Figure 9-17.)

RESETIN (Local Reset) A register field that is reset by a local reset control cell having the same reset
identifier as this keyword.

RESETOUT (Local Reset Control) The output of the single bit field (which must be of type PULSE1 or
PULSE0, have another of the <reset assignment> keywords specified in the hierarchical
structure, and have a RESETVAL of 1) controls the reset of other register fields paired by
having the same reset identifier as this keyword.

The structural <domain assignment> keyword definitions are:

DOMAIN The associated fields control or are controlled by the named domain, which has an on-chip
controller.

DOMAIN_EXTERNAL The associated fields are controlled by the named domain, which does not have an on-
chip controller.

SEGMENT Associates by the specified name the SEGSEL with a SEGSTART when the SEGSEL is
not in the same TDR with the excluded segment.

The following is an example REGISTER_FIELDS attribute specifying different fundamental cell types for
different fields, all without the optional reset.

 attribute REGISTER_FIELDS of Reg_Types : package is
 "Regs [6] ("&
 "(ReadWrite [1] IS (5)), "& -- Figure 9-6
 "(WriteOnly [1] IS (4) NoPI), "& -- Figure 9-7
 "(ReadOnly [1] IS (3) NoPO), "& -- Figure 9-8
 "(ShiftOnly [1] IS (2) NoPI NoPO), "& -- Figure 9-9
 "(SelfMon [1] IS (1) MON), "& -- Figure 9-10

"(Pulse1Mon [1] IS (0) PULSE1 MON) "& -- Figure 9-11
 ")";

If none of the NOPI, NOPO, NOUPD, MON, PULSE1, or PULSE0 keywords are specified, then the register is
assumed to be a full capture-shift-update register without the optional reset of the update stage. Combinations of
type keywords can define specific, predictable behavior that would otherwise not be able to be assumed. A register
with both the TAPRESET and NOPI assignment keywords specified, for instance, would have an expected value
supplied by the RESETVAL keyword that would be scanned out after the reset. On TDRs that have not been
scanned, tools can predict what bits are set or cleared prior to scanning the TDR based on the reset assignments, and
possibly the state of the Test Persistence controller. This knowledge can be used to minimize the number of scans
used to initialize registers where some fields are already initialized.

The behavior defined by the MON keyword allows any register that does not capture other specific data to return its
current state. This improves the testability and the ability to verify the behavior of the test data register, and is
preferred over a simple NOPI, in most cases.

The two pulse keywords provide an ability to gate the transfer of data from the test data register to another register
(possibly in the system logic) or otherwise activate a process that requires a strobe after the update stages of the test

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

268
Copyright © 2013 IEEE. All rights reserved.

data register are stable. For instance, a test data register may have address and data fields with update stages, and a
single bit “write-enable” cell with the pulse behavior. The update stages prevent the rippling address and data from
propagating, and the pulse on the write-enable will notify the target logic that the rest of the data are available and
stable. With a normal test data register cell, it would require up to three scans to replicate this behavior: Scan the
data with write-enable off, scan again with write-enable on, and again with write-enable off.

The DOMAIN and DOMAIN_EXTERNAL keywords define domain control for excludable segments of TDRs.
Multiple segments within a single TDR, or segments in multiple TDRs, could all be part of a single domain on the
component. The value assigned with the DOMAIN or DOMAIN_EXTERNAL keyword identifies the domain that
each domain-control cell and each segment-select cell is associated with. All domain-control cells with the same
domain name would typically be logically ORed to provide the override to the on-chip domain controller, and the
response of the domain controller would be connected to all segment-select cells with that same domain name, as
shown in Figure B-12 and the following example.

There are three additional value keywords used just for assigning values to be shifted into or out of the register:
DEFAULT, SAFE, and CAPTURES. One additional value keyword is used to assign the value forced into the
field by a reset: RESETVAL.

Not all of the keywords are compatible. Specifically, CAPTURES is incompatible with NOPI, and DEFAULT or
SAFE are incompatible with NOPO. Conversely, if a RESETVAL value keyword is used, then one of the reset
type keywords (PORRESET, TRSTRESET, TAPRESET, CHRESET, HIERRESET, DOMPOR, or
RESETIN) is required. DOMPOR is allowed in combination with one of the other reset type keywords.

In the following example, a reset is added to the PLLPower and IPConfig fields and a deferred capture value to the
Observe_IO_VSEL field from an earlier example. This reset will occur (and the registers set to the specified values)
at POR, if a TRST* TAP port is active, or if the TAP controller is in the Test-Logic-Reset state and the Persistence
controller is in the Persistence-Off state.

 attribute REGISTER_FIELDS of init_example : entity is
 "init_seg [56] ("&
 -- First 36 bits are not used.
 "(Observe_IO_VSEL [5] IS (19 downto 15) "&
 --Pins that must be set at power-up on the board.
 "Captures(IO_VSEL_decodes(*)) NoPO), "& -- See Mnemonic Example 3
 "(PLLPower [3] IS (5,3,1) CHReset ResetVal(0b111)), "&
 -- Rest of IP configuration register
 "(IPConfig [12] IS (14 downto 6,4,2,0) CHReset ResetVal(0xd29)) "&
 ")";

When specified in a REGISTER_FIELDS attribute, the structural type keywords (NOPI, NOPO, NOUPD, MON,
PULSE1, PULSE0, SHARED), like the length of a TDR segment in a field definition, cannot change at a higher
level instantiation in a REGISTER_ASSEMBLY attribute in a way that changes the description of the cell design.
These keywords are not allowed for a segment in a REGISTER_ASSEMBLY attribute, and semantic checks will
check for consistency of keyword use.

The values (and mnemonic group name) for CAPTURES, DEFAULT, SAFE, and RESETVAL are separate. Each
type of value to be assigned requires a value that can be provided by one of the following (any of the keywords
could be used in the examples):

⎯ A specified value.
Example: CAPTURES (<mnemonic group name> (<mnemonic identifier>)) or CAPTURES (0x23)

⎯ An indication that a value is required, but deferred (not yet specified).
Example: CAPTURES(<mnemonic group name> (*)) or CAPTURES (*)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

269
Copyright © 2013 IEEE. All rights reserved.

⎯ An indication that no value is required (not specified and don't care).
Example: CAPTURES (<mnemonic group name> (-)) or CAPTURES (-)

Use of the <mnemonic group name>, even if no <mnemonic identifier> is specified, associates that mnemonic group
with that type of value for the field. The use of the asterisk character for a value requires that a real value be
supplied prior to scanning the register. The use of the minus-sign character is essentially a “don’t care” but is useful
for assigning the mnemonic group to the register.

Any specific value for a CAPTURES keyword is to be interpreted as a fixed capture value, to be expected every
time the field is scanned out. The CAPTURES and NOPI keywords are incompatible.

Any specific value for a DEFAULT keyword is to be interpreted as a default value for system or test circuit
operation, which will be written to the field until replaced by a new value. DEFAULT and NOPO are incompatible.

Any specific value for a SAFE keyword is to be interpreted as a default value for when the system logic is to be
held in an inactive state. Thus, a register for controlling a PLL might have a DEFAULT value that puts the PLL into
proper functional operation, and the SAFE value might turn the PLL off and put it in bypass mode. If a register field
is reserved and not supposed to be used, then it is good practice to specify a SAFE value for the field. SAFE and
NOPO are incompatible.

When a value is specified as an asterisk (*), then the value is required but deferred. That is, it must be supplied at
some point, and it is not a don’t care, but the value cannot be determined yet. For instance, a value may be required
to initialize a component, but the correct value depends on usage in the system and there is no safe default. The
value may be supplied later in a REGISTER_ASSEMBLY attribute referencing the register segment containing
the field, but if not, it is expected to be supplied in the PDL (or other language) scanning a value into this register at
the start of test.

When a value is specified as a minus sign (-), then it is a “don’t-care” and equivalent to a default pattern of all X.
This will normally be used when a mnemonic group name is being associated with a field and there is no preferred
or required value.

If none of these value keywords are provided, the default is no mnemonic association and a “don’t care” value.

The value assignments DEFAULT, SAFE, and with certain restrictions, CAPTURES may be used with a
hierarchical instance of a register segment to add or change assignments made where the register segment was
defined. For instance, they could be specified, or in this case overridden, as follows.

attribute REGISTER_ASSEMBLY of INIT_Example : entity IS
 "init_data (" &
 "(init_tail IS init_seg), "&
 "(array SerDesChannel(0 to 2) IS Channel), "&
 "(SerDesClk_0 IS ChClock "&
 "DEFAULT (SerDesClockSettings (100Mhz)) "&
 "SAFE (SerDesClockSettings (100MHz))))";

As mentioned, keywords that define structures that are assigned to a field must be provided where the field is
originally defined and cannot be changed at hierarchical levels. The keywords NOPI, NOPO, NOUPD, and the
RESETVAL keywords may not be used where a previously defined field is instantiated hierarchically. The reset
keywords PORRESET, TRSTRESET, TAPRESET, CHRESET, and RESETIN may be used at any level of the
hierarchy and one will be required at some level when the RESETVAL keyword has been used. An IP provider may
provide a reset value for his TDR, for example, but might not know the type of reset to which it will be connected,
so the RESETVAL must be defined at the field level, but the type of reset may be determined in the instantiation of
the field.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

270
Copyright © 2013 IEEE. All rights reserved.

Figure B-10 illustrates a simple register structure with four fields and nested local resets. Only specific bits of fields
are reset, so additional bits of those fields are assigned a RESETVAL of X, implying that those bits are not reset.
The REGISTER_FIELDS attribute for this example follows the figure. The choice of CHRESET* in this example
is arbitrary, as it could have been any of the other reset keywords. When CHRESET* is activated, field A will be
set to 1, which will be driven out as a 0 due to that cell having a PULSE0 type keyword (see Figure 9-11 for an
example cell implementation). Field A then causes field B and the first bit of field D to be set and cleared,
respectively. Field B is also a local reset control, and it will set the first bit of field C. Both fields A and B will clear
on the first falling edge of TCK after CHRESET* deactivates. Scanning a 1 into either field A or B will cause a
reset pulse on the corresponding output(s).

Whether a bit is set or cleared, or even reset at all, is determined by the RESETVAL value for the field. While the
symbology of Figure B-10 suggests asynchronous set and reset, it is recommended that synchronous techniques be
used for fields B, C, and D to minimize chip test generation problems in the component.

Figure B-10—Simple local reset structure

attribute REGISTER_FIELDS of MyReg : package is
 "Regs [8] ("&
 "(A[1] IS (7) RESETOUT(lrst1) RESETVAL(0b1) CHRESET PULSE0) "&
 "(B[1] IS (6) RESETIN(lrst1) "&
 "RESETOUT(lrst2) RESETVAL(0b1) PULSE0) "&
 "(C[3] IS (5 DOWNTO 3) RESETIN(lrst2) RESETVAL(0b1xx)) "&
 "(D[3] IS (2 DOWNTO 0) RESETIN(lrst1) NOUPD RESETVAL(0b0xx)) "&
 ")";

For value assignments that imply hard-wired values, namely, the capture or reset values, each level of the hierarchy
must not change bits already specified as 0 or 1 in either a pattern or a mnemonic assignment. However, any bit
originally defined as an X, or where the entire value was originally defined as “don’t-care” (-) or deferred (*), may
be defined where the field is instantiated in a parent.

If a pattern or mnemonic value is specified in any RESETVAL or CAPTURES assignment when the field is
defined, any bits set to 1 or 0 and any mnemonic association may not be changed at hierarchical levels above where
they were originally defined. The value may be changed if it was deferred (*) or a don’t-care (-), or in any bit
position originally specified as an X. In other words, in a multilevel hierarchy, each level must honor the bits already
defined as 0 or 1 at a lower level for the CAPTURES and RESETVAL keywords. If the register field is designed
such that a value is required, but the value may be defined by the user when the field is instantiated (through such
means as input pins on a IP block are to be tied to create a capture or reset value), then the REGISTER_FIELDS
assignment must be coded with the “deferred” token (*) in place of a specific value. This leaves the value open for
the moment but allows it be filled in later by the same keyword with a specific value in a hierarchical instantiation.

DEFAULT and SAFE values may always be changed in hierarchical instantiations.

The following example expands on the previous example by adding DEFAULT and SAFE values to the PLLPower
and IPConfig fields. For the PLLPower, the SAFE value powers the PLLs down. For the IPConfig field, all

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

271
Copyright © 2013 IEEE. All rights reserved.

assignments are to the same value to help ensure that the test software will not accidentally change it. In addition,
while the IPConfig field would normally be write-only, it is used to capture an arbitrary and fixed value (hex
“ABC”) that allows the test software to verify that it is communicating with the correct register.

 attribute REGISTER_FIELDS of init_example : entity is
 "init_seg [56] ("&
 -- First 36 bits are not used.
 "(Observe_IO_VSEL [5] IS (19 downto 15) "&
 "Captures(*) NoPO), "&
 "(PLLPower [3] IS (5,3,1) "&
 "CHReset ResetVal(0b111) "&
 " Default(0b111) "&
 " Safe(0b000)), "&
 -- Rest of IP configuration register
 "(IPConfig [12] IS (14 downto 6,4,2,0) "
 "Captures(0xABC) "&
 "CHReset ResetVal(0xD29) "&
 " Default(0xD29) "&
 " Safe(0xD29)) "&
 ")";

The <field selection assignment> will be discussed and illustrated in the register assembly description.

B.8.21 Register assembly description

The REGISTER_ASSEMBLY attribute defines a register or register segment by concatenating register segments
and fields in the order listed. The length of the assembled register or register segment is the sum of the lengths of the
register segments included in the list. The register segments in the list may be defined in a REGISTER_FIELDS
attribute or in a REGISTER_ASSEMBLY attribute, thereby providing a hierarchical register description. The top
level of any hierarchy is a register named in the REGISTER_ACCESS attribute or defined in this standard.

Four special register fields are defined in the Standard BSDL Package Body STD_1149_1_2013 in support of
excludable segments, and these are intended for use in REGISTER_ASSEMBLY statements. The first two are the
segment-select and segment-start cells named SegSel and SegStart, the third is the switching circuit named SegMux,
and the fourth cell, called DomCtrl, is the domain-control cell, all as defined in 9.4.1.

Selectable segments are delineated, and the selection mechanism is defined, with keywords.

B.8.21.1 Specifications

Syntax

<register assembly description> ::= attribute REGISTER_ASSEMBLY of <target> is
 <register assembly string> <semicolon>

<register assembly string>::= <quote> <register assembly list>

{ <comma> <register assembly list> } <quote>
<register assembly list>::= <reg or seg name> <left paren> <register assembly elements> <right paren>
<register assembly elements>::= <left paren> <register element> <right paren>

{ <comma> <left paren> <register element> <right paren> }
<register element> ::= <instance and options> | <field and options> | <instance reference> |

<selected segment element> | <boundary instance> | <using statement>

<instance and options> ::= <instance definition> { <field assignments> }
<instance definition> ::= <instance ident> is [PACKAGE <package hierarchy> <colon>]

<reg or seg name>

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

272
Copyright © 2013 IEEE. All rights reserved.

<instance ident> ::= <segment ident> | <array ident>
<segment ident> ::= <VHDL identifier>
<array ident>::= ARRAY <array segment ident> <left paren> <range> <right paren>
<array segment ident>::= <VHDL identifier>

<field assignments> ::= <field value assignment> | <field reset assignment> |

<field domain assignment> | <field selection assignment>
<field value assignment> ::= [<field ident> <colon>] <value assignment>
<field reset assignment> ::= [<field ident> <colon>] <reset assignment>
<field domain assignment> ::= [<field ident> <colon>] <domain assignment>
<field ident> ::= { <instance name> <period> } <field name>
<instance name> ::= <segment ident> | <array instances>
<array instances> ::= <array segment ident> <bit list>

<field and options>::= <field name> <field length> { <field options> }

<instance reference> ::= <segment ident> | <array instance>
<array instance> ::= <array segment ident> <left paren> <index> <right paren>
<index> ::= <integer>

<selected segment element> ::= SELECTMUX
 <left paren> <selectable segment> <right paren>
 { <comma> <left paren> <selectable segment> <right paren> }
 <field selection assignment>
<selectable segment> ::= <instance and options> | <instance reference>

<field selection assignment> ::= <selection field> <selection values>

[<broadcast field> <broadcast values>]
<selection field> ::= SELECTFIELD <left paren> <field reference> <right paren>
<field reference> ::= { <instance reference> <period> } <field name>
<selection values> ::= SELECTVALUES <left paren> <segment selection>
 { <segment selection> } <right paren>
<segment selection> ::= <left paren> <instance reference> <colon> <field value>

{ <comma> <field value> } <right paren>
<field value> ::= <mnemonic identifier> | <binary pattern> | <hex pattern> | <decimal pattern>
<broadcast field> ::= BROADCASTFIELD <left paren> <field reference> <right paren>
<broadcast values> ::= BROADCASTVALUES <left paren> <broadcast selection>
 { <broadcast selection> } <right paren>
<broadcast selection> ::= <left paren> <instance reference> { <comma> <instance reference> }

<colon> <field value> { <comma> <field value> } <right paren>

<boundary instance> ::= <segment ident> is

[PACKAGE <package hierarchy> <colon>] <boundary segment name>

<using statement>::= USING <package prefix>
<package prefix> ::= <package hierarchy> | <minus sign>
<package hierarchy>::= <user package name> { <period> <user package name> }

Rules

a) Within a <register assembly list>, <register assembly elements> shall be ordered with the first listed
segment closest to TDI, and the last closest to TDO.

b) When the <target> of a <register assembly statement> is an <entity target>, and when the <reg or seg
name> also appears as a <register> element in a <register association> in the <register access description>,

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

273
Copyright © 2013 IEEE. All rights reserved.

or the <reg or seg name> is otherwise defined by this standard, the sum of the lengths of the nonexcludable
segments listed in the <register assembly> shall either:

1) Match the length of the register when the length is otherwise defined and fixed in this standard.

2) For the BOUNDARY register, match the <register length> specified in the <boundary length stmt> or
the <reset length> specified in the <assembled boundary length stmt>, whichever occurs.

3) Match the length of the register as specified in the <register access description>.

4) Define the length of the register when the length in the <register access description> is deferred (*).

5) Define the length of a register, which is defined in this standard and the length is not defined.

c) When the <target> of a <register assembly statement> is a <package target> or when the <reg or seg
name> does not appear as a <register> element in a <register association> in the <register access
description> or is not otherwise defined by this standard, the length of <reg or seg name> shall be the sum
of the lengths of the nonexcludable segments listed in the <register assembly>.

d) For a <field and options> segment, the <field name> shall be unique within a given <register assembly
list>.

e) All <register assembly elements> between a SEGSTART element and a SEGMUX element with the same
SEGMENT <association name>, or if there is no SEGSTART element with the same SEGMENT
<association name>, then between a SEGSEL element and a SEGMUX element with the same
<association name>, shall be excludable as a unit.

NOTE 1—The SEGSEL, SEGSTART, and SEGMUX, all with the same SEGMENT <association name>, are not
part of the excludable segment. These named fields are defined in the Standard BSDL Package Body (see B.9).

f) All <segment ident> and <array segment ident> elements that appear in a <register assembly list>
(including a <selected segment element> list) shall:

1) Be unique within the BSDL or Package.

2) Be a name for a contiguous subset of bits as defined within the current <reg or seg name>.

g) When a <reg or seg name> is used in an <instance definition>, it shall be defined in a <register field list>
or a <register assembly list> statement contained in the current BSDL or Package, or in a Package
referenced by the <package hierarchy> specified in the most recent USING statement and as part of the
<instance definition>.

h) Where multiple <array ident> statements refer to the same <VHDL identifier>, the associated <range>
specifications shall not have any duplicate indices and there shall be no missing indices within the total
range specified.

i) A <field ident> shall be composed of zero or more <instance name> fields in parent-to-child hierarchical
order, followed by an <extended field name>, all separated by periods.

j) Each <instance name> of a <field ident> shall be an <instance ident> within the <register assembly list>
with the <reg or seg name> given in the <instance and value> at each hierarchical level.

k) The <extended field name> of a <field ident> shall be an <extended field name> within a <register field
list> or a <field name> within a <register assembly list>, in either case with the <reg or seg name> given in
the <instance and value> of the last <instance ident>.

l) When an <instance reference> is used in a <register assembly list>, it shall not appear in the entire
hierarchy of the TDR being defined in a way that could cause multiple copies of the referenced instance to
be scanned simultaneously; that is, the referenced instance shall appear at most one time in any valid
configuration of excludable or selectable segments for a single TDR.

NOTE 2—A single segment cannot be serially connected in more than one location within a TDR when the TDR is
scanned. In the case of selectable segments, only one segment at a time is selected for connection between TDI and
TDO, so a single segment can appear in multiple selectable segments of a single selectable segment structure. A
segment may also appear in more than one TDR. Instance names must be unique only within a BSDL or BSDL
Package, but the <instance definition> referred to by an <instance reference> must be in the same file, so there is no
conflict if the <instance reference> matches an <instance definition> in a different file, even if they end up in the same
TDR hierarchy.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

274
Copyright © 2013 IEEE. All rights reserved.

m) The <selected segment element> shall only be included in the <register assembly list> of a design-specific
register.

n) Every instance named in a <selectable segment> of a <selected segment element> shall be selectable by
one or more value in the associated <selection field> and <broadcast field>, if any, and when selected shall
establish a valid scan path through the <selected segment element>.

NOTE 3—For a <selectable segment> that is an array, all elements of the array are governed by the above rule.

o) A <field reference> shall be composed of zero or more <instance reference> fields in parent-to-child
hierarchical order, followed by an <extended field name>, all separated by periods, and shall resolve to a
register field with a length greater than zero and defined in a REGISTER_FIELDS or
REGISTER_ASSEMBLY attribute.

p) The definition of the <field reference> of both a <selection field> and a <broadcast field>, if any, shall
include a <reset assignment> and a <value assignment> of RESETVAL with a value or values that
establish a valid default scan path through the <selected segment element>.

q) The definition of the <field reference> of both a <selection field> and a <broadcast field>, if any, shall
include a <type assignment> of DELAYPO if both the <field reference> and a segment selected by the
<field reference> are scanned simultaneously.

NOTE 4—For example, the IEEE 1500 wrapper instruction register (WIR) is not scanned simultaneously with any of
the controlled wrapper data registers (WDRs), so this rule does not apply to the WIR. It may apply to the SelectWIR
field, which selects between the WIR and the WDR.

r) The <mnemonic identifier> specified in a <selection values> list shall be a <mnemonic identifier> in the
<mnemonic group> associated with the <field reference> in the <selection field> by the RESETVAL
<value assignment>, and the <mnemonic identifier> specified in a <broadcast values> list shall be a
<mnemonic identifier> in the <mnemonic group> associated with the <field reference> in the <broadcast
field> by the RESETVAL <value assignment>.

s) The selection of any decode of the <selection field> or <broadcast field> not listed as a <field value> in the
respective values list shall be undefined.

NOTE 5—This could be the selection of an undocumented (private) register segment, or just an unused code resulting
in an open scan chain. There is no default selection for unused codes.

t) All <register assembly elements> of a <register assembly list> with a <reg or seg name> of BOUNDARY
shall be a <boundary instance> or an instance of the DOMCTRL, SEGSEL, SEGSTART, or SEGMUX
register fields defined in the Standard BSDL Package Body (see B.9).

u) All excludable segments in a <register assembly list> with a <reg or seg name> of BOUNDARY shall
have at least one each of any associated DOMCTRL and SEGSEL fields in the same <register assembly
list>.

NOTE 6—This requires that any excludable segments in the boundary-scan register can be controlled by cells in the
boundary-scan register. There may be duplicate DOMCTRL and SEGSEL fields in the initialization data register.

v) All instances of the DOMCTRL and SEGSEL fields in a <register assembly list> with a <reg or seg
name> of BOUNDARY shall only control excludable segments in the same <register assembly list>.

w) All excludable segments in the optional initialization data register shall have at least one each of any
associated DOMCTRL and SEGSEL fields in the initialization data register.

x) All excludable segments in a public TDR (standard or design specific) shall have the associated
DOMCTRL and SEGSEL fields in the same TDR or another public TDR other than the boundary-scan
register.

y) A <package hierarchy> shall be composed of one or more <user package name> fields in parent-to-child
hierarchical order, separated by periods.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

275
Copyright © 2013 IEEE. All rights reserved.

z) A <package hierarchy> shall be used to identify a specific <mnemonic group name>, <reg or seg name>, or
<boundary segment name> when the name was defined within the lowest level package of the <package
hierarchy> and unless the name is known to be unique within the current BSDL or Package and all lower
level Packages.

aa) When a <package hierarchy> is defined by a <using statement>, it shall be prepended to, when present, or
used in lieu of, when not present, the <package hierarchy> in the <mnemonic group name>, <reg or seg
name>, or <boundary segment name>, of all subsequent <instance and value> or <boundary instance>
statements within the <register assembly list>, until replaced with a new <using statement>.

bb) When a <using statement> has a value of <minus sign> instead of a <package hierarchy>, then any current
<package hierarchy> previously defined by a <using statement> shall be removed.

cc) When the value of <conformance identification> is STD_1149_1_2001, STD_1149_1_1993, or
STD_1149_1_1990, the <instance definition> shall not be of a DOMCTRL, SEGSEL, SEGSTART,
SEGMUX field.

Permissions

dd) Multiple <array ident> statements that refer to the same <VHDL identifier> may appear in any order in the
<register assembly list>.

ee) When controlling excludable segments in the boundary-scan register or initialization data register, the
DOMCTRL and SEGSEL fields may be duplicated in other public test data registers.

NOTE 7—The parallel outputs of all DOMCTRL or all SEGSEL cells controlling a single excludable segment would
effectively be ORed together so that any one of them had the same effect as the others.

Recommendations

ff) When the <broadcast field> is provided, it should be the same <field reference> as the <selection field> in
the same <selected segment element>.

gg) When the <broadcast field> is provided and is not the same <field reference> as the <selection field> in the
same <selected segment element>, the REGISTER_CONSTRAINTS attribute should be used to
document combinations of <field values> for the two registers that would result in a broken scan chain or
other undesired behaviors.

B.8.21.2 Description

Like the REGISTER_FIELDS attribute, the REGISTER_ASSEMBLY attribute can be used to define one or
more full registers named in the REGISTER_ACCESS attribute or defined in this standard, or of a register
segment to be used in another REGISTER_ASSEMBLY attribute. The REGISTER_ASSEMBLY attribute lists
instances of (i.e., “instantiates”) register segments defined elsewhere in the BSDL or in a BSDL Package Body,
which is the target of a USE statement in the BSDL. The length of the register or register segment is the sum of the
lengths of the segments listed in the <register assembly list>, including the length of any currently selected
selectable segment, and any included excludable segments. The documented minimum or default length is the sum
of lengths of the nonexcludable segments (including the always nonexcludable DOMCTRL and SEGSEL fields)
plus the length of any selectable segments selected by the reset value of the selection field. Each element in the
<register assembly list> has to have an explicitly or implicitly defined length, so the length of the newly defined
register or register segment may be calculated for any configuration of fixed, excludable, and selectable segments.

Unlike the REGISTER_FIELDS attribute, there is no redundant information to provide checking. All bits of the
register or register segment must be defined. The various fields in the register or register segment are accessed by
segment and field name rather than by counting bits within the register, as shown by the following simple example.

NOTE—For clarity, no field assignments are shown in these small examples. See B.8.20 for a description of and examples with
field assignments.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

276
Copyright © 2013 IEEE. All rights reserved.

attribute REGISTER_ASSEMBLY of INIT_Example : entity IS
 "init_data (" &
 -- TDI
 "(init_tail IS init_seg), "&
 "(SerDesChannel_00 IS Channel), "&
 "(SerDesChannel_01 IS Channel), "&
 "(SerDesChannel_02 IS Channel), "&
 "(SerDesClk_0 IS ChClock))";

init_seg is shown in the discussion of the REGISTER_FIELDS attribute, and Channel and ChClock are defined in
a later extended example (see B.8.21.3), but that is not critical to understanding REGISTER_ASSEMBLY. Note
that no lengths are shown. The length of every segment is defined and known, so the length of the register or register
segment defined with REGISTER_ASSEMBLY can be calculated from this definition.

Note in the preceding example that there are three instances of the “Channel” register segment, and they are all
contiguous. There is an easier way to show this, as shown in the following.

attribute REGISTER_ASSEMBLY of INIT_Example : entity IS
 "init_data (" &
 "(init_tail IS init_seg), "&
 "(array SerDesChannel(0 to 2) IS Channel), "&
 "(SerDesClk_0 IS ChClock))";

Arrays of segments can also be used to easily specify a range of contiguous bits that are not described. Defining a
single bit register segment as unused, an array of them may be used to define an unused portion of a register in a
REGISTER_ASSEMBLY attribute as shown at the end of the following.

attribute REGISTER_FIELDS of INIT_Example : entity is
 "reserved [1] ((do_not_use [1] IS (0)))";
attribute REGISTER_ASSEMBLY of INIT_Example : entity IS
 "init_data (" &
 "(init_tail IS init_seg), "&
 "(array SerDesChannel(0 to 2) IS Channel), "&
 "(SerDesClk_0 IS ChClock), "&
 "(array unused (7 DOWNTO 0) IS reserved))";

Alternatively, the unused bits may be defined with an in-line field within the REGISTER_ASSEMBLY attribute as
shown at the end of the following.

attribute REGISTER_ASSEMBLY of INIT_Example : entity IS
 "init_data (" &
 "(init_tail IS init_seg), "&
 "(array SerDesChannel(0 to 2) IS Channel), "&
 "(SerDesClk_0 IS ChClock), "&
 "(unused [8]))";

This standard allows a register segment to be used in more than one TDR, and in more than one of a set of selectable
segments. For example, in Figure 9-2, two segments are used to construct three TDRs. To support this use of a
segment in more than one TDR or selectable segment, the name of an instance, already instantiated in a different
TDR or selectable segment, may be referenced and used as an element in a register assembly. Note that the
switching logic required to make this work in hardware is not specified; this simply describes the fact that this
segment is used in two different TDRs, and that the segments are exactly the same set of register cells.

The three TDRs illustrated in Figure 9-2 could be coded as follows, with each box in the figure being multi-bit
register fields, and where i1 and i2 are the segment instances that are used in two TDRs each:

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

277
Copyright © 2013 IEEE. All rights reserved.

attribute REGISTER_FIELDS of MyChip : entity IS
 "Front_Seg [9] ("&
 "(a [3] IS (8 DOWNTO 6)), "&
 "(b [2] IS (5 DOWNTO 4)), "&
 "(c [4] IS (3 DOWNTO 0))), "&
 "Back_Seg [9] ("&
 "(x [2] IS (8 DOWNTO 7)), "&
 "(y [5] IS (6 DOWNTO 2)), "&
 "(z [2] IS (1 DOWNTO 0)))";

attribute REGISTER_ASSEMBLY of MyChip : entity IS
 "FRONT_TDR ("&
 "(i1 IS Front_Seg)), "& -- Create an instance of a segment
 "BACK_TDR ("&
 "(i2 IS Back_Seg)), "& -- Create an instance of a segment
 "WHOLE_TDR ("&
 "(i1), "& -- Reference the existing segment instead of a new segment.
 "(i2))" ; -- Reference the existing segment instead of a new segment.

REGISTER_FIELDS and REGISTER_ASSEMBLY attributes may be coded in the BSDL or in a user-supplied
package body (see B.10). The string value of the attribute containing the field definitions is the same in all cases.

Prior to the existence of the REGISTER_FIELDS and REGISTER_ASSEMBLY attributes, all names in the
BSDL and any standard or user packages referenced by “USE ...” statements in the BSDL were required to be
unique. Now, user packages may come from diverse sources with no way of coordinating name assignments, and
further, user packages may contain “USE ...” statements referencing other user packages. Clearly, it is impractical to
impose a rule that all register field, register segment, and register instance definitions have unique names throughout
the structure.

Some of the requirements have not changed: any names defined in the standard packages (package names starting
with STD_1149_) must still be unique throughout the data structure.

Within BSDL and user packages, the rule is that the names be unique within the BSDL or within the package body.
To refer to a name in another user package, the name is prefaced with the <package hierarchy>. The <package
hierarchy> is a top-to-bottom hierarchy of package names, starting with the package used in the current BSDL or
user package, concatenated by the period (.) character.

There are two ways to specify the hierarchy:

The first way is to simply specify the <package hierarchy> in the instance definition in the
REGISTER_ASSEMBLY attribute with the optional “PACKAGE <package hierarchy> <colon>” value ahead of
the register segment name.

The second way is to use the “USING <package hierarchy>” keyword and value within the
REGISTER_ASSEMBLY attribute. All instances of register segment names, boundary segment names, and
mnemonic group names following that keyword are treated exactly as if the “<package hierarchy> <colon>” value
were used ahead of the name. A new USING assertion will change the <package hierarchy> value or remove it if
“USING -” is specified. If a <package hierarchy> is supplied both with a USING assertion and prepended to the
name, then the USING assertion <package hierarchy> will be prepended to the <package hierarchy> with the name.
In the following example, the USING assertion affects the register segments Channel and Clock, and the mnemonic
group names Protocol, and TX_Swing:

attribute REGISTER_ASSEMBLY of INIT_EXAMPLE : entity is
 "init_data ("&
 "(USING MyCorp_SERDES_1_2_3), " &
 "(Array SerDesChannel(0 TO 5) IS Channel " &

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

278
Copyright © 2013 IEEE. All rights reserved.

 "SAFE(SerDes_Protocol(off)) " &
 "SAFE(SerDes_TX_Outputs(75%_Swing))), " &
 "(Array SerDesClk(1 TO 2) IS ChClock), " &
 "(USING -), " &
 ...
 "), " &

The REGISTER_CONSTRAINTS (see B.8.22) attribute and PDL (see Annex C) will use the instance names
defined in the REGISTER_ASSEMBLY attribute for each instantiation of a register segment.

Excludable register segments and domain control

Four special register fields, named DOMCTRL, SEGSEL, SEGSTART, and SEGMUX, are defined in the
Standard BSDL Package Body (see B.9) to support the use of excludable segments of registers (see 9.4). For public
registers, only these fields may be used to delineate excludable segments, and these fields have been defined to meet
all of the rules in 9.4. Within a register assembly, the SEGSEL or SEGSTART would be placed immediately
before (closer to the start of the list and to TDI) the segments to be excluded, and the SEGMUX would be placed
immediately after. Whatever segments are listed between those two, and not including the two, comprise the
excludable segment. The default length of a register defined to include one or more excludable segments is the
length with all excludable segments in their default excluded state. That is, they do not count toward the default
length. Since the length of every named segment is known, calculation of the actual length of the register under any
configuration of excludable segments, included or not, is straightforward.

When an excludable segment may exist in a domain where scanning may not be possible (such as a power domain
that can be powered down), and control is provided on the component to make that domain scannable (a power
controller that can provide power to the domain), then a DOMCTRL field may be provided in a register assembly.
The domain-control cell in the DOMCTRL field is assumed to override the control of the domain in a way that will
make the domain scannable, possibly after some delay. Note that there is no intention here of defining a general
domain control structure controlled through the TAP, but just to give test logic override control of domains already
existing in the mission logic so that the test logic within those domains may be controlled and exercised through the
TAP.

A domain name is established by one or more DOMCTRL fields with a DOMAIN keyword followed by the domain
name enclosed in parenthesis. The domain name is referenced by one or more SEGSEL fields with a DOMAIN
keyword followed by the same name enclosed in parenthesis. This domain name is simply to identify all associated
DOMCTRL and SEGSEL fields.

When the DOMCTRL cell precedes the SEGSEL cell, all in a single register segment, and both include the same
domain name, the association is obvious. If the DOMCTRL cell is located in another register, then the software
must find the register that includes the SEGSEL cells with the referenced domain name.

When the excludable segment is not immediately preceded by the SEGSEL field, including when the two are in
different registers, then the zero length SEGSTART field is used to mark the beginning of the excludable segment.
In order to associate the SEGSEL SEGSTART and SEGMUX fields controlling a single excludable segment with
each other, the SEGMENT keyword with a segment identifier in parenthesis is required on all three types of fields.

See Figure B-12 and associated BSDL statements for an extensive example of these domain and segment control
structures. Here is a simple example of the use of these fields to make the SerDes domain in the previous example
excludable:

attribute REGISTER_ASSEMBLY of INIT_Example : entity IS
 "init_data (" &
 "(init_tail IS init_seg), "&
 "(SerDesPowerUp IS DomCtrl Domain(serdesPwr) TRSTReset), "&

"(SerDesBegin IS SegSel Domain(serdesPwr) Segment(S1) TRSTReset), "&
 "(array SerDesChannel(0 to 2) IS Channel), "&

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

279
Copyright © 2013 IEEE. All rights reserved.

 "(SerDesClk_0 IS ChClock), "&
 "(SerDesEnd IS SegMux Segment(S1)), "&
 "(unused [8] NoPI NoPO))";

The array of channels and the channel clock are all part of the excludable segment, and their lengths will not count
toward the default length of “init_data” register defined here.

When assembling the boundary-scan register from segments, only segments defined by the
BOUNDARY_SEGMENT attribute plus the four segment control fields defined in the Standard BSDL Package
Body (DomCtrl, SegSel, SegStart, and SegMux) may be used. For example, assume that five boundary segments are
defined: north, south, west, east1, and east2 (see Example 2 of B.8.14.2), and that the east2 segment may be
powered down; then the definition of the boundary-scan register would be as follows.

attribute REGISTER_ASSEMBLY of BOUNDARY_Example : entity IS
 "boundary ("&
 "(north IS north), "&
 "(east1 IS east1), "&
 "(PowerUp IS DomCtrl Domain(pwr3) TAPReset), "&
 "(East2_start IS SegSel Domain(pwr3) Segment(E2) TAPReset), "&
 "(east2 IS east2), "&
 "(East2_End IS SegMux Segment(E2)), "&
 "(south IS south), "&
 "(west IS west))" ;

The maximum length of the boundary-scan register is the sum of all segment lengths, including the single bit
DomCtrl and SegSel field segments. The default length is the sum of the lengths of all segments except the “east2”
segment.

The value of the Domain assignment (pwr3) is an arbitrary name for the domain being controlled, and in return
controlling the value captured by the SegSel cell with the matching name assignment. There may be multiple
DomCtrl cells and multiple SegSel cells having the same Domain name assignment. For controlling segments in the
boundary-scan register, the DomCtrl and SegSel cells could have been located anywhere in the boundary-scan
register, and could be duplicated in the init_data register. The DomCtrl and SegSel cells could be in any public
register for segments in TDRs other than the boundary-scan register.

Selectable register segments

Within a REGISTER_ASSEMBLY attribute, the segments listed, even those that are excludable, are connected in
series in a single scan chain. Several keywords and their values are defined to support parallel scan structures (such
as IEEE Std 1500) where multiple segments are in parallel and one is selected at any time to connect between the
scan-in and the scan-out. These selectable register segment structures are treated as a single segment within the
REGISTER ASSEMBLY attribute, and they are connected in series with any other segments defined in the
attribute.

The selectable register segment is started with the SELECTMUX keyword, which marks the position in the scan
chain where the scan-in data fans out to each of the selectable segments. This is followed by a list of parallel
segments, all of which get the same scan-in data, which are followed in turn by the SELECTFIELD and
SELECTVALUES keywords, and optionally the BROADCASTFIELD and BROADCASTVALUES keywords.
These identify the encoded selection field, define the decodes of that field, and mark the location of the selection
circuit that selects which segment is connected in series with the rest of the segments in the
REGISTER_ASSEMBLY attribute (the end of the selectable register segment).

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

280
Copyright © 2013 IEEE. All rights reserved.

The keywords used to define a selectable register segment are:

SELECTMUX Specifies the start of a list of segments, each of which is individually selectable for scanning
as opposed to all being in series. Effectively, these segments are in parallel (sharing the same
scan-in signal) with a circuit such as a multiplexer to select which is connected to TDO.

SELECTFIELD Specifies the <reg or seg name> or <extended field name> that controls the selection of one
of a set of selectable segments. SELECTFIELD is always used with SELECTVALUES and
is used only with a SELECTMUX keyword in a <selected segment element>. If
BROADCASTFIELD is also used in the same <selected segment element>, then
SELECTFIELD only selects which segment is connected to the scan out of the element.

SELECTVALUES Associates a register segment <instance reference> with a comma separated list of
<mnemonic identifier>, BINARY_PATTERN, DECIMAL_PATTERN, or HEX_PATTERN
values. The values specified represent the values the SELECTFIELD register must contain to
select the specified register segment.

BROADCASTFIELD Specifies the <reg or seg name> or <extended field name> that controls the selection of
one of a set of selectable segments for scanning. BROADCASTFIELD is always used with
BROADCASTVALUES and is used only with a SELECTMUX keyword in a <selected
segment element>.

BROADCASTVALUES Associates a comma separated list of <mnemonic identifier>,
BINARY_PATTERN, DECIMAL_PATTERN, or HEX_PATTERN values with a comma
separated list of <register segment> instances, which receive scan-in data simultaneously in
parallel. That is, these values enable the Shift_<TDR>, Capture_<TDR>, and Update_<TDR>
signals of the recommended TDR interface in Table 9-1, or equivalent.

The circuit shown in Figure B-11 shows some of both the flexibility and the limitations of the selectable register
segment.

Figure B-11—Simple selectable register segment structure

First, note that there could be any number of fixed, excludable, or selectable segments in the position of segments
SX and SY. These just represent the rest of the full REGISTER_ASSEMBLY. There are three unique scan paths
through the selectable segment structure: S2, S3/S4, and S3/S5. Segment S1 is the selection field that selects which
unique path will be taken, and it could be anywhere outside the selectable register segment structure and in this or
another public TDR. The operation of this structure is fairly obvious. It could be documented in a couple ways.
Clearly, the paths S3/S4 and S3/S5 involve multiple segments, but the selectable segment structure only allows
single segments for each parallel path, so those paths need to be somehow described so they can be instantiated as
single segments. First, S3, S4, and S5 could be described with a register assembly as a nested selectable register
segment structure for S4 and S5. Alternatively, S3/S4 and S3/S5 could be described as separate register assemblies
using an <instance reference> to include S3 in both segments.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

281
Copyright © 2013 IEEE. All rights reserved.

The nested selectable segment register description follows:

attribute REGISTER_ASSEMBLY of Select_Example : entity IS
 "Seg_X2Y ("&
 "(SX [3]), "&
 "(S1 [2]), "&
 "(SELECTMUX "&
 "(S2 [8]), "&
 "(S345 IS Seg_345), "&
 "SELECTFIELD(S1) SELECTVALUES((S2 : 0b0X) (S345 : 0b1X)) "&
 "), "&
 "(SY [3]) "&
 "), "&
 "Seg_345 ("&
 "(S3 [3]), "&
 "(SELECTMUX "&
 "(S4 [4]), "&
 "(S5 [5]), "&
 "SELECTFIELD(S1) SELECTVALUES((S4 : 0bX0) (S5 : 0bX1)) "&
 ") "&
 ")";

The un-nested selectable register segment description (using an instance reference) follows:

attribute REGISTER_ASSEMBLY of Select_Example : entity IS
 "Seg_X2Y ("&
 "(SX [3]), "&
 "(SELECTMUX "&
 "(S2 [8]), "&
 "(S34 IS Seg_34), "&
 "(S35 IS Seg_35) "&
 "SELECTFIELD(S1) "&
 "SELECTVALUES((S2 : 0b0X) (S34 : 0b10) (S35 : 0b11)) "&
 "), "&
 "(SY [3]) "&
 "), "&
 "Seg_34 ((S3 [3]), (S4 [4])), "& -- S3 instantiated
 "Seg_35 ((S3), (S5 [5]))"; -- S3 referenced

A well-documented use of this type of selectable segments is the wrapper serial port (WSP) of IEEE Std 1500.
While the WSP is designed to be able to be controlled by an IEEE 1149.1 TAP, it was not possible prior to the 2013
version of this standard to document the register structure; it had to be a private register. Figure B-13 is a typical
example of a WSP.

B.8.21.3 Examples

This is the same extensive example shown for the REGISTER_FIELDS attribute, but it is rewritten to show how a
hierarchical REGISTER_ASSEMBLY attribute can make the register description more compact.

NOTE 1—This extended example shows assignments for completeness; see B.8.20 for specifications and a description of the
assignments.

Initialization REGISTER_ASSEMBLY example

attribute REGISTER_FIELDS of INIT_Example : entity is
 -- IP configuration register, see chip release documentation.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

282
Copyright © 2013 IEEE. All rights reserved.

 -- Done in a register field because of non-contiguous bits;
 -- The PLL enable bits are used and the rest not used in JTAG test.
 "configuration [15] (" &
 "(IP_reg [12] IS (14 DOWNTO 6, 4, 2, 0) " &
 "DEFAULT (0x0DB) NoPI), " & -- Required value for 1149 test.
 "(PLL_Enable [3] IS (5,3,1) SAFE (PLLConfigValues(PLLsoff)) NoPI) " &
 "), "&
 "Channel [5] ("&
 "(Protocol [3] IS (2,0,1) DEFAULT (SerDes_Protocol(*))), "&
 "(TX_Swing [2] IS (3,4) DEFAULT (SerDes_TX_Outputs(*))) "&
 "), "&
 "ChClock [5] ("&
 "(Setting [5] IS (4 downto 0) DEFAULT SerDesClockSettings (100Mhz)) "&
 ")" ;

attribute REGISTER_ASSEMBLY of INIT_EXAMPLE : entity is
 -- Register Assembly of INIT_DATA register
 "init_data ("&
 -- TDI
 -- First 36 bits are unused.
 "(reserved1[36]), " &
 -- Observed in init_data because must be set at power-up.
 "(VSEL_bits [5] Captures(IO_VSEL_Decodes(*)) NoPO), " &
 "(IP_Config IS configuration), " &
 "(Array SerDesChannel(0 TO 5) IS Channel " &
 -- SAFE values determined by IC designer, not specified for IP.
 "SAFE(SerDes_Protocol(off)) " &
 "SAFE(Serdes_TX_Outputs(75%_Swing))), " &
 -- Defaults are provided in the IP Package for the SerDes Clocks
 "(Array SerDesClk(1 TO 2) IS ChClock), " &
 "(Array SerDesChannel(6 TO 17) IS Channel " &
 -- SAFE values determined by IC designer, not specified for IP.
 "SAFE(SerDes_Protocol(off)) " &
 "SAFE(Serdes_TX_Outputs (75%_Swing))), " &
 "(Array SerDesClk(3 TO 3) IS ChClock), " &
 -- Register bits that are IP inputs, not part of IP itself.
 -- Power level supplied to SerDes internal gates;
 "(SerDesCXVddSel [1] DEFAULT (SerDesCXVddSelLevel(*)) NoPI), "&
 -- Powerup SerDes Test Receivers during SAMPLE operation
 "(SerDesSamplePowerUp [1] DEFAULT (SerDesSampleOvrd (off)) NoPI), "&
 -- 2^^10 possible decodes. See Reference Manual.
 "(DDRTermSel [10] SAFE(0) NoPI), "&
 -- Reserved Field
 "(reserved2[8]), " &
 -- TDO
 "), " &

 -- Register Assembly for INIT_STATUS register - read-only per the standard
 "init_status ("&
 "(INITErrorStatus [2] " &
 "CAPTURES (ErrorCode(NoError)) NoPO), " &
 "(INITCompletionStatus [2] " &
 "CAPTURES (InitCompletionValue(Completed)) NoPO) " &
 ") ";

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

283
Copyright © 2013 IEEE. All rights reserved.

Boundary-scan example

Continuing the segmented boundary-scan register example from Example 2 of B.8.14.2, the segments defined there
could be assembled, with the segment exclusion cells on the one segment, as follows.

attribute REGISTER_ASSEMBLY of Chip_2013 : entity is
 -- Register Assembly of Boundary-scan register
 "boundary ("&
 -- TDI, starting in NE corner and going clockwise
 "(North_side IS north), "&
 "(NEast_side IS east1), "&
 "(PowerUp IS DomCtrl Domain(pwr3) TAPReset), "&
 "(SEast_incl IS SegSel DOMAIN(pwr3) Segment(SE2) CHReset), "&
 "(SEast_side IS east2), "&
 "(SEast_mux IS SegMux Segment(SE2)), "&
 "(South_side IS south), "&
 "(West_side IS west)) ";

Power-domain control example

The rules in 9.4 define the rules for creating excludable segments, but not the rules for how to document the domain
control structure. To illustrate the documentation of excludable segments and domain control, Figure B-12 first
shows the structure and the scan cells involved. For simplicity and clarity, power-domain level shifters, isolation
cells, or other elements required for multiple power domains are not shown, nor any detail in the mission mode
controls to the domain controller, including any possible input to select IEEE 1149.1 test mode.

Figure B-12—Illustrative component power control structure

0

1
U
C

U
C

U
C

U
CC C

U
C

0

1
U
C

U
C

U
C

U
CC C

U
C

U
C

U
C

U
C

U
C CC

U
C

0

1
U
C

U
C

U
C

U
C CC

0

1

U
C

U
C

U
C

U
C

1149.1
Gating
Logic

Power
Controller

D1 D3D2

D1 D2 D3

D3

D2

D1

HDMI USB_OTG

Micro_SD SerDes

Mission mode

Reg2_SI

Reg1_SO

Reg2_SO

Ext_Pwr_pin

S4

Reg1_SI S2

S2

S2

S1 S3S1 S3

S4

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

284
Copyright © 2013 IEEE. All rights reserved.

In Figure B-12, there are four power domains, designated D1 through D4, that can be turned off. Three domains are
controlled by an on-chip power domain controller (D1, D2, and D3 provide power to HDMI, Micro_SD, and
USB_OTG, respectively). Finally, one (D4 with Ext_Pwr_pin provides power to SerDes) is controlled from off the
component through a dedicated power pin. There are also four excludable segments, designated S1 through S4. In
the BSDL, the domain and segment designations are used to identify the associations among the various DomCtrl,
SegSel, SegStart, and SegMux cells.

All of the domain-control cells (DomCtrl, for power domains D1 through D3) and one of the segment-select cells
(SegSel, for power domain D2 and segment S2) are in a TDR named Reg1, and the other three segment-select cells
(SegSel, for power domains D1, D3, and D4) are in a TDR named Reg2 along with the four excludable segments. At
the SI input to the Micro_SD segment, the dashed square around the signal branch represents the zero-length
segment-start field (SegStart), which contains no logic. The segment-select cell for that domain (D2) also has a
segment name S2 to associate it with the segment-start field.

All domain-control and segment-select cells in Figure B-12 are labeled with the domain and segment names that
they are associated with. The scan-in and scan-out are not labeled TDI and TDO since these may just be segments in
a larger test data register. In the following example BSDL attributes, the same names and labels are used.

The segment-select cells each capture a signal indicating that the segment is ready to scan. For three domains (D1,
D2, and D3), the signal comes from the power controller. The fourth domain (D4) is powered from off the
component, and its associated segment-select cell will capture whether the power is on or not. There is no domain-
control cell for this domain.

Placement of the DomCtrl and SegSel cells reflects the designer’s choice. A designer could choose to place all
domain-control and segment-select cells in the same TDR as the excludable segments, or in a completely different
“configuration” TDR, or any combination in between. The only restrictions are that there must always be at least
one scan cell in a TDR, even if all the segments are excluded, and that all the excludable segments, domain-control,
and segment-select cells must be in public test data registers.

attribute REGISTER_ASSEMBLY of PwrDomStruc : entity IS
 "Reg1 ("&
 "(hdmi_pwr IS DomCtrl Domain(D1) CHReset), "&
 "(micro_sd_pwr IS DomCtrl Domain(D2) CHReset), "&
 "(usbotg_pwr IS DomCtrl Domain(D3) CHReset), "&
 "(micro_sd_sel IS SegSel Domain(D2) Segment(S2) CHReset)), "&
 "Reg2 ("&
 "(hdmi_sel IS SegSel Domain(D1) Segment(S1) CHReset), "&
 "(hdmi IS hdmi_seg), "&
 "(hdmi_mux IS SegMux Segment(S1)), "&
 "(usb_otg_sel IS SegSel Domain(D3) Segment(S3) CHReset), "&
 "(usb_otg IS usb_otg_seg), "&
 "(usb_otg_mux IS SegMux Segment(S3)), "&
 "(SerDes_sel IS SegSel Domain_External(D4) Segment(S4) CHReset), "&
 "(SerDes IS SerDes_seg), "&
 "(SerDes_mux IS SegMux Segment(S4)), "&
 "(micro_sd_start IS SegStart Segment(S2)), "&
 "(micro_sd IS microsd_seg), "&
 "(micro_sd_mux IS SegMux) Segment(S2))";
Attribute Register_Association of PwrDomStruc : entity is
 "SerDes_sel : port(Ext_Pwr_pin) ";

NOTE 2—The definitiion of the segments named hdmi, usb_otg, SerDes, and micro_sd are not shown.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

285
Copyright © 2013 IEEE. All rights reserved.

IEEE 1500 WSP Examples

A well-documented use of selectable segments is the WSP of IEEE Std 1500. While the WSP is designed to be able
to be controlled by an IEEE 1149.1 TAP, it was not possible prior to the 2013 version of this standard to document
the register structure; it had to be a private register. Figure B-13 is a typical example of a simple WSP.

Figure B-13—Simple wrapper serial port

This design contains a single register cell (which is not part of the IEEE 1500-compliant WSP as shown by the box)
to generate the required SelectWIR signal of the wrapper serial controls (WSCs), and a WSP, as defined in
IEEE Std 1500. The WSP contains two selectable segment structures, the inner that selects between the available
wrapper data register (WDR) and the outer that selects between the WDR and the wrapper instruction register
(WIR). In this example, there are three WDRs: the required wrapper bypass (WBY) and wrapper boundary (WBR
registers, and one design-specific wrapper user (Wusr) register in the core.

The wrapper scan in (WSI) signal fans out to all registers, and multiplexing circuits are used to select one register
for connection to the wrapper scan out (WSO). The WSP inside the box is what is defined in IEEE Std 1500. Note
that gating logic to control scan and update operations in the scan segments are not shown for simplicity.

This structure could be documented in a BSDL user package as follows.

-- Supplied by MyCorp for REG_1500 version 1.0

package REG_1500 is
 use STD_1149_1_2013.all;
end REG_1500;

package body REG_1500 is

 use STD_1149_1_2013.all;

Attribute REGISTER_MNEMONICS of REG_1500 : package is
 "WIR_decode ("&
 "WS_BYPASS (0B0000) <Wrapper Bypass Instruction>, "&
 "WS_EXTEST (0B0001) <Wrapper Serial External Boundary Instruction>, "&
 "WS_INTEST (0B0010) <Wrapper Serial Internal Boundary Instruction>, "&

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

286
Copyright © 2013 IEEE. All rights reserved.

 "WS_BIST (0B0100) <BIST Instruction>, "&
 "WP_ALL (0B1xxx) <Wrapper Parallel instructions> "&
 ")" & -- end of WIR_decode
 ")"; -- end of REGISTER_MNEMONICS

Attribute REGISTER_ASSEMBLY of REG_1500 : package IS
 "REG_1500 (" & -- The Select WIR bit and the Wrapper Serial Port
 -- Reset to WBY
 "(SELWIR [1] DelayPO ResetVal(0b0) TAPReset), "&
 "(WSP IS WSP_MUX) "&
 "), "& -- end of REG_1500
 "WSP_MUX ("& -- The outer selectable segments: WIR and WDR
 "(SelectMUX "&
 -- Reset to WBY
 "(WIR IS WIR_Seg), "&
 "(WDR IS WDR_MUX) "&
 "SelectField (SELWIR) "&
 "SelectValues ((WIR : 0b1) (WDR : 0b0)) "&
 ") "& -- end of SELECTMUX
 "), "& -- end of WSP_MUX
 "WIR_Seg ((WIR_field [4] "&
 "ResetVal(WIR_decode(WS_BYPASS)) TAPReset)), "&
 "WDR_MUX ("& -- The inner selectable segments: WBY, WBR, and Wusr
 "(SelectMUX "&
 "(WBY IS Reg_WBY CAPTURES(0)), "&
 "(WBR IS Reg_WBR), "&
 "(WUSR IS Reg_WUSER) "&
 "SelectField (WIR) "&
 "SelectValues ("&
 "(WBY : WS_BYPASS, WP_ALL) "&
 "(WBR : WS_EXTEST, WS_INTEST) "&
 "(WUSR : WS_BIST) "&
 ") "& -- end of SelectValues
 ") "& -- end of SelectMUX
 "), "& -- end of WDR_MUX
 "REG_WBY ((WBY[1] NOPO)), " &
 "REG_WBR ((WBR[8])), " &
 "REG_WUSER ((CSR[4] NOUPD)," &
 " (GO [1] ResetVal(0b0) TapReset))" ;

end REG_1500;

When there are multiple identical cores, each with an identical wrapper, it is simple to connect them in series. When
only one needs to be addressed, the others can select their bypass register to shorten the chain (that is their reset
state). The following attribute statement from the component BSDL shows how to instantiate three WSP in series:

...
Attribute REGISTER_ASSEMBLY of MyChip_1500 : entity IS
 "Reg_1500_Series ("&
 -- Other possible segments
 "(ARRAY WSP(1 TO 3) IS REG_1500) "& -- See previous example
-- (ARRAY WSP(1 TO 3) IS Package REG_1500 : REG_1500) -- if name conflicts
 -- Other possible segments
 ")";
...
When there are multiple identical cores, each with an identical wrapper, it can be advantageous to scan the wrappers
and run the tests in parallel. This, of course, requires that the wrapper or core be designed to hold the test results

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

287
Copyright © 2013 IEEE. All rights reserved.

until they can be captured and scanned out, one wrapper at a time. Figure B-14 shows three wrappers (each an
instance of the Reg_1500 defined above) in parallel. All are scanned simultaneously whenever one of them is
selected for scan-out (gating logic on the WSC not shown), and each one can be selected for scan out individually.
In addition, all three can be bypassed.

Figure B-14—Three wrappers in parallel

This structure could be documented in the component BSDL as follows.

...
Attribute REGISTER_MNEMONICS of MyChip_1500 : entity is
 "WSP ("&
 " None (0B00) <Bypass all WSPs>, "&
 " WSP1 (0B01) <WSP1>, "&
 " WSP2 (0B10) <WSP2>, "&
 " WSP3 (0B11) <WSP3> "&
 ")";
Attribute REGISTER_ASSEMBLY of MyChip_1500 : entity IS
 "WIRE ((WIRE[0])), "&
 "Reg_1500_Parallel ("&
 -- Other possible segments
 "(Sel_WSP[2] DelayPO ResetVal(WSP(None)) TAPReset), "&
 "(SELECTMUX "&
 "(WIRE1 is WIRE), "&
 "(ARRAY WSP(1 TO 3) IS REG_1500) "&
 "SELECTFIELD (Sel_WSP) "& -- 4:1 selection
 "SELECTVALUES ("&
 "(WIRE1:None) (WSP(1):WSP1) (WSP(2):WSP2) (WSP(3):WSP3)) "&
 "BROADCASTFIELD (Sel_WSP) "&
 -- Always scan data into all three WSP when any are selected.
 "BROADCASTVALUES ((WSP(1),WSP(2),WSP(3) : WSP1,WSP2,WSP3)) "&
 ")"&
 -- Other possible segments
 ")";
...

Note that the two selection fields (SelectField and BroadcastField) use the same physical field, which is the
recommended practice. That field then selects both which WSP is connected to scan out and which of the WSPs will
scan data. In this case, all WSPs scan at all times, which assumes that WSP registers are never required to hold their
data when the others are being scanned. Results would have to be held in core registers for capture, if necessary.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

288
Copyright © 2013 IEEE. All rights reserved.

B.8.22 Register constraint description

The optional REGISTER_CONSTRAINTS attribute is used to augment test, debug, and diagnosis by
documenting structural constraints on values to be written to a TDR. Constraints define expressions that are
evaluated as applicable prior to performing a scan of a TDR. If any of the applicable constraint check conditions
evaluate to “TRUE,” an undesired condition exists and the register scan should not be performed. A severity level
and an information tag are provided to aid the test engineer in understanding the violation.

The expressions are based on SystemVerilog expressions as documented in 11.2 of IEEE Std 1800TM-2012.8 These
expressions are also similar to expressions in Tcl, C, C++, and other languages. A subset of the Verilog operators is
used, and for that subset, they follow the definitions and precedence of the Verilog expression operators. The
evaluation of the expression follows the rules for such expressions with the exception that the “X” state of a value is
treated as “don’t-care,” permitting a match to any value, instead of “unknown.” As this type of expression is well
defined, only the basics and the exceptions are defined in detail here.

B.8.22.1 Specifications

Syntax

<register constraints description> ::= attribute REGISTER_CONSTRAINTS of <target> is
 <constraints string> <semicolon>

<constraints string>::= <quote> <constraints list> { <comma> <constraints list> } <quote>
<constraints list>::= <constraint domain> <left paren> <constraint checks> <right paren>
<constraint domain> ::= <reg or seg name> | entity | package
<constraint checks>::= <left paren> <check expression> <right paren>

<constraint severity> <information tag>
 { <comma> <left paren> <check expression> <right paren>

<constraint severity> <information tag> }
<constraint severity> ::= error | warning | info

<check expression> ::= <short expression> | <binary expr>
<short expression> ::= <nested expr> | <unary expr> | <field reference> | <oper val>
<nested expr> ::= <left paren> <check expression> <right paren>
<unary expr> ::= <logical inv expr> | <bit-wise inv expr> | <one hot expr>
<logical inv expr> ::= <logical inversion> <short expression>
<bit-wise inv expr> ::= <bit-wise inversion> <short expression>
<one hot expr> ::= <one hot> <nested expression>
<binary expr> ::= <short expression> <binary operator> <check expression>
<binary operator> ::= <exponentiation> | <multiplication> | <division> | <remainder> |

<addition> | <subtraction> | <right shift> | <left shift> | <less than> | <greater than> |
<less than or equal> | <greater than or equal> | <equals> | <not equals> |
<bit-wise and> | <bit-wise xor> | <bit-wise or> | <logical and> | <logical or>

<oper val> ::= <mnemonic pattern> | <binary pattern> | <hex pattern> | <decimal pattern>
<mnemonic pattern> ::= [[PACKAGE <package hierarchy> <colon>] <mnemonic group name>]

<left brace> <mnemonic identifier> <right brace>

8 IEEE publications are available from The Institute of Electrical and Electronics Engineers (http://standards.ieee.org/).

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

289
Copyright © 2013 IEEE. All rights reserved.

Rules

a) Any <constraint domain> of <TDR> shall be a previously defined register name as defined in this standard
or in the REGISTER_ACCESS attribute.

b) A <constraint domain> of either entity or package, if used, shall match the object type of <target>.

c) The <constraint severity> of error shall indicate a condition requiring that the values not be scanned into
the register.

NOTE 1—Response to <constraint severity> of warning or info is unspecified, and they may be user defined.

d) The <field reference> shall resolve to a previously defined register or register field as defined in this
standard, or in the REGISTER_ACCESS, REGISTER_FIELDS, or REGISTER_ASSEMBLY
attributes, and the value for evaluation shall be the data to be written to the register or register field.

e) The <mnemonic pattern> shall resolve to a mnemonic value previously defined in a
REGISTER_MNEMONICS attribute.

f) A <check expression> shall contain at least one <field reference>.

g) A <field reference> shall be composed of zero or more <instance reference> fields in parent-to-child
hierarchical order, each <instance reference> followed by a period, and followed by an <extended field
name>.

h) The <field length> of an <field reference> shall not be zero.

i) All operands (<field value> and <field reference>) shall be converted into their binary equivalent value
before evaluation by a bit-wise operator, into an arithmetic value before evaluation by an arithmetic
operator, and into a logical value before evaluation by a logical operator.

NOTE 2—The rules and operands defined here do not match other languages using these operands exactly; any user
intending to evaluate these constraints in existing evaluation software will need to process the operands to make them
compatible with that software.

j) All operands shall have the logical value of “FALSE” if they have the numeric or binary equivalent value
of zero, and the logical value of “TRUE” for any other value, including bits with a value of X.

k) The operator tokens used in the syntax and listed in the “Operator Token” column of Table B-5 shall be
represented in BSDL by the character or characters shown in the “Operator” column of Table B-5.

l) Unless noted otherwise in Table B-5, all operators take two operands and use “infix” notation; that is, the
operator binds both the operand or <nested expression> to its left and the operand or <nested expression>
to its right.

m) A <check expression> enclosed within parenthesis shall be evaluated prior to evaluation of the remaining
expression outside the parenthesis.

n) Evaluation order (precedence) shall be by row in Table B-5, where the operators of a given row shall be
evaluated before the operators of any later row.

o) Evaluation order (precedence) for multiple operators from a single row of Table B-5 shall be from left to
right in the expression.

p) one_hot is an added custom operator and shall return a logical TRUE if the operand has a binary
equivalent value with one and only one 1 bit.

q) It shall be an error if any operand of arithmetic operators (as listed in Table B-5) contain a bit with value X.

r) <bit-wise and>, <bit-wise or>, <bit-wise xor>, and <bit-wise inversion> operators all take binary
equivalent operands and produce a binary equivalent value by operating on 0, 1, and X values on a bit-
position by bit-position basis using the Verilog conventions for such operators.

s) <equals> and <not_equal> operators take binary equivalent operands and produce a logical (TRUE,
FALSE) value by operating on 0, 1, and X values on a bit-position by bit-position basis; and further,
contrary to the Verilog conventions for such operators, they treat X as a “don’t-care” matching 0, 1, or X.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

290
Copyright © 2013 IEEE. All rights reserved.

t) Arithmetic operators (as listed in Table B-5) take numeric operands and produce either a numeric value or,
where noted in the table, a logical value.

u) Logical operators (as listed in Table B-5) all take logical operands and produce a logical value.

Table B-5—Constraint expression operators

Precedence Operator token Operator Operator type and (Comments)
1 <logical inversion>

<bit-wise inversion>
<one hot>

!
~
one_hot

Logical operator
Bit-wise operator
Custom operator (result is logical)
(Operator binds to the token to its right.)

2 <exponentiation> ** Arithmetic operator
3 <multiplication>

<division>
<remainder>

*
/
%

Arithmetic operators

4 <addition>
<subtraction>

+
–

Arithmetic operators

5 <left shift>
<right shift>

<<
>>

Arithmetic operators
(Right-hand operand is the number of shifts.)

6 <less than>
<greater than>
<less than or equal>
<greater than or equal>

<
>
<=
>=

Arithmetic operators
(Result is logical.)

7 <equals>
<not equal>

==
!=

Bit-wise operators
(Result is logical.)

8 <bit-wise and> & Bit-wise operator
9 <bit-wise xor> ^ Bit-wise operator
10 <bit-wise or> | Bit-wise operator
11 <logical and> && Logical operator
12 <logical or> || Logical operator

B.8.22.2 Description

The optional REGISTER_CONSTRAINTS attribute allows checking for conditions needed to satisfy design
constraints. The purpose is to assist in test development and debug by validating that register values are valid and
meet the structural design conditions prior to being scanned to the register. The constraint evaluates to a logical
value of TRUE or FALSE and, if TRUE, can be flagged as an error, a warning, or information, at the discretion of
the designer. In addition, an information tag can be supplied to briefly describe the nature of the problem. A
constraint flagged as an error is intended to prevent the register scan by stopping the test.

The typical type of constraint expected is a simple comparison of a field to some fixed value, possibly logically
combined with a simple comparison of another field, usually in the same TDR, to some fixed value. However, since
physical constraints on a register field or some combination of register fields could be just about anything, a fully
capable expression evaluation capability is provided. The operators and the evaluation rules provided are similar to
commonly available languages in software development, hardware development, and script development. In
particular, they are part of Tcl, the language base for PDL (see Annex C). If constraints are defined for a component,
then they need to be evaluated prior to scanning data into the component.

The constraints represent a statement of some structural characteristic of the design. As shown in the examples, it
could be two power domains that cannot be powered up at the same time, or a power sequencing constraint between
domains. It could also be programmable I/O where not all combinations of parameters are valid, even if the
hardware would accept the invalid settings. It could be as simple as checking a test cycle count to a BIST engine
where the register field will hold a larger value than the BIST engine can handle, or comparing upper and lower
limit fields to verify that the upper is greater than the lower.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

291
Copyright © 2013 IEEE. All rights reserved.

B.8.22.3 Examples

In this example, the IC contains two power domains: A and B. The IC design structure is such that power domain A
cannot be turned on at the same time as power domain B. If the attempt is made, the hardware will ignore one of the
requests, but which one may not be deterministic. Assuming PDA and PDB are DomCtrl cells in the init_data
register, and both use a mnemonic group that includes a name “Override” for the value that would turn on the power
domains, then we can express the requirement that both power domains not be turned on at the same time as follows:

attribute REGISTER_CONSTRAINTS of init_example : entity is
 "init_data (" &
 "((PDA=={Override})&&(PDB == { Override })) "&
 " ERROR <Domain A & B cannot both be ON at the same time> "&
 ")";

This next example again shows the flexible SerDes I/O channel, which can be programmed to support multiple
protocols and multiple output voltage swings. However, some voltage swings are incompatible with certain
protocols. This assumes the hardware will actually do the invalid combination, but the communication link will
probably not work, even at low speed. See B.8.18.3 for the mnemonic definitions and B.8.21.3 for the field
definitions.

attribute REGISTER_CONSTRAINTS of XYZ_SERDES : package is
 "init_data (" &
 " ((TX_Swing == {200mv}) && (Protocol == {SRIO})) "&
 " WARNING <A differential Swing of 200mv is not valid with SRIO. "&
 "The driver will do it, but communication may not work.> "&
 ")";

B.8.23 Register and power port association attributes

These optional attributes are used to augment test, debug, and diagnosis by providing information that may point to
causes of incorrect behavior.

The REGISTER_ASSOCIATION attribute associates BSDL ports with register fields to indicate either that the
content in the register fields may modify the behavior of the associated ports or that the associated ports may modify
the values captured by the bits of the field.

The POWER_PORT_ASSOCIATION attribute associates BSDL ports with specific power ports (usually voltage
reference ports) to indicate that the power port may modify the behavior of the associated ports.

B.8.23.1 Specifications

Syntax

<register association description> ::= attribute REGISTER_ASSOCIATION
of <target> is <register association string> <semicolon>

<register association string>::= <quote> <register association list>

{ <comma> <register association list> } <quote>
<register association list>::= <reg field or instance> <colon> <association list> { <association list> }
<reg field or instance> ::= <field or instance name> [<left paren> <index> <right paren>]
<field or instance name> ::= <extended field name> | <segment ident> | <array segment ident> | <TDR>
<association list> ::= <port list> | <info list> | <clock list> | <user list> | <unit>
<port list> ::= port <port association list>
<port association list> ::= <left paren> <port ID> { <comma> <port ID> } <right paren>
<info list> ::= info <left paren> <information tag> { <comma> <information tag> } <right paren>
<clock list> ::= sysclock <left paren> <port ID> { <comma> <port ID> } <right paren>

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

292
Copyright © 2013 IEEE. All rights reserved.

<user list> ::= user <user list name> <left paren> <single or multi list> <right paren>
<user list name> ::= <VHDL identifier>
<single or multi list> ::= <single word user list> | <multi-word user list>
<single word user list> ::= <VHDL identifier> { <comma> <VHDL identifier> }
<multi-word user list> ::= <information tag> { <comma> <information tag> }
<unit> ::= unit <left paren> <unit name> <unit definition> <right paren>
<unit definition> ::= <left brace> <unit value> [<unit scale>] [<unit link>] <right brace>
<unit name> ::= <VHDL identifier>
<unit value> ::= <hex pattern>
<unit scale> ::= <real>
<unit link> ::= <information tag>

<power port association description> ::= attribute POWER_PORT_ASSOCIATION

 of <entity target> is <power port association string> <semicolon>

<power port association string>::= <quote> <power port association list>

{ <comma> <power port association list> } <quote>
<power port association list>::= <power port id> <colon> <port association list>
<power port id> ::= <port ID>

Rules

a) <field or instance name> shall be a previously defined register or register field as defined in this standard,
in a REGISTER_ACCESS, REGISTER_FIELDS or REGISTER_ASSEMBLY attribute, or shall be
an instance or array name previously defined in a REGISTER_ASSEMBLY attribute.

b) A <field or instance name> shall appear no more than once in a <register association list>.

c) Any <association list> shall contain, within parenthesis, either a single entry, which is associated with all
bits of the <reg field or instance>, or a comma separated list of the same length as the <reg field or
instance>, which is associated with the individual bits of the <reg field or instance> in order from closest to
TDI to closest to TDO.

d) In any <clock list>, each <port ID> shall be a <port ID> identified as a system clock in a
SYSCLOCK_REQUIREMENTS attribute.

e) Each <user list name> shall be unique within a <register association list>.

f) In any <unit>, the <unit value> shall be a <hex pattern> of 22 hex characters as defined in in 4.11 of
IEEE Std 1451.0-2007.

NOTE—See Table B-6 for a partial definition. The table is for reference only.

g) In any <unit>, the optional <unit link> shall be a valid file (file://...) or Internet (http://...) URL locating a
transducer electronic data sheet (TED) as defined in IEEE Std 1451.

h) <power port id> shall be a previously defined <port ID> in the <logical port description> with the <pin
type> of POWER_POS, POWER_NEG, POWER_0, or VREF_IN.

i) The value of the <index> associated with a <field name> shall be less than the <field length> of the register
field.

j) An <index> shall not be associated with a <segment ident>.

k) The value of the <index> associated with an <array segment ident> shall be a valid index into the <range>
of the associated <array ident> in a REGISTER_ASSEMBLY.

l) An <index> shall be associated with a <power port id> only if the <port ID> was defined as type
bit_vector, and it shall be a valid index into the <range> of the <port ID>.

m) No <port ID> value shall occur more than once in a given <port association list>.

n) Each <portID> in a <port association list> shall be a previously defined <portID> in the <logical port
description>.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

293
Copyright © 2013 IEEE. All rights reserved.

o) Each indexed <portID> in a <port association list> shall be a previous defined <portID> in the <logical
port description> that also includes a <bit vector spec>, and the index shall lie within the <range> of the
<bit vector spec>.

B.8.23.2 Description

The optional REGISTER_ASSOCIATION attribute allows annotating register bits or register fields with a specific
information. The purpose is to assist in test, diagnostics, and debug.

The port list indicates which ports are affected by the register bits, or which ports affect the value captured by
register bits. For example, the init_data register may have multiple fields that set impedances, pull-up or pull-down
behavior, voltage swings, or any number of other analog characteristics, each for some set of ports. This attribute
allows that relationship to be made explicit, and to identify exactly which bits of the init_data register (or other
TDR) affect which ports.

The sysclock list is similar to the port list, except instead of specifying that the register bits capture these ports, it
specifies that the register bits are clocked by this particular system clock port. The
SYSCLOCK_REQUIREMENTS attribute identifies system clocks and specifies their usable frequency range and
which instructions may require them. The sysclock list identifies which specific fields of a TDR are actually
clocked by a particular system clock. This additional level of detail can be used to optimize testing.

The REGISTER_ASSOCIATION attribute is only used in the BSDL for an IC when the port or sysclock list is
used since the port names to be associated with fields are not known in a package. Otherwise, multiple occurrences
of <register association description> and <power port association description> are allowed.

The info list associates text strings with register fields or bits in a manner similar to the text strings associated with
mnemonic values in the REGISTER_MNEMONIC attribute. For instance, this might be used to identify the use of
the register in special test modes (memory BIST) or mission mode.

The user list allows the component supplier to provide one or more named lists of either single identifiers or text
strings with register fields or bits. The name of the list would normally be the type of data being specified. This
could allow design-specific or tool-specific information to be provided in an extensible format.

The unit specification allows the association of a unit description to a field to assist in interpreting the value
contained in the field, especially when that field captures the output of some transducer. IEEE Std 1451.0 provides a
standard way of defining units, and 4.11 of IEEE Std 1451.0-2007 is the source for this definition. The <unit name>
is arbitrary; the <unit value> is a 22 character hex pattern comprising 11 eight-bit (2 hex character) fields described
in Table B-6; the <unit scale> is a real number for scaling the digital integer value of the field; and the <unit link> is
a file or Internet URL to a TED, which provides additional information, such as a nonlinear equations, and so on.

Table B-6—Unit value definitions

Field Unit Description
1 Physical Unit Interpretation – Default to “00”

(See 4.11 of IEEE Std 1451.0-2007)
2 (2 * <exponent of radians>) + 128
3 (2 * <exponent of steradians>) + 128
4 (2 * <exponent of meters>) + 128
5 (2 * <exponent of kilograms>) + 128
6 (2 * <exponent of seconds>) + 128
7 (2 * <exponent of amperes>) + 128
8 (2 * <exponent of kelvins>) + 128
9 (2 * <exponent of moles>) + 128

10 (2 * <exponent of candelas>) + 128
11 Default to “00”

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

294
Copyright © 2013 IEEE. All rights reserved.

Reference voltages are frequently key to the operation of IC I/O. POWER_PORT_ASSOCIATION documents in
a machine-readable format the relationship of the reference voltages and the I/O, which depend on the input voltage.
Even with initialization, failures of the I/O can occur simply because a POWER_POS or a VREF_IN voltage is not
present or not turned on at the board level. For example, programmable devices may control voltage conversion
circuits, and these programmable devices may not be programmed at the time test is performed. It is difficult for test
engineers to determine the relationship of power and voltage references to particular I/O pins.
POWER_PORT_ASSOCIATION resolves this issue and provides significant information to help in test,
diagnosis, and debug.

B.8.23.3 Examples

The following associations might pertain to the fields defined in the Examples in B.8.19.3:

Attribute REGISTER_ASSOCIATION of init_example : entity is
 "VSEL_bits (4) : port (PwrUp_IO_VSEL(4)), "&
 "VSEL_bits (3) : port (PwrUp_IO_VSEL(3)), "&
 "VSEL_bits (2) : port (PwrUp_IO_VSEL(2)), "&
 "VSEL_bits (1) : port (PwrUp_IO_VSEL(1)), "&
 "VSEL_bits (0) : port (PwrUp_IO_VSEL(0)), "&
 "SerDesChannel(0) : port (IO_TXP(0),IO_TXN(0),IO_RXP(0),IO_RXN(0)), "&
 "SerDesChannel(1) : port (IO_TXP(1),IO_TXN(1),IO_RXP(1),IO_RXN(1)), "&
 . . .
 "SerDesChannel(16): port (IO_TXP(16),IO_TXN(16),IO_RXP(16),IO_RXN(16)), "&
 "SerDesChannel(17): port (IO_TXP(17),IO_TXN(17),IO_RXP(17),IO_RXN(17))";

For the VSEL_bits field (of the init_data register), the VSEL_bits field captures the values on five ports that control
the voltage used to power various interfaces on the component, and it must be set properly at power-up prior to
execution of EXTEST. In this case, there is a simple one-to-one relationship between the bits of the field and the
ports. Note that this is specified bit-by-bit because the individual associations must be called out. Bus notation, that
is, specifying a 5-bit register associated with a five bit bit_vector port, is not supported for fields.

The SerDesChannel is an array of register segments with each segment having two fields, both of which affect a
specific set of four ports. Note that using an array range is not supported for arrays.

First, two memory BIST controller registers are individually associated with the clock that is needed to run both.

Attribute REGISTER_ASSOCIATION of MyChip : entity is
 "mem1.MBIST_CTRL : sysclock (F125MHz_in), "&
 "mem2.MBIST_CTRL : sysclock (F125MHz_in) ";

Next, the type of memory controller is associated with the memory controller register to assist in debug. Note that
this assignment is made in a package body.

Attribute REGISTER_ASSOCIATION of ACME_MEMORIES_MBIST : package is
 " MBIST_CTRL : info (<ACME Memories BIST controller model 2Mx128>) ";

In some cases, there may be specific types of information associated with register bits. Here, in a stacked die
situation, the TSV micro-bumps are listed for a six-bit register of control bits.

Attribute REGISTER_ASSOCIATION of MyChip : entity is
 "EXTERNAL_CTRL : user TSV_bump (F3,F6,F9,C4,C7,C10) ";

Where register fields are controlling or observing analog characteristics, for instance, the units can be specified.
Here two eight-bit fields are specified, one for frequency and another for delay:

Attribute REGISTER_ASSOCIATION of mychip : entity is

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

295
Copyright © 2013 IEEE. All rights reserved.

 -- KHz is 1000 divided by seconds (field 6)
 "frequency : unit (KHz {0x00808080807E8080808000 1.0E+3}), "&
 -- ms is .001 times seconds (field 6)
 "phase : unit (ms {0x0080808080828080808000 1.0E-3})";

Finally, the following example shows three voltage reference ports associated with the ports they affect.

attribute POWER_PORT_ASSOCIATION of mydev : entity is
"DDR_REF1 : (DDR_DATA(7), “&
" DDR_DATA(6), “&
" DDR_DATA(5), “&
" DDR_DATA(4), “&
" DDR_DATA(3), “&
" DDR_DATA(2), “&
" DDR_DATA(1), “&
" DDR_DATA(0)), “&
"IO_REF1 : (SERDES(0), SERDES(1)), "&
"IO_REF2 : (SERDES(2), SERDES(3))";

B.8.24 User extensions to BSDL

Optional BSDL extensions provide a way to expand BSDL for proprietary needs without losing compatibility with
the general definition of BSDL. The Standard BSDL Package STD_1149_1_2013 defines a VHDL subtype
BSDL_EXTENSION (as originally defined in Standard VHDL Package STD_1149_1_1994). It allows the user
to define foreign attributes as being “BSDL extensions.” These generally may be ignored by a BSDL parser. BSDL
extensions appear in an entity description as the last portion before the (optional) DESIGN_WARNING (see
B.8.25). In this manner, they may reference any data items defined previously.

B.8.24.1 Specifications

Syntax

<BSDL extensions> ::= <extension declaration> | <extension definition>
<extension declaration> ::= attribute <extension name> <colon> BSDL_EXTENSION <semicolon>
<extension definition> ::= attribute <extension name> of <target>

is <extension parameter string> <semicolon>
<extension name> ::= <entity defined name> | <BSDL package defined name>
<entity defined name> ::= <VHDL identifier>
<BSDL package defined name> ::= <VHDL identifier>
<extension parameter string> ::= <string>

Rules

a) An <extension definition> shall appear after its corresponding <extension declaration>.

b) Any <VHDL identifier> appearing as a value of the <extension name> element in an <extension
definition> shall appear also as the value of the <extension name> element of an <extension declaration>
that occurs earlier in the BSDL description or in a BSDL package used in the BSDL description, and when
the <extension declaration> occurs in a BSDL package, the <extension definition> shall appear in the body
of the same BSDL package or in the BSDL description that uses that package.

c) Each <extension name> value in an <extension declaration> shall be unique even if the <extension name>
values are defined in separate places, i.e., in separate user-supplied BSDL packages or one in the BSDL
entity and one in a user-supplied BSDL package.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

296
Copyright © 2013 IEEE. All rights reserved.

Permissions

d) An <extension name> element may appear in an <extension declaration> without appearing in any
<extension definition> within a given BSDL description.

B.8.24.2 Description

The <extension declaration> may appear in the BSDL description itself or in a user-supplied BSDL package. The
<extension definition> may appear in the BSDL description, regardless of where the declaration is, or in the body of
the same user package as the declaration. If several BSDL extensions exist in the BSDL description, they may be
intermixed in any manner as long as the declaration of an attribute precedes the definition of that attribute. The
ability to define BSDL extensions in user-supplied BSDL packages allows for global definition of extensions.

When inventing names for <extension name> elements, take care to assure uniqueness of the names with respect to
names created in other organizations that are also inventing extensions by choosing uncommon names not likely to
be thought of by others. A company name could be appended to the name to maximize uniqueness.

B.8.24.3 Examples

Example 1

Package Global_extension is -- An example BSDL extension package
 -- Does not define boundary cells,
 -- just extensions
use STD_1149_1_2013.all;

-- Deferred constant declarations go here, if any (see B.10)

attribute First_extension : BSDL_EXTENSION; -- Declare BSDL
attribute Second_extension : BSDL_EXTENSION; -- extensions here
attribute Third_extension : BSDL_EXTENSION;

end Global_extension;

package body Global_extension is

-- Deferred constant definitions go here, if any (see B.10)

end Global_extension;

In the above example, a user-supplied BSDL package containing a BSDL extension is given; this package will be
referenced by the entity of the next example.

Example 2

entity example is
generic (PHYSICAL_PIN_MAP : string := "DW_PACKAGE");

port (CLK:in bit; Q:out bit_vector(1 to 8);
D:in bit_vector(1 to 8);
GND: power_0 bit; VCC: power_pos bit;
OC_NEG:in bit; TDO:out bit; TMS, TDI, TCK:in bit);

use STD_1149_1_2013.all;
use Global_extension.all; -- Get declarations of
 -- global extensions

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

297
Copyright © 2013 IEEE. All rights reserved.

 . . . BSDL lines not relevant to this discussion are not being shown here . . .

-- Local declarations

attribute Local_extension1: BSDL_extension; --Declare local BSDL
attribute Local_extension2: BSDL_extension; -- extensions here

-- Now, define some proprietary extensions that were declared
-- in package - Global_Extension

attribute First_extension of example : entity is -- Define attr.
" String of data " & -- (global extension)
" in proprietary form. ";
attribute Second_extension of example: entity is
" More data, etc. ";

-- Local definition

attribute Local_extension1 of example : entity is -- Define attr.
" Finally defined "; -- (local extension)

-- Optional design warning still located here --

end example;

In the above example, an entity is shown that uses global extensions as well as local extensions defined in the entity.
Note that not all declared extensions are defined (e.g., Third_extension).

B.8.25 Design warning

A component designer may know of situations in which the system usage of a component can be subverted via the
boundary-scan feature and cause circuit problems. As a simple example, a component may have dynamic system
logic that requires clocking to maintain its state. Thus, clocking must be maintained when bringing the component
out of system mode and into test mode for INTEST. The DESIGN_WARNING attribute is assigned a string
message to alert future consumers of the potential for problems.

B.8.25.1 Specifications

Syntax

<design warning> ::= attribute DESIGN_WARNING of <target> is <string> <semicolon>

B.8.25.2 Description

The <design warning> may appear in the BSDL description itself or in a user-supplied BSDL package. This warning
is for application-specific display purposes only. It is a textual message of arbitrary length with no specified syntax
and is not intended for software analysis. No semantic checks are necessary.

B.8.25.3 Examples

attribute DESIGN_WARNING of My_IC:entity is
"Dynamic device, " &
"maintain clocking for INTEST.";

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

298
Copyright © 2013 IEEE. All rights reserved.

B.9 Standard BSDL Package STD_1149_1_2013

The following is the complete content of the Standard BSDL Package and Package Body: STD_1149_1_2013.
This information defines the basis of BSDL and typically would be write-protected by a system administrator. An
explanation of the cell definitions (e.g., BC_1, BC_2, etc.) in the package body is given in B.10,. BSDL
descriptions that use <standard BSDL package identifier> STD_1149_1_2013 must be processed using this
Standard BSDL Package.

Note that what were formerly known, up to the 2001 version of this standard, as the Standard VHDL Package and
the Standard VHDL Package Body are currently known as the Standard BSDL Package and Standard BSDL
Package Body, respectively. This change was made in recognition of the fact that, as of the 2013 version of this
standard, the syntax and semantics of BSDL are no longer a subset and standard practice of VHDL. However, the
Standard BSDL Package remains pure VHDL, and its interpretation is defined in IEEE Std 1076.

-- STD_1149_1_2013 BSDL Package and Package Body
--
-- source : IEEE Std 1149.1-2013, B.9
--
-- NOTE-Where figures from the standard are cited,
-- the suffix ‘c’ denotes a control cell, and ‘d’ denotes a data cell.
--

package STD_1149_1_2013 is

-- Give component conformance declaration.

attribute COMPONENT_CONFORMANCE : string;

-- Give pin mapping declarations

attribute PIN_MAP : string;
subtype PIN_MAP_STRING is string;

-- Give TAP control declarations

type CLOCK_LEVEL is (LOW, BOTH);
type CLOCK_INFO is record
 FREQ : real;
 LEVEL: CLOCK_LEVEL;
end record;

attribute TAP_SCAN_IN : boolean;
attribute TAP_SCAN_OUT : boolean;
attribute TAP_SCAN_CLOCK: CLOCK_INFO;
attribute TAP_SCAN_MODE : boolean;
attribute TAP_SCAN_RESET: boolean;

-- Give instruction register declarations

attribute INSTRUCTION_LENGTH : integer;
attribute INSTRUCTION_OPCODE : string;
attribute INSTRUCTION_CAPTURE : string;
attribute INSTRUCTION_PRIVATE : string;

-- Give ID and USER code declarations

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

299
Copyright © 2013 IEEE. All rights reserved.

type ID_BITS is ('0', '1', 'x', 'X');
type ID_STRING is array (31 downto 0) of ID_BITS;

attribute IDCODE_REGISTER : ID_STRING;
attribute USERCODE_REGISTER: ID_STRING;

-- Give register declarations

attribute REGISTER_ACCESS : string;
attribute REGISTER_MNEMONICS : string;
attribute REGISTER_FIELDS : string;
attribute REGISTER_ASSEMBLY : string;
attribute REGISTER_CONSTRAINTS : string;
attribute POWER_PORT_ASSOCIATION : string;
attribute REGISTER_ASSOCIATION : string;

-- Give boundary cell declarations

type BSCAN_INST is (EXTEST, SAMPLE, INTEST);
type CELL_TYPE is (INPUT, INTERNAL, CLOCK, OBSERVE_ONLY,
 CONTROL, CONTROLR, OUTPUT2, OUTPUT3, BIDIR_IN, BIDIR_OUT);
type CAP_DATA is (PI, PO, UPD, CAP, X, ZERO, ONE);
type CELL_DATA is record
 CT : CELL_TYPE;
 I : BSCAN_INST;
 CD : CAP_DATA;
end record;
type CELL_INFO is array (positive range <>) of CELL_DATA;

-- Boundary cell deferred constants (see package body)

constant BC_0 : CELL_INFO;
constant BC_1 : CELL_INFO;
constant BC_2 : CELL_INFO;
constant BC_3 : CELL_INFO;
constant BC_4 : CELL_INFO;
constant BC_5 : CELL_INFO;
constant BC_7 : CELL_INFO;
constant BC_8 : CELL_INFO;
constant BC_9 : CELL_INFO;
constant BC_10 : CELL_INFO;

-- Boundary-scan register declarations

attribute BOUNDARY_LENGTH : integer;
attribute BOUNDARY_REGISTER : string;
attribute ASSEMBLED_BOUNDARY_LENGTH : array (0 to 1) of integer;
attribute BOUNDARY_SEGMENT : string;

-- Miscellaneous

attribute PORT_GROUPING : string;
attribute RUNBIST_EXECUTION : string;
attribute INTEST_EXECUTION : string;
attribute SYSCLOCK_REQUIREMENTS : string;
subtype BSDL_EXTENSION is string;
attribute COMPLIANCE_PATTERNS : string;

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

300
Copyright © 2013 IEEE. All rights reserved.

attribute DESIGN_WARNING : string;

end STD_1149_1_2013; -- End of 1149.1-2013 Package

package body STD_1149_1_2013 is -- Standard boundary cells

-- Generic cell capturing minimum allowed data

constant BC_0 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (OUTPUT2, EXTEST, X),
 (INPUT, SAMPLE, PI), (OUTPUT2, SAMPLE, PI),
 (INPUT, INTEST, X), (OUTPUT2, INTEST, PI),
 (OUTPUT3, EXTEST, X), (INTERNAL, EXTEST, X),
 (OUTPUT3, SAMPLE, PI), (INTERNAL, SAMPLE, X),
 (OUTPUT3, INTEST, PI), (INTERNAL, INTEST, X),
 (CONTROL, EXTEST, X), (CONTROLR, EXTEST, X),
 (CONTROL, SAMPLE, PI), (CONTROLR, SAMPLE, PI),
 (CONTROL, INTEST, PI), (CONTROLR, INTEST, PI),
 (BIDIR_IN,EXTEST, PI), (BIDIR_OUT, EXTEST, X),
 (BIDIR_IN,SAMPLE, PI), (BIDIR_OUT, SAMPLE, PI),
 (BIDIR_IN,INTEST, X), (BIDIR_OUT, INTEST, PI),
 (OBSERVE_ONLY, SAMPLE, PI), (OBSERVE_ONLY, EXTEST, PI));

-- Description for Figure 11-19, Figure 11-31, Figure 11-35c, Figure 11-35d,
Figure 11-37c, Figure 11-47d

constant BC_1 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (OUTPUT2, EXTEST, PI),
 (INPUT, SAMPLE, PI), (OUTPUT2, SAMPLE, PI),
 (INPUT, INTEST, PI), (OUTPUT2, INTEST, PI),
 (OUTPUT3, EXTEST, PI), (INTERNAL, EXTEST, PI),
 (OUTPUT3, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (OUTPUT3, INTEST, PI), (INTERNAL, INTEST, PI),
 (CONTROL, EXTEST, PI), (CONTROLR, EXTEST, PI),
 (CONTROL, SAMPLE, PI), (CONTROLR, SAMPLE, PI),
 (CONTROL, INTEST, PI), (CONTROLR, INTEST, PI));

-- Description for Figure 11-15, Figure 11-32, Figure 11-36c, Figure 11-36d,
Figure 11-38c,
-- Figure 11-39c, Figure 11-40(output) and Figure 11-42c

constant BC_2 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (OUTPUT2, EXTEST, UPD),
 (INPUT, SAMPLE, PI), (OUTPUT2, SAMPLE, PI),
 (INPUT, INTEST, UPD), -- Intest on output2 not supported
 (OUTPUT3, EXTEST, UPD), (INTERNAL, EXTEST, PI),
 (OUTPUT3, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (OUTPUT3, INTEST, PI), (INTERNAL, INTEST, UPD),
 (CONTROL, EXTEST, UPD), (CONTROLR, EXTEST, UPD),
 (CONTROL, SAMPLE, PI), (CONTROLR, SAMPLE, PI),
 (CONTROL, INTEST, PI), (CONTROLR, INTEST, PI));

-- Description for Figure 11-16

constant BC_3 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (INTERNAL, EXTEST, PI),

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

301
Copyright © 2013 IEEE. All rights reserved.

 (INPUT, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (INPUT, INTEST, PI), (INTERNAL, INTEST, PI));

-- Description for Figure 11-17, Figure 11-18, Figure 11-40(input)

constant BC_4 : CELL_INFO :=
 ((INPUT, EXTEST, PI), -- Intest on input not supported
 (INPUT, SAMPLE, PI),
 (OBSERVE_ONLY, EXTEST, PI),
 (OBSERVE_ONLY, SAMPLE, PI), -- Intest on observe_only not supported
 (CLOCK, EXTEST, PI), (INTERNAL, EXTEST, PI),
 (CLOCK, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (CLOCK, INTEST, PI), (INTERNAL, INTEST, PI));

-- Description for Figure 11-47c, a combined input/control

constant BC_5 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (CONTROL, EXTEST, PI),
 (INPUT, SAMPLE, PI), (CONTROL, SAMPLE, PI),
 (INPUT, INTEST, UPD), (CONTROL, INTEST, UPD));

-- Description for Figure 11-39d, a reversible cell
-- !! Not recommended; replaced by BC_7 below !!

-- Description for Figure 11-38d, self-monitor reversible
-- !! Recommended over cell BC_6 !!

constant BC_7 : CELL_INFO :=
 ((BIDIR_IN, EXTEST, PI), (BIDIR_OUT, EXTEST, PO),
 (BIDIR_IN, SAMPLE, PI), (BIDIR_OUT, SAMPLE, PI),
 (BIDIR_IN, INTEST, UPD), (BIDIR_OUT, INTEST, PI));

-- Description for Figure 11-41, Figure 11-42d

constant BC_8 : CELL_INFO :=
 -- Intest on bidir not supported
 ((BIDIR_IN, EXTEST, PI), (BIDIR_OUT, EXTEST, PO),
 (BIDIR_IN, SAMPLE, PI), (BIDIR_OUT, SAMPLE, PO));

-- Description for Figure 11-33

constant BC_9 : CELL_INFO :=
 -- Self-monitoring output that supports Intest
 ((OUTPUT2, EXTEST, PO), (OUTPUT3, EXTEST, PO),
 (OUTPUT2, SAMPLE, PI), (OUTPUT3, SAMPLE, PI),
 (OUTPUT2, INTEST, PI), (OUTPUT3, INTEST, PI));

-- Description for Figure 11-34

constant BC_10 : CELL_INFO :=
 -- Self-monitoring output that does not support Intest
 ((OUTPUT2, EXTEST, PO), (OUTPUT3, EXTEST, PO),
 (OUTPUT2, SAMPLE, PO), (OUTPUT3, SAMPLE, PO));

-- Register segment field definitions for excludable segments and
-- (power) domain control.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

302
Copyright © 2013 IEEE. All rights reserved.

attribute REGISTER_MNEMONICS of STD_1149_1_2013 : package is
 "STD_MUX (Include (1) < chain segment is included >, " &
 " Exclude (0) < chain segment not included >), " &
 "STD_POWER (On (1) < Domain is functionally on >, " &
 " Off (0) < Domain is functionally off >), " &
 "STD_DOMSET (Override (1) < Force domain ON >, " &
 " Normal (0) < Domain in normal mode >) ";

attribute REGISTER_FIELDS of STD_1149_1_2013 : package is
 "DOMCTRL[1] ("&
 "(DOMCTRL[1] IS (0) MON " &
 " DEFAULT(STD_DOMSET(Normal)) " &
 " RESETVAL(STD_DOMSET(Normal))) "&
 -- A reset type must be specified where this is instantiated
 ")," &
 "SEGSEL[1] ("&
 "(SEGSEL[1] IS (0) DELAYPO " &
 " DEFAULT(STD_MUX(Exclude)) "&
 " RESETVAL(STD_MUX(Exclude)) "&
 -- A reset type must be specified where this is instantiated
 " CAPTURES(STD_POWER(-))) "&
 ")," &
 "SEGMUX[0] ((SEGMUX [0] IS ()))," &
 "SEGSTART[0] ((SEGSTART [0] IS ()))";

end STD_1149_1_2013; -- End of IEEE STD 1149.1-2013 Package Body

B.10 User-supplied BSDL packages

A user-supplied package and package body are used to express the behavior of user-designed boundary-scan register
cells, mnemonics, and other test data register description attributes. It has a BSDL package section and a BSDL
package body section.

The user-supplied BSDL package section is abbreviated compared to the Standard BSDL Package since the
definitions of BSDL are supplied in the Standard BSDL Package specified by the <standard use statement>. The
names of the cells that are defined in the BSDL package body must be given (they are called deferred constants).

A user-supplied BSDL package body is used for defining user-supplied boundary cells in the cell description
constants, and BSDL extensions, register mnemonics, and other register description attributes may be supplied. A
cell description constant is a specific VHDL constant record made up of a variable number of data triples containing
VHDL enumerated types, and it specifies what the cell captures for each instruction.

NOTE—When writing a user-supplied BSDL package, it is possible to create an error if a later (e.g., 2001) construct such as a
BSDL_EXTENSION is referenced that is not defined in an earlier-defined (e.g., 1990) Standard VHDL Package specified in the
<standard use statement>. As with the BSDL itself, the standard use statement should reflect the compliance level of the BSDL
user package and package body.

B.10.1 Specifications

Syntax

<user package> ::= <user package stmt> <user package body>

<user package stmt>::= package <user package name> is (see B.8.5.1)

<standard use statement> (see B.8.4)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

303
Copyright © 2013 IEEE. All rights reserved.

{ <deferred constant> }
{ <extension declaration> } (see B.8.24)
end <user package name> <semicolon>

<deferred constant>::= constant <cell name> <colon> CELL_INFO <semicolon>

<user package body>::= package body <user package name> is-

<standard use statement> (see B.8.4)
{ <use statement> } (see B.8.5)
{ <cell description constant> }
{ <register mnemonics description> } (see B.8.18)
{ <register fields description> } (see B.8.19)
{ <register assembly description> } (see B.8.21)
{ <register constraints description> } (see B.8.22)
{ <register association description> } (see B.8.23)
{ <extension definition> } (see B.8.24)
 [<design warning>] (see B.8.25)
end <user package name> <semicolon>

<cell description constant> ::= constant <cell name> <colon> CELL_INFO
<colon-equal> <left-paren> <capture descriptor list> <right-paren> <semicolon>

<capture descriptor list>::= <capture descriptor> { <comma> <capture descriptor> }
<capture descriptor>::= <left-paren> <cell context> <comma> <capture instruction> <comma>

<data source> <right-paren>
<cell context>::= INPUT | OUTPUT2 | OUTPUT3 | INTERNAL | CONTROL |

CONTROLR | CLOCK | BIDIR_IN | BIDIR_OUT | OBSERVE_ONLY
<capture instruction>::= EXTEST | SAMPLE | INTEST
<data source>::= PI | PO | CAP | UPD | ZERO | ONE | X

NOTE—Although the standard-defined instruction PRELOAD does operate the boundary-scan register, it is not listed as a
<capture instruction> element since all cells capture unspecified data (X) when PRELOAD is in effect (see 8.7).

Rules

a) The <user package name> value shall be unique within a BSDL, or within a <user package>.

b) All <cell name> values shall be unique.

c) The <user package name> value in the <user package> shall match the <user package name> value in the
<user package body>, and both shall match the <user package name> in the <use statement>. (See B.8.5.1.)

d) The <cell context> values shall be as given in Table B-7:

Table B-7—Cell context element values and meanings

Cell context value Meaning
INPUT Control-and-observe (supports INTEST instruction) or observe-only cell

monitoring a system input
CLOCK An Observe cell for clock pins (supports INTEST instruction)
OUTPUT2 Two-state output cell
OUTPUT3 Three-state output cell
CONTROL Output enable or direction control cell
CONTROLR CONTROL with preset/clear at Test-Logic-Reset
BIDIR_IN Single-cell bidirectional pin acting as input
BIDIR_OUT Single-cell bidirectional pin acting as output
INTERNAL Internal cell, not associated with a system pin
OBSERVE_ONLY Redundant observe-only cell without control, associated with a system pin

or system logic input or output

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

304
Copyright © 2013 IEEE. All rights reserved.

e) The <data source> values shall be as given in Table B-8.

Table B-8—Data source element values and meanings

Data source value Meaning
PI Parallel input
PO Parallel output (the output pad if a driver is present)
CAP Capture flip-flop data
UPD Update flip-flop (or latch) data
ZERO Constant 0
ONE Constant 1
X Unknown data

NOTE 1—Figure B-15 gives a general model of the data source possibilities.

NOTE 2—In the following tables, an “L” indicates compliance. An “M” indicates compliance in the case of merged
cells only. An “A” indicates compliance when the cell is an additional cell not mandated by this standard. A <capture
descriptor> is a (<cell context> <capture instruction> <data source>) element. An example of a noncompliant <capture
descriptor> is (INPUT, EXTEST, UPD).

f) For a <capture descriptor> element with a <cell context> element equal to INPUT, CLOCK, or BIDIR_IN,
compliant <data source> values for given <capture instruction> elements shall be as given in Table B-9.

Table B-9—Compliant capture sources for <cell context> of INPUT, CLOCK, and BIDIR_IN

<capture instruction> PI PO UPD CAP X ZERO ONE
EXTEST L — — — — — —
SAMPLE L — — — — — —
INTEST L L L L L L L

g) For a <capture descriptor> element with a <cell context> element equal to OUTPUT2, OUTPUT3, or
BIDIR_OUT, compliant <data source> values for given <capture instruction> elements shall be as given in
Table B-10.

Table B-10—Compliant capture sources for <cell context> of OUTPUT2, OUTPUT3, and
BIDIR_OUT

<capture instruction> PI PO UPD CAP X ZERO ONE
EXTEST L L L L L L L
SAMPLE L La — — — — —

INTEST L — — — — — —
a This combination is compliant with 2001 and later versions of BSDL. Beginning with the 2001
version, this standard now allows an output of the system logic to be sampled at the data output (pin)
of the associated output buffer as well as at the data input of the associated output buffer [see rule a)
and rule h) of 11.6.1].

h) For a <capture descriptor> element with a <cell context> element equal to CONTROL or CONTROLR,
compliant <data source> values for given <capture instruction> elements shall be as given in Table B-11.

Table B-11—Compliant capture sources for <cell context> of CONTROL and CONTROLR

<capture instruction> PI PO UPD CAP X ZERO ONE
EXTEST L L L L L L L
SAMPLE L — — — — — —
INTEST L — M — — — —

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

305
Copyright © 2013 IEEE. All rights reserved.

i) For a <capture descriptor> element with a <cell context> element equal to INTERNAL, compliant <data
source> values for given <capture instruction> elements shall be as given in Table B-12.

Table B-12—Compliant capture sources for <cell context> of INTERNAL

<capture instruction> PI PO UPD CAP X ZERO ONE
EXTEST L L L L L L L
SAMPLE L L L L L L L
INTEST L L L L L L L

NOTE 3—For a <cell context> of INTERNAL, a <capture descriptor> value of PI is essentially identical to X since
internal cells do not capture anything other than constant 0s (ZERO), 1s (ONE), or the values previously shifted in
CAP, UPD, or PO.

j) For a <capture descriptor> element with a <cell context> element equal to OBSERVE_ONLY, compliant
<data source> values for given <capture instruction> elements shall be as given in Table B-13.

Table B-13—Compliant capture sources for <cell context> of OBSERVE_ONLY

<capture instruction> PI PO UPD CAP X ZERO ONE
EXTEST L — — — — — —
SAMPLEa L — — — L

--
L L

INTEST A — — — — — —
aBeginning with IEEE Std 1149.1-2013, this standard now allows redundant OBSERVE_ONLY
cells to capture from PI, X, Zero, or One in SAMPLE. An example would be OBSERVE_ONLY
cells on the pins of a differential receiver. SAMPLE is still required on the INPUT boundary-scan
cell on the single-ended side of the differential receiver; however, to ease implementation of pin
level OBSERVE_ONLY cells on the differential pins and the impact they may have on functional
performance, only EXTEST needs to be supported.

k) No combination of a <cell context> value and a <capture instruction> value shall appear more than once in
a single <capture descriptor list>.

l) The <cell name> value of a <cell description constant> in a <user package body> shall match the <cell
name> value of a <deferred constant> in the <user package>, where the <user package body> and <user
package> specify the same <user package name>.

NOTE 4—In the 1990 version of BSDL, the RUNBIST instruction was included as one of the <capture instruction>
elements, but it does not appear in any version of this standard after that. This reflects the fact that RUNBIST may or
may not reference the boundary-scan register and that the RUNBIST_EXECUTION attribute has been added to
describe RUNBIST capture behavior.

m) All deferred constants included in the <user package stmt> shall be defined in the <user package body>.

n) The <standard use statement> in the <user package stmt> shall match the <standard use statement> in the
<user package body>.

o) Only one package section and one package body section shall be included in a single BSDL package file.

p) Identifiers declared in design-specific BSDL packages shall not be defined more than once in a single
BSDL package.

Recommendations

q) In order to minimize naming conflicts between multiple user-supplied packages, the <user package name>
should contain a string that is unique to the supplier of the package.

NOTE 5—This could be a corporate name (or abbreviation), the unique name of a corporate product line, or other such
unique identifier.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

306
Copyright © 2013 IEEE. All rights reserved.

B.10.2 Description

A user-supplied package may be used to document certain information that may apply to many components, and a
single package can then be used with multiple BSDL files. This package may be provided by the component
designer or an IP provider. Most of the attribute statements allowed are also allowed in BSDL, and they are defined
in those clauses. Unique to the package are the “CELL_INFO” constants, which define the behavior of user-supplied
boundary-scan register cells.

Figure B-15 shows a generalized model of a boundary cell with all possible capture values listed in Table B-8
through Table B-13 that may be specified for each cell and instruction. As defined before, PI is the parallel input of
the cell, PO the parallel output, and SI and SO are the serial input and output of the boundary-scan cell. The names
inside the large multiplexer selecting the capture value correspond to the source names in the tables.

Figure B-15—Boundary-scan register cell showing possible capture sources

It is important to know the context of a cell to know how to interpret the data source. For example, the cell design in
this standard at Figure 11-19 (called BC_1) can be used as an input cell (INPUT), an output cell for a two-state pin
(OUTPUT2), a three-state pin (OUTPUT3), an internal cell (INTERNAL), or a control cell (CONTROL). This
context determines how software interprets PI and PO. If the cell is used as an input (or is a bidirectional cell acting
as an input), PI is interpreted as a system pin whose data are being captured. If the cell is used as an output (or a
bidirectional cell acting as an output), PI is interpreted as the output from the system logic; during EXTEST, the cell
would capture X unless a full simulation of the system logic were used to predict the system logic output. If the cell
is used as an output, PO is the system pin; during EXTEST, the cell would capture board levels outside the
component. When the cell is used as an input, PO will capture X.

With the exception of <cell context> values of BIDIR_IN and BIDIR_OUT, all the <cell context> values in
Table B-7 map onto the like-named <function> values in Table B-4 and supporting text (see B.8.14.3.3). The <cell
context> values of BIDIR_IN and BIDIR_OUT both map onto the <function> value BIDIR. The behavior of a
BIDIR cell is dependent on whether it is currently set to be driving data out (BIDIR_OUT) or receiving data in
(BIDIR_IN), as determined by the data value contained in the controlling cell identified by the <ccell> value.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

307
Copyright © 2013 IEEE. All rights reserved.

B.10.3 Examples

Example 1

(INPUT, EXTEST, PI)

This can be read as “for this cell used as an INPUT cell, while EXTEST is in effect, the capture flip-flop loads the
Parallel Input (PI) data during Capture-DR controller state.”

Example 2

(BIDIR_IN, INTEST, UPD)

This can be read as “for this cell used as a bidirectional cell acting as an input (BIDIR_IN), while INTEST is in
effect, the capture flip-flop loads the value of the Update flip-flop (or latch) data (UPD) during Capture-DR
controller state.”

Example 3

(OUTPUT2, SAMPLE, PI)

This can be read as “for this cell used as a (two-state) output cell (OUTPUT2), while SAMPLE is in effect, the
capture flip-flop loads the Parallel Input (PI) data during Capture-DR controller state.”

Example 4

(OUTPUT3, EXTEST, ZERO)

This can be read as “for this cell used as a (three-state) output cell (OUTPUT3), while EXTEST is in effect, the
capture flip-flop loads a logic 0 (ZERO) during Capture-DR controller state.”

User-supplied package for boundary-register cells

The following is an example of a user-supplied BSDL package that describes two new cells. These cells are able to
capture constants (0 and 1) during certain situations. For example, used as outputs during EXTEST, they capture
constant data rather than the system logic values (usually interpreted as “X”). By using these cells in the output cell
positions of a boundary-scan register, it is possible to implement an informal ID code. They will capture a pattern of
1 and 0 bits.

-- User-defined package describing two new cells

package USER_PACKAGE is

use STD_1149_1_2013.all; -- Get definition of "Cell_Info"

-- Boundary Cell deferred constants (defined in package body)

constant USER_0 : CELL_INFO;
constant USER_1 : CELL_INFO;

end USER_PACKAGE; -- End of user package

package body USER_PACKAGE is -- User boundary cells

use STD_1149_1_2013.all;

constant USER_0 : CELL_INFO :=

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

308
Copyright © 2013 IEEE. All rights reserved.

((OUTPUT2, EXTEST, ZERO),
 (OUTPUT2, SAMPLE, PI),
 (OUTPUT3, EXTEST, ZERO), (INTERNAL, EXTEST, ZERO),
 (OUTPUT3, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (OUTPUT3, INTEST, PI), (INTERNAL, INTEST, PI),
 (CONTROL, EXTEST, ZERO), (CONTROLR, EXTEST, ZERO),
 (CONTROL, SAMPLE, PI), (CONTROLR, SAMPLE, PI),
 (CONTROL, INTEST, PI), (CONTROLR, INTEST, PI));

constant USER_1 : CELL_INFO :=
((OUTPUT2, EXTEST, ONE),
 (OUTPUT2, SAMPLE, PI),
 (OUTPUT3, EXTEST, ONE), (INTERNAL, EXTEST, ONE),
 (OUTPUT3, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (OUTPUT3, INTEST, PI), (INTERNAL, INTEST, PI),
 (CONTROL, EXTEST, ONE), (CONTROLR, EXTEST, ONE),
 (CONTROL, SAMPLE, PI), (CONTROLR, SAMPLE, PI),
 (CONTROL, INTEST, PI), (CONTROLR, INTEST, PI));

end USER_PACKAGE; -- End of user package body

User-supplied package body for internal registers

Register mnemonics, register fields, and port associations may be used to describe internal registers of reusable
architectural blocks. The architectural blocks may be a design feature consistent across a family of devices or the
blocks may be intellectual property designs provided by an IP provider such as SERDES I/O, SERDES built-in-self-
test, or memory built-in self-repair.

The BSDL descriptions for these blocks can be provided in a user package body where they can be recorded once
and referenced by a “use” statement in the BSDL of devices that incorporate these architectural blocks. An extended
example is shown in D.1.1.

use SERDES_Defs.all; -- Package Contains SERDES family register descriptions

B.11 BSDL example applications

B.11.1 Typical application of BSDL

The following example is a complete example BSDL for a simple octal tri-state buffer component, namely, the
Texas Instruments SN74BCT8374 Octal D Flip-Flop, using BSDL version STD_1149_1_2013.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

309
Copyright © 2013 IEEE. All rights reserved.

Copyright © 1994 by Texas Instruments Incorporated. All rights reserved.

Figure B-16—Texas Instruments SN74BCT8374

entity ttl74bct8374 is
 generic (PHYSICAL_PIN_MAP : string := "DW");

 port (CLK:in bit; Q:out bit_vector(1 to 8); D:in bit_vector(1 to 8);
 GND: power_0 bit; VCC: power_pos bit;
 OC_NEG:in bit; TDO:out bit; TMS, TDI, TCK:in bit);

--Get IEEE Std 1149.1-2013 attributes and definitions
 use STD_1149_1_2013.all;

attribute COMPONENT_CONFORMANCE of ttl74bct8374 : entity is

"STD_1149_1_2013";

 attribute PIN_MAP of ttl74bct8374 : entity is PHYSICAL_PIN_MAP;

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

310
Copyright © 2013 IEEE. All rights reserved.

 constant DW: PIN_MAP_STRING:="CLK:1, Q:(2,3,4,5,7,8,9,10), " &
 "D:(23,22,21,20,19,17,16,15)," &
 "GND:6, VCC:18, OC_NEG:24, TDO:11, TMS:12, TCK:13, TDI:14";

 constant FK: PIN_MAP_STRING:="CLK:9, Q:(10,11,12,13,16,17,18,19)," &
 "D:(6,5,4,3,2,27,26,25)," &
 "GND:14, VCC:28, OC_NEG:7, TDO:20, TMS:21, TCK:23, TDI:24";

 attribute TAP_SCAN_IN of TDI : signal is true;
 attribute TAP_SCAN_MODE of TMS : signal is true;
 attribute TAP_SCAN_OUT of TDO : signal is true;
 attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, BOTH);

 attribute INSTRUCTION_LENGTH of ttl74bct8374 : entity is 8;

 attribute INSTRUCTION_OPCODE of ttl74bct8374 : entity is
 "BYPASS (11111111, 10001000, 00000101, 10000100, 00000001, 00000000),"
&
 "EXTEST (10000000)," &
 "SAMPLE (00000010, 10000010)," &
 "PRELOAD(00000010, 10000010),"&
 "INTEST (00000011, 10000011)," &
 "HIGHZ (00000110, 10000110)," &
 "CLAMP (00000111, 10000111)," &
 "RUNT (00001001, 10001001)," & -- Boundary run test
 "READBN (00001010, 10001010)," & -- Boundary read normal
 "READBT (00001011, 10001011)," & -- Boundary read test
 "CELLTST(00001100, 10001100)," & -- Boundary self-test normal
 "TOPHIP (00001101, 10001101)," & -- Boundary toggle-out test
 "SCANCN (00001110, 10001110)," & -- BCR scan normal
 "SCANCT (00001111, 10001111)"; -- BCR scan test

 attribute INSTRUCTION_CAPTURE of ttl74bct8374 : entity is "10000001";

 attribute REGISTER_ACCESS of ttl74bct8374 : entity is
 "BOUNDARY (READBN, READBT, CELLTST)," &
 "BYPASS (TOPHIP, RUNT)," &
 "BCR[2] (SCANCN, SCANCT)"; -- 2-bit boundary control register

 attribute BOUNDARY_LENGTH of ttl74bct8374 : entity is 18;

 attribute BOUNDARY_REGISTER of ttl74bct8374 : entity is
 -- num cell port function safe [input/ccell disval rslt]
 "17 (BC_1, CLK, input, X, OPEN1), " &

-- Merged input/control on CELL 16
 "16 (BC_1, OC_NEG, input, X, OPEN1), " &

 "16 (BC_1, *, control, 1), " &
 "15 (BC_1, D(1), input, X, OPEN1), " &
 "14 (BC_1, D(2), input, X, OPEN1), " &
 "13 (BC_1, D(3), input, X, OPEN1), " &
 "12 (BC_1, D(4), input, X, OPEN1), " &
 "11 (BC_1, D(5), input, X, OPEN1), " &
 "10 (BC_1, D(6), input, X, OPEN1), " &
 " 9 (BC_1, D(7), input, X, OPEN1), " &
 " 8 (BC_1, D(8), input, X, OPEN1), " &

-- when cell 16 = 1, the Q outputs are at Hi-Z

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

311
Copyright © 2013 IEEE. All rights reserved.

 " 7 (BC_1, Q(1), output3, X, 16, 1, Z)," &
 " 6 (BC_1, Q(2), output3, X, 16, 1, Z)," &
 " 5 (BC_1, Q(3), output3, X, 16, 1, Z)," &
 " 4 (BC_1, Q(4), output3, X, 16, 1, Z)," &
 " 3 (BC_1, Q(5), output3, X, 16, 1, Z)," &
 " 2 (BC_1, Q(6), output3, X, 16, 1, Z)," &
 " 1 (BC_1, Q(7), output3, X, 16, 1, Z)," &
 " 0 (BC_1, Q(8), output3, X, 16, 1, Z)";

end ttl74bct8374;

B.11.2 Boundary-scan register description

The following examples illustrate a number of “special case” boundary-scan register structures.

B.11.2.1 Multiple cells per pin

Component pins can be serviced by more than one cell. Each cell can perform a different function. Note that this
function is with respect to the boundary-scan register cell, not the component pin. For example, on a bidirectional
pin (see Figure 11-37), one cell can serve as an input receiver while the other serves as an output driver. Additional
OBSERVE_ONLY cells may be connected to any I/O pin.

The component shown in Figure B-17 will be used to illustrate a boundary-scan register with several
OBSERVE_ONLY cells.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

312
Copyright © 2013 IEEE. All rights reserved.

Figure B-17—Component that illustrates several OBSERVE_ONLY and INTERNAL cells

Cell 2 is an additional OBSERVE_ONLY cell associated with bidirectional pin 9 of the component.

Cell 7 is an additional OBSERVE_ONLY cell associated with output pin 8 of the component. Cells 7, 8, and 9 may
have been a programmable two-cell bidirectional implementation that has been reprogrammed to a two-state output.

Cell 15 is an additional OBSERVE_ONLY cell associated with input pin 6 of the component. Cells 13 and 14 are
also associated with pin 6, but they are described as INPUT cells and are connected to the system logic.

C

C U

C U

C U

C

C U

C U

C U

CU

C

C U

C U

12

1

2

3

4

5

6

7

8

10

11

C U

9

0

A
N
A
L
O
G

D
I
G
I
T
A
L

OBSERVE_ONLY

OBSERVE_ONLY

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

CONTROL

CONTROL

OUTPUT3

OUTPUT3

OUTPUT2

INPUT

OBSERVE_ONLY

C U

C

C

C U

C

C U

C U

13

14

15

16

17

18

19 INTERNAL

INPUT

INPUT

INPUT

OBSERVE_ONLY

CLOCK or INPUT

TAP
Controller

TDI

TMS

TCK

INPUT_3

INPUT_2

INPUT_1
OUTPUT_1

OUTPUT_2

BIDIR_1

ANALOG

TDO
11

10

9

8

7
6

5

4

1

2

3

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

313
Copyright © 2013 IEEE. All rights reserved.

Cell 17 is an additional OBSERVE_ONLY cell associated with input pin 5 of the component. Cell 16 is the normal
INPUT cell for pin 5.

If the component in Figure B-17 supports INTEST, and the signal INPUT_3 is a repeating clock type, cell 18 must
be of type CLOCK. If the component does not support INTEST, cell 18 could either be an INPUT cell or a CLOCK
cell depending on the nature of the signal.

NOTE—The distinction here is that INPUT cells are required on inputs to the on-chip digital logic. OBSERVE_ONLY cells are
used as optional and redundant cells where their omission does not affect the compliance of this standard. In the 2001 version of
this standard, this distinction was accidently merged. After the 2001 version, INPUT cells and OBSERVE_ONLY cells are
maintained as separate, INPUT cells are required on all system logic inputs, and OBSERVE_ONLY cells are allowed on pins
where their omission does not affect the compliance of this standard.

B.11.2.2 Internal boundary register cells

Internal boundary register cells can be used to capture “constants” or system-logic-dependent values (0s and 1s)
within a design. One proposed use of this possibility is capturing of a hard-coded value (perhaps in the first few bits
of the boundary-scan register) as an informal identification code. Another application is to monitor power
connections to verify whether they are receiving the correct input supply, and to capture a data bit based on the
measured results. If the power connections are good, the data loaded will be 1, for example, while a faulty power
input would cause a 0 to be captured. Internal cells, with either control-and-observe capability or observe-only
capability, may sit at the boundary between digital and analog sections of the core circuitry. Finally, there may be
“extra,” unused cells in a programmable component (see Clause 11).

Note that this standard does not allow system logic to surround internal cells, as shown in Figure 11-43.

The component shown in Figure B-17 will be used to illustrate a boundary-scan register with several INTERNAL
cells.

Cells 0 and 1 are INTERNAL cells between the digital system logic and the analog system functions. Note that cells
0 and 1 are not associated with pin 10.

Cells 6, 9, and 12 are cells that are observing signals from the system logic, are not associated with system pins, and
are described as INTERNAL cells.

Cell 19 is an extra cell in the boundary-scan register. It is not observing the system logic or a system pin and is
described as an INTERNAL cell.

The definition of the boundary-scan register for Figure B-17 is as follows:

attribute BOUNDARY_LENGTH of Figure_B11: entity is 20;
attribute BOUNDARY_REGISTER of Figure_B11: entity is
--
--num cell port function safe [input/ccell disval rslt]
--
" 0 (BC_1, *, internal, 0), "&
" 1 (BC_1, *, internal, 1), "&
" 2 (BC_4, BIDIR_1, observe_only, X), "&
" 3 (BC_1, BIDIR_1, input, X, OPEN1), "&
" 4 (BC_1, BIDIR_1, output3, 0, 5, 0, Z), "&
" 5 (BC_1, *, control, 0), "&
" 6 (BC_1, *, internal, X), "&
" 7 (BC_4, OUTPUT_2, observe_only, X), "&
" 8 (BC_1, OUTPUT_2, output2, 1), "&
" 9 (BC_1, *, internal, X), "&
"10 (BC_1, OUTPUT_1, output3, 0, 11, 0, Z), "&

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

314
Copyright © 2013 IEEE. All rights reserved.

"11 (BC_1, *, control, 0), "&
"12 (BC_4, *, internal, X), "&
"13 (BC_1, INPUT_1, input, X, OPEN0), "&
"14 (BC_1, INPUT_1, input, X, OPEN0), "&
"15 (BC_4, INPUT_1, observe_only, X), "&
"16 (BC_1, INPUT_2, input, X, OPEN1), "&
"17 (BC_4, INPUT_2, observe_only, X), "&
"18 (BC_4, INPUT_3, input, X, OPENX), "&
"19 (BC_1, *, internal, X) ";

B.11.2.3 Merged cells

The component shown in Figure B-18 will be used to illustrate a boundary-scan register description in which special
cases are handled. These special cases arise because this standard allows boundary-scan register cells to be merged
when the system logic between them is null (see, for example, Figure 11-44 and Figure 11-45). Cells may be merged
if the “logic” between them is simply a data path, such as a wire or buffer. When the merging is done, the resulting
cell must obey a combination of the rules of the merged cells.

Figure B-18—Component that illustrates several merged cells

TAP
Controller

C U

TDI

TMS

TCK

C U

C U

C U

C U

C U

CU

C U

C U

C U

S
Y
S
T
E
M

L
O
G
I
C

0

1

2

3

4

5

6

7

8

9

+

TDO

OUT1

OUT2

BIDIR1

BIDIR3

BIDIR2

IN2

IN1

EN1

EN2

EN3

EN4

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

315
Copyright © 2013 IEEE. All rights reserved.

The definition of the boundary-scan register for Figure B-18 is as follows:

attribute BOUNDARY_LENGTH of Figure_B12: entity is 10;
attribute BOUNDARY_REGISTER of Figure_B12: entity is
--
--num cell port function safe[input/ccell disval rslt]
--
" 0 (BC_1, *, control, 0), "&
" 1 (BC_1, OUT2, output2, 1, 1, 1, Weak1),"&
" 2 (BC_7, BIDIR1, bidir, X, 3, 0, Z),"&
" 3 (BC_2, *, control, 0), "&
" 4 (BC_1, *, control, 0), "&
" 5 (BC_1, BIDIR3, input, X, OPEN1), "&
" 5 (BC_1, BIDIR2, output3, X, 7, 1, Z),"&
" 6 (BC_1, BIDIR2, input, X, OPEN1), "&
" 6 (BC_1, BIDIR3, output3, X, 4, 0, Z),"&
" 7 (BC_1, *, control, 1), "&
" 8 (BC_1, IN2, input, X, OPEN0), "&
" 9 (BC_1, IN1, input, X, OPEN0), "&
" 9 (BC_1, OUT1, output3, X, 0, 0, Z) ";

Cells 0, 4, and 7 are control cells located between the system logic and the enable for signals OUT1, BIDIR2, and
BIDIR3. Notice that values are assigned to the “safe” subfields for these cells to cause the associated drivers to
disable.

Cell 3 is the control for the reversible cell (see Figure 11-38c) used on the bidirectional signal BIDIR1. Notice its
“safe” subfield is given the value that causes BIDIR1 to be an input.

Cell 1 is a two-state output data cell. Note that it has the three extra fields, indicating that it controls its own open-
collector, asymmetrical driver. By placing a 1 in cell 1, the driver at OUT2 can be set to the inactive drive state, in
which it will output the “WEAK1” state.

Cell 2 is the reversible cell of Figure 11-38d. This cell serves either as an input (if the control cell has turned off the
output driver, meaning cell 3 produces a 0) or as the data source for the driver (if the output is enabled).

Note that the structures for BIDIR2 and BIDIR3 (see Figure 11-37) would allow observation of the driver, thus,
allowing a simple consistency check.

Cell 5 (and similarly cells 6 and 9) has merged behavior—it serves as the input receiver for BIDIR3 and as the data
source for BIDIR2. As a result, the cell has two lines of description in the boundary-scan register description. The
first gives its behavior as an input cell while the second describes its characteristics as an output cell. Note that cell
BC_1 used in this capacity must support both INPUT and OUTPUT3 functions. This is reflected in the definition
of BC_1 where both functions exist for all instructions.

The example illustrated by Figure B-18 is extreme and includes several unusual cases. Most component
implementations will be quite simple and routine, as illustrated by the example component description in B.11.1.

B.12 1990 version of BSDL

The 1990 version of BSDL is a de facto industry standard. The information presented in this clause is provided as a
courtesy to tool implementers who wish to support BSDL descriptions written before the 2001 version was defined.
This form of BSDL is a subset of the 2001 version except where noted below. New BSDL descriptions should not
use the 1990 form.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

316
Copyright © 2013 IEEE. All rights reserved.

In the 1990 version of BSDL, the following syntactic elements are not supported:

<component conformance statement>
<grouped port identification>
<compliance-enable description>
<runbist description>
<intest description>

<BSDL extensions>
In the 1990 version, KEEPER and PRELOAD were not recognized as reserved words. Also, in the 1990 version,
cell types BC_0, BC_7, BC_8, BC_9, and BC_10 need to be specified in a user-supplied BSDL package.

B.12.1 1990 Standard VHDL Package STD_1149_1_1990

The following is the complete content of Standard VHDL Package STD_1149_1_1990. Note that both the VHDL
package and the package body are shown. This information defines the basis of BSDL and typically would be write-
protected by a system administrator. An explanation of the cell definitions (e.g., BC_1, BC_2, etc.) in the package
body is given in B.10.1. BSDL files that use <standard VHDL package identifier> STD_1149_1_1990 are
processed using this Standard VHDL Package.

NOTE 1—The figure references are to the 1990 edition of IEEE Std 1149.1.

NOTE 2—Where figures are cited, the suffix “c” is used to denote a control cell. The suffix “d” denotes a data cell.

package STD_1149_1_1990 is

-- Give pin mapping declarations

attribute PIN_MAP : string;
subtype PIN_MAP_STRING is string;

-- Give TAP control declarations

type CLOCK_LEVEL is (LOW, BOTH);
type CLOCK_INFO is record
 FREQ : real;
 LEVEL: CLOCK_LEVEL;
end record;

attribute TAP_SCAN_IN : boolean;
attribute TAP_SCAN_OUT : boolean;
attribute TAP_SCAN_CLOCK: CLOCK_INFO;
attribute TAP_SCAN_MODE : boolean;
attribute TAP_SCAN_RESET: boolean;

-- Give instruction register declarations

attribute INSTRUCTION_LENGTH : integer;
attribute INSTRUCTION_OPCODE : string;
attribute INSTRUCTION_CAPTURE : string;
attribute INSTRUCTION_DISABLE : string;
attribute INSTRUCTION_GUARD : string;
attribute INSTRUCTION_PRIVATE : string;
attribute INSTRUCTION_USAGE : string;
attribute INSTRUCTION_SEQUENCE : string;

-- Give ID and USER code declarations

type ID_BITS is ('0', '1', 'x', 'X');
type ID_STRING is array (31 downto 0) of ID_BITS;

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

317
Copyright © 2013 IEEE. All rights reserved.

attribute IDCODE_REGISTER : ID_STRING;
attribute USERCODE_REGISTER: ID_STRING;

-- Give register declarations

attribute REGISTER_ACCESS : string;

-- Give boundary cell declarations

type BSCAN_INST is (EXTEST, SAMPLE, INTEST, RUNBIST);
type CELL_TYPE is (INPUT, INTERNAL, CLOCK,
 CONTROL, CONTROLR, OUTPUT2,
 OUTPUT3, BIDIR_IN, BIDIR_OUT);
type CAP_DATA is (PI, PO, UPD, CAP, X, ZERO, ONE);
type CELL_DATA is record
 CT : CELL_TYPE;
 I : BSCAN_INST;
 CD : CAP_DATA;
end record;
type CELL_INFO is array (positive range <>) of CELL_DATA;

-- Boundary cell deferred constants (see package body)

constant BC_1 : CELL_INFO;
constant BC_2 : CELL_INFO;
constant BC_3 : CELL_INFO;
constant BC_4 : CELL_INFO;
constant BC_5 : CELL_INFO;
constant BC_6 : CELL_INFO;

-- Boundary-scan register declarations

attribute BOUNDARY_CELLS : string;
attribute BOUNDARY_LENGTH : integer;
attribute BOUNDARY_REGISTER : string;

-- Miscellaneous

attribute DESIGN_WARNING : string;

end STD_1149_1_1990; -- End of IEEE Std 1149.1-1990 Package

package body STD_1149_1_1990 is -- Standard boundary cells

-- Description for f10-12, f10-16, f10-18c, f10-18d, f10-21c

constant BC_1 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (OUTPUT2, EXTEST, PI),
 (INPUT, SAMPLE, PI), (OUTPUT2, SAMPLE, PI),
 (INPUT, INTEST, PI), (OUTPUT2, INTEST, PI),
 (INPUT, RUNBIST, PI), (OUTPUT2, RUNBIST, PI),
 (OUTPUT3, EXTEST, PI), (INTERNAL, EXTEST, PI),
 (OUTPUT3, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (OUTPUT3, INTEST, PI), (INTERNAL, INTEST, PI),
 (OUTPUT3, RUNBIST, PI), (INTERNAL, RUNBIST, PI),
 (CONTROL, EXTEST, PI), (CONTROLR, EXTEST, PI),

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

318
Copyright © 2013 IEEE. All rights reserved.

 (CONTROL, SAMPLE, PI), (CONTROLR, SAMPLE, PI),
 (CONTROL, INTEST, PI), (CONTROLR, INTEST, PI),
 (CONTROL, RUNBIST, PI), (CONTROLR, RUNBIST, PI));

-- Description for f10-8, f10-17, f10-19c, f10-19d, f10-22c

constant BC_2 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (OUTPUT2, EXTEST, UPD),
 (INPUT, SAMPLE, PI), (OUTPUT2, SAMPLE, PI),
 (INPUT, INTEST, UPD), -- Intest on output2 not supported
 (INPUT, RUNBIST, UPD), (OUTPUT2, RUNBIST, UPD),
 (OUTPUT3, EXTEST, UPD), (INTERNAL, EXTEST, PI),
 (OUTPUT3, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (OUTPUT3, INTEST, PI), (INTERNAL, INTEST, UPD),
 (OUTPUT3, RUNBIST, PI), (INTERNAL, RUNBIST, UPD),
 (CONTROL, EXTEST, UPD), (CONTROLR, EXTEST, UPD),
 (CONTROL, SAMPLE, PI), (CONTROLR, SAMPLE, PI),
 (CONTROL, INTEST, PI), (CONTROLR, INTEST, PI),
 (CONTROL, RUNBIST, PI), (CONTROLR, RUNBIST, PI));

-- Description for f10-9

constant BC_3 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (INTERNAL, EXTEST, PI),
 (INPUT, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (INPUT, INTEST, PI), (INTERNAL, INTEST, PI),
 (INPUT, RUNBIST, PI), (INTERNAL, RUNBIST, PI));

-- Description for f10-10, f10-11

constant BC_4 : CELL_INFO :=
 ((INPUT, EXTEST, PI), -- Intest on input not supported
 (INPUT, SAMPLE, PI), -- Runbist on input not supported
 (CLOCK, EXTEST, PI), (INTERNAL, EXTEST, PI),
 (CLOCK, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (CLOCK, INTEST, PI), (INTERNAL, INTEST, PI),
 (CLOCK, RUNBIST, PI), (INTERNAL, RUNBIST, PI));

-- Description for f10-20c, a combined input/control

constant BC_5 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (CONTROL, EXTEST, PI),
 (INPUT, SAMPLE, PI), (CONTROL, SAMPLE, PI),
 (INPUT, INTEST, UPD), (CONTROL, INTEST, UPD),
 (INPUT, RUNBIST, PI), (CONTROL, RUNBIST, PI));

-- Description for f10-22d, a reversible cell

constant BC_6 : CELL_INFO :=
 ((BIDIR_IN, EXTEST, PI), (BIDIR_OUT, EXTEST, UPD),
 (BIDIR_IN, SAMPLE, PI), (BIDIR_OUT, SAMPLE, PI),
 (BIDIR_IN, INTEST, UPD), (BIDIR_OUT, INTEST, PI),
 (BIDIR_IN, RUNBIST, UPD), (BIDIR_OUT, RUNBIST, PI));

end STD_1149_1_1990; -- End of 1990 Package Body

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

319
Copyright © 2013 IEEE. All rights reserved.

B.12.2 Typical application of BSDL, 1990 version

The following example is for the Texas Instruments SN74BCT8374 Octal D Flip-Flop using version
STD_1149_1_1990.

entity ttl74bct8374 is
 generic (PHYSICAL_PIN_MAP : string := "DW");

 port (CLK:in bit; Q:out bit_vector(1 to 8); D:in bit_vector(1 to 8);
 GND, VCC:linkage bit;

OC_NEG:in bit; TDO:out bit; TMS, TDI, TCK:in bit);

 use STD_1149_1_1990.all;--Get IEEE STD 1149.1-1990 attributes and
definitions

 attribute PIN_MAP of ttl74bct8374 : entity is PHYSICAL_PIN_MAP;

 constant DW: PIN_MAP_STRING:="CLK:1, Q:(2,3,4,5,7,8,9,10), " &
 "D:(23,22,21,20,19,17,16,15)," &
 "GND:6, VCC:18, OC_NEG:24, TDO:11, TMS:12, TCK:13, TDI:14";

 constant FK: PIN_MAP_STRING:="CLK:9, Q:(10,11,12,13,16,17,18,19)," &
 "D:(6,5,4,3,2,27,26,25)," &
 "GND:14, VCC:28, OC_NEG:7, TDO:20, TMS:21, TCK:23, TDI:24";

 attribute TAP_SCAN_IN of TDI : signal is true;
 attribute TAP_SCAN_MODE of TMS : signal is true;
 attribute TAP_SCAN_OUT of TDO : signal is true;
 attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, BOTH);

 attribute INSTRUCTION_LENGTH of ttl74bct8374 : entity is 8;

 attribute INSTRUCTION_OPCODE of ttl74bct8374 : entity is
 "BYPASS (11111111, 10001000, 00000101, 10000100, 00000001)," &
 "EXTEST (00000000, 10000000)," &
 "SAMPLE (00000010, 10000010)," &
 "INTEST (00000011, 10000011)," &
 "TRIBYP (00000110, 10000110)," & -- Boundary Hi-Z
 "SETBYP (00000111, 10000111)," & -- Boundary 1/0
 "RUNT (00001001, 10001001)," & -- Boundary run test
 "READBN (00001010, 10001010)," & -- Boundary read normal
 "READBT (00001011, 10001011)," & -- Boundary read test
 "CELLTST(00001100, 10001100)," & -- Boundary self-test normal
 "TOPHIP (00001101, 10001101)," & -- Boundary toggle-out test
 "SCANCN (00001110, 10001110)," & -- BCR Scan normal
 "SCANCT (00001111, 10001111)"; -- BCR Scan test

 attribute INSTRUCTION_CAPTURE of ttl74bct8374 : entity is "10000001";
 attribute INSTRUCTION_DISABLE of ttl74bct8374 : entity is "TRIBYP";
-- Now obsolete, see note below.
 attribute INSTRUCTION_GUARD of ttl74bct8374 : entity is "SETBYP";
-- Now obsolete, see note below.
--NOTE—The INSTRUCTION_SEQUENCE and INSTRUCTION_USAGE attributes would appear
--here, but they are now obsolete.

 attribute REGISTER_ACCESS of ttl74bct8374 : entity is

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

320
Copyright © 2013 IEEE. All rights reserved.

 "BOUNDARY (READBN, READBT, CELLTST)," &
 "BYPASS (TOPHIP, SETBYP, RUNT, TRIBYP)," &
 "BCR[2] (SCANCN, SCANCT)"; -- 2-bit Boundary Control Register

 attribute BOUNDARY_CELLS of ttl74bct8374 : entity is "BC_1";
-- Now obsolete, see note below.
 attribute BOUNDARY_LENGTH of ttl74bct8374 : entity is 18;

--NOTE-The "attribute INSTRUCTION_DISABLE of ttl74bct8374:entity is
"TRIBYP";"
--statement is the same as the HIGHZ instruction defined in this standard and
--the "attribute INSTRUCTION_GUARD of ttl74bct8374:entity is "SETBYP";"
--statement is the same as CLAMP instruction. The "attribute BOUNDARY_CELLS
of
--ttl74bct8374:entity is "BC_1";" statement has been removed from later
--versions of BSDL, since the cells being used can be identified while
--processing the BOUNDARY_REGISTER attribute.

 attribute BOUNDARY_REGISTER of ttl74bct8374 : entity is
 -- num cell port function safe [ccell disval rslt]
 "17 (BC_1, CLK, input, X), " &
 "16 (BC_1, OC_NEG, input, X), " & -- Merged input/control
 "16 (BC_1, *, control, 1), " & -- Merged input/control
 "15 (BC_1, D(1), input, X), " &
 "14 (BC_1, D(2), input, X), " &
 "13 (BC_1, D(3), input, X), " &
 "12 (BC_1, D(4), input, X), " &
 "11 (BC_1, D(5), input, X), " &
 "10 (BC_1, D(6), input, X), " &
 " 9 (BC_1, D(7), input, X), " &
 " 8 (BC_1, D(8), input, X), " &
-- cell 16 @ 1 -> Hi-Z
 " 7 (BC_1, Q(1), output3, X, 16, 1, Z)," &
 " 6 (BC_1, Q(2), output3, X, 16, 1, Z)," &
 " 5 (BC_1, Q(3), output3, X, 16, 1, Z)," &
 " 4 (BC_1, Q(4), output3, X, 16, 1, Z)," &
 " 3 (BC_1, Q(5), output3, X, 16, 1, Z)," &
 " 2 (BC_1, Q(6), output3, X, 16, 1, Z)," &
 " 1 (BC_1, Q(7), output3, X, 16, 1, Z)," &
 " 0 (BC_1, Q(8), output3, X, 16, 1, Z)";

 end ttl74bct8374;

B.12.3 Obsolete syntax

Several attributes were enumerated in the 1990 version of BSDL that were all string-valued. They are obsolete in
versions of BSDL after 1994. The INSTRUCTION_GUARD and INSTRUCTION_DISABLE attributes were
made obsolete by the standardization of the CLAMP and HIGHZ instructions. The BOUNDARY_CELLS attribute
was found to be unnecessary. With regard to the INSTRUCTION_SEQUENCE and INSTRUCTION_USAGE
attributes, agreement was never reached on either their scope or the applications they were intended to handle. These
two attributes have been dropped.

All these obsolete attributes had string values, and so a tool intended to ignore statements defining the attributes can
be designed to ignore string-valued attributes with the obsolete names. Their syntax is provided in Syntax to assist
users in the development of tools that can read both the version of BSDL documented in this annex and the earlier
draft version of the language.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

321
Copyright © 2013 IEEE. All rights reserved.

B.12.3.1 Syntax

attribute <obsoleted attribute name> of
<component name> <colon> entity is <obsoleted string> <semicolon>

<obsoleted attribute name>::= INSTRUCTION_GUARD | INSTRUCTION_DISABLE |

INSTRUCTION_SEQUENCE | INSTRUCTION_USAGE | BOUNDARY_CELLS
<obsoleted string>::= <string>

B.12.4 Miscellaneous points on 1990 version

In parsing a 1990 version of BSDL, a violation of the condition described in semantic check p) of B.8.14.1 should
result in the issuance of a warning message by parsing software. This acknowledges that the 1990 edition of this
standard allowed a control cell to fan out to more than one driver, and each driver could be enabled with an
independent choice of control value. Semantic check p) of B.8.14.1 reflects the strengthening of this standard to
require specifically that all drivers controlled by a single control cell are disabled by the same value.

The VHDL package body shown in B.12.1 has a fourth value of <capture instruction>, with a value of RUNBIST
shown in the <capture descriptor> elements (see B.10.1). This value has been removed in versions of BSDL after
1994, since these versions now provides for RUNBIST description (see B.8.15).

In the 1990 version of BSDL, the device ID register was named IDCODE in the REGISTER_ACCESS attribute.
In this annex, this name has been changed to DEVICE_ID to match the definition used elsewhere in this standard.

In the 1990 version of BSDL, the following values of given BSDL syntactical elements did not exist:

— <cell context> value OBSERVE_ONLY

— <disable result> value KEEPER

— <function> value OBSERVE_ONLY

— <instruction name> value PRELOAD

B.13 1994 version of BSDL

The 1994 version of BSDL was defined by IEEE Std 1149.1b-1994. The information presented in this clause is
provided to help tool implementers support BSDL descriptions written before the 2001 version was defined. This
form of BSDL is a subset of the later versions except where noted below. New BSDL descriptions should not use
the 1994 form.

In the 1994 version, KEEPER and PRELOAD were not recognized as reserved words. Also, in the 1994 version,
cell types BC_8, BC_9, and BC_10 need to be specified in a user-supplied BSDL package.

B.13.1 Standard VHDL Package STD_1149_1_1994

The following is the complete content of Standard VHDL Package STD_1149_1_1994. Note that both the VHDL
package and the package body are shown. This information defines the basis of BSDL and typically would be write-
protected by a system administrator. An explanation of the cell definitions (e.g., BC_1, BC_2, etc.) in the package
body is given in B.10.1. BSDL descriptions that use <standard VHDL package identifier> STD_1149_1_1994 are
processed using this Standard VHDL Package.

NOTE—The figure references are to the 1993 edition of IEEE Std 1149.1.

package STD_1149_1_1994 is

-- Give component conformance declaration

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

322
Copyright © 2013 IEEE. All rights reserved.

attribute COMPONENT_CONFORMANCE : string;

-- Give pin mapping declarations

attribute PIN_MAP : string;
subtype PIN_MAP_STRING is string;

-- Give TAP control declarations

type CLOCK_LEVEL is (LOW, BOTH);
type CLOCK_INFO is record
 FREQ : real;
 LEVEL: CLOCK_LEVEL;
end record;

attribute TAP_SCAN_IN : boolean;
attribute TAP_SCAN_OUT : boolean;
attribute TAP_SCAN_CLOCK: CLOCK_INFO;
attribute TAP_SCAN_MODE : boolean;
attribute TAP_SCAN_RESET: boolean;

-- Give instruction register declarations

attribute INSTRUCTION_LENGTH : integer;
attribute INSTRUCTION_OPCODE : string;
attribute INSTRUCTION_CAPTURE : string;
attribute INSTRUCTION_PRIVATE : string;

-- Give ID and USER code declarations

type ID_BITS is ('0', '1', 'x', 'X');
type ID_STRING is array (31 downto 0) of ID_BITS;
attribute IDCODE_REGISTER : ID_STRING;
attribute USERCODE_REGISTER: ID_STRING;

-- Give register declarations

attribute REGISTER_ACCESS : string;

-- Give boundary cell declarations

type BSCAN_INST is (EXTEST, SAMPLE, INTEST);
type CELL_TYPE is (INPUT, INTERNAL, CLOCK, OBSERVE_ONLY,
 CONTROL, CONTROLR, OUTPUT2,
 OUTPUT3, BIDIR_IN, BIDIR_OUT);
type CAP_DATA is (PI, PO, UPD, CAP, X, ZERO, ONE);
type CELL_DATA is record
 CT : CELL_TYPE;
 I : BSCAN_INST;
 CD : CAP_DATA;
end record;
type CELL_INFO is array (positive range <>) of CELL_DATA;

-- Boundary cell deferred constants (see package body)

constant BC_0 : CELL_INFO;

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

323
Copyright © 2013 IEEE. All rights reserved.

constant BC_1 : CELL_INFO;
constant BC_2 : CELL_INFO;
constant BC_3 : CELL_INFO;
constant BC_4 : CELL_INFO;
constant BC_5 : CELL_INFO;
constant BC_6 : CELL_INFO;
constant BC_7 : CELL_INFO;

-- Boundary-scan register declarations

attribute BOUNDARY_LENGTH : integer;
attribute BOUNDARY_REGISTER : string;

-- Miscellaneous

attribute PORT_GROUPING : string;
attribute RUNBIST_EXECUTION : string;
attribute INTEST_EXECUTION : string;
subtype BSDL_EXTENSION is string;
attribute COMPLIANCE_PATTERNS : string;
attribute DESIGN_WARNING : string;

end STD_1149_1_1994; -- End of 1149.1-1994 Package

package body STD_1149_1_1994 is -- Standard boundary cells

-- Generic cell capturing minimum allowed data

constant BC_0 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (OUTPUT2, EXTEST, X),
 (INPUT, SAMPLE, PI), (OUTPUT2, SAMPLE, PI),
 (INPUT, INTEST, X), (OUTPUT2, INTEST, PI),
 (OUTPUT3, EXTEST, X), (INTERNAL, EXTEST, X),
 (OUTPUT3, SAMPLE, PI), (INTERNAL, SAMPLE, X),
 (OUTPUT3, INTEST, PI), (INTERNAL, INTEST, X),
 (CONTROL, EXTEST, X), (CONTROLR, EXTEST, X),
 (CONTROL, SAMPLE, PI), (CONTROLR, SAMPLE, PI),
 (CONTROL, INTEST, PI), (CONTROLR, INTEST, PI),
 (BIDIR_IN,EXTEST, PI), (BIDIR_OUT, EXTEST, X),
 (BIDIR_IN,SAMPLE, PI), (BIDIR_OUT, SAMPLE, PI),
 (BIDIR_IN,INTEST, X), (BIDIR_OUT, INTEST, PI),
 (OBSERVE_ONLY, SAMPLE, PI), (OBSERVE_ONLY, EXTEST, PI));

-- Description for f10-18, f10-29, f10-31c, f10-31d, f10-33c, f10-41d

constant BC_1 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (OUTPUT2, EXTEST, PI),
 (INPUT, SAMPLE, PI), (OUTPUT2, SAMPLE, PI),
 (INPUT, INTEST, PI), (OUTPUT2, INTEST, PI),
 (OUTPUT3, EXTEST, PI), (INTERNAL, EXTEST, PI),
 (OUTPUT3, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (OUTPUT3, INTEST, PI), (INTERNAL, INTEST, PI),
 (CONTROL, EXTEST, PI), (CONTROLR, EXTEST, PI),
 (CONTROL, SAMPLE, PI), (CONTROLR, SAMPLE, PI),
 (CONTROL, INTEST, PI), (CONTROLR, INTEST, PI));

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

324
Copyright © 2013 IEEE. All rights reserved.

-- Description for f10-14, f10-30, f10-32c, f10-32d, f10-35c

constant BC_2 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (OUTPUT2, EXTEST, UPD),
 (INPUT, SAMPLE, PI), (OUTPUT2, SAMPLE, PI),
 (INPUT, INTEST, UPD), -- Intest on output2 not supported
 (OUTPUT3, EXTEST, UPD), (INTERNAL, EXTEST, PI),
 (OUTPUT3, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (OUTPUT3, INTEST, PI), (INTERNAL, INTEST, UPD),
 (CONTROL, EXTEST, UPD), (CONTROLR, EXTEST, UPD),
 (CONTROL, SAMPLE, PI), (CONTROLR, SAMPLE, PI),
 (CONTROL, INTEST, PI), (CONTROLR, INTEST, PI));

-- Description for f10-15

constant BC_3 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (INTERNAL, EXTEST, PI),
 (INPUT, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (INPUT, INTEST, PI), (INTERNAL, INTEST, PI));

-- Description for f10-16, f10-17

constant BC_4 : CELL_INFO :=
 ((INPUT, EXTEST, PI), -- Intest on input not supported
 (INPUT, SAMPLE, PI),
 (OBSERVE_ONLY, EXTEST, PI),
 (OBSERVE_ONLY, SAMPLE, PI), -- Intest on observe_only not supported
 (CLOCK, EXTEST, PI), (INTERNAL, EXTEST, PI),
 (CLOCK, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (CLOCK, INTEST, PI), (INTERNAL, INTEST, PI));

-- Description for f10-41c, a combined input/control

constant BC_5 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (CONTROL, EXTEST, PI),
 (INPUT, SAMPLE, PI), (CONTROL, SAMPLE, PI),
 (INPUT, INTEST, UPD), (CONTROL, INTEST, UPD));

-- Description for f10-35d, a reversible cell
-- !! Not recommended; replaced by BC_7 below !!

constant BC_6 : CELL_INFO :=
 ((BIDIR_IN, EXTEST, PI), (BIDIR_OUT, EXTEST, UPD),
 (BIDIR_IN, SAMPLE, PI), (BIDIR_OUT, SAMPLE, PI),
 (BIDIR_IN, INTEST, UPD), (BIDIR_OUT, INTEST, PI));

-- Description for f10-34d, self-monitor reversible
-- !! Recommended over cell BC_6 !!

constant BC_7 : CELL_INFO :=
 ((BIDIR_IN, EXTEST, PI), (BIDIR_OUT, EXTEST, PO),
 (BIDIR_IN, SAMPLE, PI), (BIDIR_OUT, SAMPLE, PI),
 (BIDIR_IN, INTEST, UPD), (BIDIR_OUT, INTEST, PI))

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

325
Copyright © 2013 IEEE. All rights reserved.

B.14 2001 version of BSDL

B.14.1 Standard VHDL Package STD_1149_1_2001

package STD_1149_1_2001 is

-- Give component conformance declaration

attribute COMPONENT_CONFORMANCE : string;

-- Give pin mapping declarations

attribute PIN_MAP : string;
subtype PIN_MAP_STRING is string;

-- Give TAP control declarations

type CLOCK_LEVEL is (LOW, BOTH);
type CLOCK_INFO is record
 FREQ : real;
 LEVEL: CLOCK_LEVEL;
end record;

attribute TAP_SCAN_IN : boolean;
attribute TAP_SCAN_OUT : boolean;
attribute TAP_SCAN_CLOCK: CLOCK_INFO;
attribute TAP_SCAN_MODE : boolean;
attribute TAP_SCAN_RESET: boolean;

-- Give instruction register declarations

attribute INSTRUCTION_LENGTH : integer;
attribute INSTRUCTION_OPCODE : string;
attribute INSTRUCTION_CAPTURE : string;
attribute INSTRUCTION_PRIVATE : string;

-- Give ID and USER code declarations

type ID_BITS is ('0', '1', 'x', 'X');
type ID_STRING is array (31 downto 0) of ID_BITS;
attribute IDCODE_REGISTER : ID_STRING;
attribute USERCODE_REGISTER: ID_STRING;

-- Give register declarations

attribute REGISTER_ACCESS : string;

-- Give boundary cell declarations

type BSCAN_INST is (EXTEST, SAMPLE, INTEST);
type CELL_TYPE is (INPUT, INTERNAL, CLOCK, OBSERVE_ONLY,
 CONTROL, CONTROLR, OUTPUT2,
 OUTPUT3, BIDIR_IN, BIDIR_OUT);
type CAP_DATA is (PI, PO, UPD, CAP, X, ZERO, ONE);
type CELL_DATA is record
 CT : CELL_TYPE;

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

326
Copyright © 2013 IEEE. All rights reserved.

 I : BSCAN_INST;
 CD : CAP_DATA;
end record;
type CELL_INFO is array (positive range <>) of CELL_DATA;

-- Boundary cell deferred constants (see package body)

constant BC_0 : CELL_INFO;
constant BC_1 : CELL_INFO;
constant BC_2 : CELL_INFO;
constant BC_3 : CELL_INFO;
constant BC_4 : CELL_INFO;
constant BC_5 : CELL_INFO;
constant BC_6 : CELL_INFO;
constant BC_7 : CELL_INFO;
constant BC_8 : CELL_INFO;
constant BC_9 : CELL_INFO;
constant BC_10 : CELL_INFO;

-- Boundary-scan register declarations

attribute BOUNDARY_LENGTH : integer;
attribute BOUNDARY_REGISTER : string;

-- Miscellaneous

attribute PORT_GROUPING : string;
attribute RUNBIST_EXECUTION : string;
attribute INTEST_EXECUTION : string;
subtype BSDL_EXTENSION is string;
attribute COMPLIANCE_PATTERNS : string;
attribute DESIGN_WARNING : string;

end STD_1149_1_2001; -- End of 1149.1-2001 Package

package body STD_1149_1_2001 is -- Standard boundary cells

-- Generic cell capturing minimum allowed data

constant BC_0 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (OUTPUT2, EXTEST, X),
 (INPUT, SAMPLE, PI), (OUTPUT2, SAMPLE, PI),
 (INPUT, INTEST, X), (OUTPUT2, INTEST, PI),
 (OUTPUT3, EXTEST, X), (INTERNAL, EXTEST, X),
 (OUTPUT3, SAMPLE, PI), (INTERNAL, SAMPLE, X),
 (OUTPUT3, INTEST, PI), (INTERNAL, INTEST, X),
 (CONTROL, EXTEST, X), (CONTROLR, EXTEST, X),
 (CONTROL, SAMPLE, PI), (CONTROLR, SAMPLE, PI),
 (CONTROL, INTEST, PI), (CONTROLR, INTEST, PI),
 (BIDIR_IN,EXTEST, PI), (BIDIR_OUT, EXTEST, X),
 (BIDIR_IN,SAMPLE, PI), (BIDIR_OUT, SAMPLE, PI),
 (BIDIR_IN,INTEST, X), (BIDIR_OUT, INTEST, PI),
 (OBSERVE_ONLY, SAMPLE, PI), (OBSERVE_ONLY, EXTEST, PI));

-- Description for f11-18, f11-30, f11-34c, f11-34d, f11-36c, f11-46d

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

327
Copyright © 2013 IEEE. All rights reserved.

constant BC_1 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (OUTPUT2, EXTEST, PI),
 (INPUT, SAMPLE, PI), (OUTPUT2, SAMPLE, PI),
 (INPUT, INTEST, PI), (OUTPUT2, INTEST, PI),
 (OUTPUT3, EXTEST, PI), (INTERNAL, EXTEST, PI),
 (OUTPUT3, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (OUTPUT3, INTEST, PI), (INTERNAL, INTEST, PI),
 (CONTROL, EXTEST, PI), (CONTROLR, EXTEST, PI),
 (CONTROL, SAMPLE, PI), (CONTROLR, SAMPLE, PI),
 (CONTROL, INTEST, PI), (CONTROLR, INTEST, PI));

-- Description for f11-14, f11-31, f11-35c, f11-35d, f11-37c,
-- f11-38c, f11-39(output) and f11-41c

constant BC_2 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (OUTPUT2, EXTEST, UPD),
 (INPUT, SAMPLE, PI), (OUTPUT2, SAMPLE, PI),
 (INPUT, INTEST, UPD), -- Intest on output2 not supported
 (OUTPUT3, EXTEST, UPD), (INTERNAL, EXTEST, PI),
 (OUTPUT3, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (OUTPUT3, INTEST, PI), (INTERNAL, INTEST, UPD),
 (CONTROL, EXTEST, UPD), (CONTROLR, EXTEST, UPD),
 (CONTROL, SAMPLE, PI), (CONTROLR, SAMPLE, PI),
 (CONTROL, INTEST, PI), (CONTROLR, INTEST, PI));

-- Description for f11-15

constant BC_3 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (INTERNAL, EXTEST, PI),
 (INPUT, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (INPUT, INTEST, PI), (INTERNAL, INTEST, PI));

-- Description for f11-16, f11-17, f11-39(input)

constant BC_4 : CELL_INFO :=
 ((INPUT, EXTEST, PI), -- Intest on input not supported
 (INPUT, SAMPLE, PI),
 (OBSERVE_ONLY, EXTEST, PI),
 (OBSERVE_ONLY, SAMPLE, PI), -- Intest on observe_only not supported
 (CLOCK, EXTEST, PI), (INTERNAL, EXTEST, PI),
 (CLOCK, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
 (CLOCK, INTEST, PI), (INTERNAL, INTEST, PI));

-- Description for f11-46c, a combined input/control

constant BC_5 : CELL_INFO :=
 ((INPUT, EXTEST, PI), (CONTROL, EXTEST, PI),
 (INPUT, SAMPLE, PI), (CONTROL, SAMPLE, PI),
 (INPUT, INTEST, UPD), (CONTROL, INTEST, UPD));

-- Description for f11-38d, a reversible cell
-- !! Not recommended; replaced by BC_7 below !!

constant BC_6 : CELL_INFO :=
 ((BIDIR_IN, EXTEST, PI), (BIDIR_OUT, EXTEST, UPD),
 (BIDIR_IN, SAMPLE, PI), (BIDIR_OUT, SAMPLE, PI),
 (BIDIR_IN, INTEST, UPD), (BIDIR_OUT, INTEST, PI));

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

328
Copyright © 2013 IEEE. All rights reserved.

-- Description for f11-37d, self monitor reversible
-- !! Recommended over cell BC_6 !!

constant BC_7 : CELL_INFO :=
 ((BIDIR_IN, EXTEST, PI), (BIDIR_OUT, EXTEST, PO),
 (BIDIR_IN, SAMPLE, PI), (BIDIR_OUT, SAMPLE, PI),
 (BIDIR_IN, INTEST, UPD), (BIDIR_OUT, INTEST, PI));

-- Description for f11-40, f11-41d

constant BC_8 : CELL_INFO :=
 -- Intest on bidir not supported
 ((BIDIR_IN, EXTEST, PI), (BIDIR_OUT, EXTEST, PO),
 (BIDIR_IN, SAMPLE, PI), (BIDIR_OUT, SAMPLE, PO));

-- Description for f11-32

constant BC_9 : CELL_INFO :=
 -- Self-monitoring output that supports Intest
 ((OUTPUT2, EXTEST, PO), (OUTPUT3, EXTEST, PO),
 (OUTPUT2, SAMPLE, PI), (OUTPUT3, SAMPLE, PI),
 (OUTPUT2, INTEST, PI), (OUTPUT3, INTEST, PI));

-- Description for f11-33

constant BC_10 : CELL_INFO :=
 -- Self-monitoring output that does not support Intest
 ((OUTPUT2, EXTEST, PO), (OUTPUT3, EXTEST, PO),
 (OUTPUT2, SAMPLE, PO), (OUTPUT3, SAMPLE, PO));

end STD_1149_1_2001; -- End of IEEE STD 1149.1-2001 Package Body

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

329
Copyright © 2013 IEEE. All rights reserved.

Annex C

(normative)

Procedural Description Language (PDL)

C.1 General information

This clause is informative and intended to provide basic background.

The INIT_SETUP and INIT_SETUP_CLAMP instructions require a file type other than BSDL because the init_data
register must be loaded with different values from use to use of a component. Rather than require just a data file, this
standard uses a very simple procedural file called level-0 Procedural Description Language (PDL). Using a
procedural file also allows the component provider to specify reset sequences for the system logic using the
IC_RESET instruction and reset_select register, procedures for recovery of an ECID value, procedures for
controlling power domains in test, and procedures for documenting the use of design-specific test data registers.

There is a common problem in the board and system test industry where most internal test features on the
components are hidden behind private instructions, and are therefore not available to higher level packaging tests.
This prevents reuse of these tests, and the reuse of such test features after the component leaves the integrated circuit
(IC) foundry was not directly supported in the earlier IEEE 1149.1 environments. While this standard remains a
component-level standard, one of the goals of the 2013 version of IEEE Std 1149.1 is to make it reasonable for
intellectual property (IP) and integrated circuit (IC) providers to document some of these internal tests so they may
be used at higher levels of packaging.

To accomplish this goal, the IP or IC provider can use the new BSDL register attributes (see B.8.19 through B.8.23)
in either a BSDL for an IC or a BSDL Package for an IP, to describe the TDR controlling the test. Optionally,
mnemonics for the various test controls and options (see B.8.18) can be defined to help ensure correct data are
written to and read from the register or register fields. Then the test sequence to run the test can be provided in a
PDL. PDL supports writing and reading registers or register fields without having to know the details of instruction
opcodes or the exact structure and length of the test data register of which the register field is a part.

PDL is defined in this standard to allow IC and IP providers to document vendor-independent test data register
access procedures that are callable from other test languages. It is not intended to be a full board or IC test language.

C.1.1 Purpose

The purpose of PDL defined in this standard is to load and unload registers and register fields in a manner that is
independent of package level. It is a completely TDR-centric language. When using the version of PDL defined
here, PDL is dependent on the component BSDL (including used Packages) for the names of the registers or register
fields, as well as other information such as instruction opcodes required to access those registers. PDL written for a
test feature in reusable IP, or in a component, may be automatically reused at higher levels of packaging without
modification.

PDL is not meant to be a general-purpose IEEE 1149.1 board test language. It is a language for documenting the
operation of TDRs in a standard way, with an eye on more uniformly defined DFT, which is done through writes
and reads of TDRs designed and described in a standard way.

The register descriptions in BSDL and Packages, in combination with PDL procedures, provides a mechanism for
capturing and documenting both the structure of internal test features and the procedures to use them, in a reusable
and verifiable form.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

330
Copyright © 2013 IEEE. All rights reserved.

C.1.2 Dependence on Tool Command Language (Tcl)

PDL follows the conventions of Tcl, and PDL commands are intended to be extensions of Tcl. Level-0 PDL does
not allow embedded Tcl commands, while Level-1 does. In both cases, Tcl conventions for procedure syntax, name
substitution, and decimal and real numbers are used, for example.

C.1.3 Dependence on Boundary Scan Description Language (BSDL)

PDL references registers, register fields, mnemonics, and instructions defined in BSDL and BSDL Packages. For
these tokens, they will follow the definitions in Annex B.

C.2 PDL concepts and use model

This clause is informative in nature to provide a context for the formal definition of commands in the next clause. It
is intended to illustrate PDL use and is not intended to dictate or restrict PDL use.

C.2.1 Use model introduction

Figure C-1 shows an example board. Despite the fact that this is a component standard, the example starts with a
board, both because of the need to illustrate the use of PDL in support of multiple uses of the same component
requiring different initialization and because some of the reuse concepts of PDL are easiest to understand in a board
context.

The example board uses four IC: U1 through U4. U3 and U4 are two uses, or instances, of the same component type
(CHIP_C). Both U1 and U2 (uses, or instances, of CHIP_A and CHIP_B, respectively) use the same memory with
BIST (MEMB) from an IP supplier. U3 and U4 (CHIP_C) have a SerDes macro (SERDES) from another IP
provider that supports multiple protocols and frequencies. There are three levels of object hierarchy: board,
component (or IC), and IP.

The SERDES and MEMB IP have BSDL Packages defining the test data register segments in the IP, and reusable
PDL documenting use of their test features (memory BIST and SerDes BIST), which can be used at the IC and
board levels. The PDL for the SERDES also supports initialization with an init_data register segment. This IP
Package and PDL are reusable and not specific to any single component. For instance, both CHIP_A (U1) and
CHIP_B (U2) contain the internal IP MEMB and use the same Package and PDL for that IP.

The three component types (CHIP_A, CHIP_B, and CHIP_C) on the board each have BSDL, which “use” the
appropriate IP Packages, and fully define both the test data registers and the instructions that select them.
Components that support the initialization instructions and the init_data register may provide template PDL
procedures for modification by the test engineer for each use of those components, or the board test engineer may
write initialization PDL for each use manually or with the help of a tool that can read and display the options coded
in the BSDL and BSDL Packages. For the sake of illustration, this example will show board-level procedures in
PDL, although they could be written in whatever language is appropriate for the test environment. In addition to the
procedures shown, component-level PDL may contain procedures for initialization, functional reset (using the
reset_select register), ECID recovery, as well as design-specific reusable component test features.

At board test, initialization of U1, U3, and U4 is needed to program the I/O on the components, and perhaps other
characteristics as well. Initialization is unique for each of these instances, and may be performed in a single board
procedure or in separate PDL procedures for each instance that is called from the board-level procedure. U2 is a
simple component that does not require initialization, and does not support the IC_RESET instruction or other
component-level tests that are meant to be reused in board test. The memory BIST in U2 is supported by the
Package and PDL from the IP supplier, but there are no additional IC level PDL files.

Since the PDL test procedures are defined in terms of the named registers and not bit positions within the overall
scan chain, they become reusable throughout the hierarchy.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

331
Copyright © 2013 IEEE. All rights reserved.

Figure C-1—PDL example board

Figure C-2 shows some simple segments of PDL procedures for the U3 and U4 uses shown in Figure C-1. Note that
the SerDes IP on CHIP_C is programmable, and on this board the two uses of CHIP_C must be initialized for two
different communication protocols: U3 for XAUI and U4 for SRIO. There needs to be separate “init_setup”
procedures for U3 and U4 that are created by the test engineering team for the board. In addition, there is an
“init_setup” procedure for CHIP_C that takes care of preparing the component for test (shutting down PLLs, etc.).
Each of these three “init_setup” procedures is associated with the specific object (type or instance) and can be called
separately.

Figure C-2 also shows how that PDL is then called from a board-level PDL procedure, and further how the board-
level PDL could be optimized to load both instances with a single scan. Detailed examples illustrating the pertinent
elements of all these procedures are provided in C.5. Note in the board-level PDL, the iCall commands. Use of the
-direct parameter allows calling a procedure associated with this one instance. Without that parameter, a procedure
associated with the object, of which this is an instance, will be called. This is how different initialization values may
be supplied to multiple instances of one object (CHIP_C instances U3 or U4, in this case). See C.3.8.1 for more
details.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

332
Copyright © 2013 IEEE. All rights reserved.

Figure C-2—PDL example detail

C.2.2 PDL levels

There are two defined levels of PDL: Level-0 and Level-1. Level-0 PDL is designed to provide an advantage when
used for production test procedures. The Level-0 PDL operations are designed to run faster, and the commands
translate more easily to tester hardware capabilities than Level-1 PDL. Diagnostics, reading registers, and
conditional operations, however, are often better suited for Level-1 PDL. Both follow the conventions of the Tool
Command Language (Tcl), with multiple restrictions in Level-0 and with fully intermixed Tcl in Level-1.

C.2.2.1 Level-0 PDL

Level-0 PDL is intended to support “load-and-go” automatic test equipment. It consists of procedures that operate
on test data registers and contains commands for writing to and comparing expected values from registers, but it
does not return the data captured in the registers. It provides very limited flow control. PDL commands cause
transactions with the test data registers and communicate the details of how to apply useful sequences of operations.
A linear listing of the PDL commands applied to a test data register over time will thus provide a complete transcript
of that test data register activity.

U3

i1
SerDes XAUI

U4

i1
SerDes SRIO

iProcGroup U3
iProc init_setup { } {
 iWrite i1.protocol XAUI
 iApply
}

iProcGroup U4
iProc init_setup { } {
 iWrite i1.protocol SRIO
 iApply
}

Instance-specific PDL
developed by board test
engineer from template
or BSDL description.

iProcGroup CHIP_C
iProc init_setup { } {
 # other stuff...
 iApply
}

Chip-specific PDL
developed by IC design
engineer.

...
iCall -direct U3.init_setup
iCall U3.init_setup
iCall -direct U4.init_setup
iCall U4.init_setup
...

Portion of board-level
test (if in PDL).
“iCall -direct U3" calls a
proc associated only
with U3.
“iCall U3” calls a proc
associated with Chip_C
for instance U3.

Chip_C Chip_C

...
 iWrite U3.i1.protocol XAUI
 # other stuff for U3...
 iWrite U4.i1.protocol SRIO
 # other stuff for U4...
 iApply
...

Optimized equivalent
commands requiring a
single scan.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

333
Copyright © 2013 IEEE. All rights reserved.

C.2.2.2 Level-1 PDL

Level-1 PDL is intended to support diagnostic, debug, and test procedures where interactive operation is needed.
Therefore, Level-1 PDL includes all Level-0 PDL commands plus additional commands suitable for returning
values read from registers into variables, plus the full capabilities of the Tcl for manipulating such information and
making sophisticated decisions. Level-1 PDL defines all PDL commands as extensions to Tcl, enabling flow
control, variables, and data structures as defined in Tcl.

C.2.3 PDL procedures

To create a callable test procedure in PDL, the PDL commands used to interact with a register are wrapped in a
simple procedural syntax (similar to the format used by Tcl):

iProc <proc_name> <proc_options> { <arguments> } { <PDL commands> }

At its simplest, the command iProc is followed by a procedure name, which only needs to be unique for the
object it is associated with. Next come procedure options, if any, which describe the procedure, followed by a
mandatory pair of curly braces, which may optionally contain a space separated list of arguments to pass values
into the procedure. Finally, another mandatory pair of curly braces contains the body of the procedure, which
consists of PDL commands. Commands are separated by a semicolon or an end-of-line, whichever occurs first.
If included, any options document some of the intent of this procedure. If included, the optional arguments are
used to substitute data (either names or values) into the body of the procedure.

For the purposes of organization, compactness, and clarity, PDL procedures may be organized hierarchically;
i.e., a PDL procedure may be called by another PDL procedure using the iCall command. Since there are no
return values or variable manipulation in Level-0 PDL, recursion is not possible. In the following discussion,
position within the PDL instance hierarchy is defined as being rooted at the top and grows in a downward
direction. Therefore, the phrase A lower than B implies B contains A. Similarly, the phrase A higher than B
implies that A contains B and that A is closer to the root.

Each PDL procedure, when it is defined, is associated with the specific object (a BSDL entity or package name,
or a specific instance of an object), which is specified by the preceding iProcGroup command, and are
associated with a specific instance of that object when called by the iCall command.

Several predefined procedure names exist that have special meaning and purpose. To minimize confusion with
similar instruction and register names, these procedure names will always be shown quoted in the text. The
procedures named “init_setup” and “init_run” are used to describe the design-specific I/O interconnection test
initialization procedures via the INIT_SETUP, INIT_SETUP_CLAMP, and INIT_RUN instructions. The
identification of these procedures is important as these procedures will be automatically used to configure the
I/O prior to going into EXTEST.

The procedure named “ecid” describes how to access an on-chip electronic identification value.

The predefined procedure named “main” can be used at any level of the hierarchy to indicate a procedure that
the IP or IC provider recommends for design-specific testing. Thus, a board or system test tool simply needs to
determine the objects present in the board or system from the BSDL and the used BSDL Packages, read the
PDL files associated with the objects, and then execute the iProc “main” associated with each object to
automatically get a basic level of test for each object. The procedure “main” would normally be called after the
completion of init_setup, init_run, and EXTEST, as appropriate.

In IC testing, IP component PDL could also be used to test the IP components in the IC.

iProc init_setup { } {
 <commands>
}

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

334
Copyright © 2013 IEEE. All rights reserved.

iProc init_run { } {
 <commands>
}

iProc ecid { } {
 <commands>
}

iProc main { } {
 <commands>
}

C.2.4 Read and write with capture-shift-update sequence

In an IEEE 1149.1 compliant component, every scan of a TDR is a simultaneous read-and-write operation. The
Capture-DR operation loads the register with the read data, the Shift-DR operation makes the read data observable
while shifting in write data, and the Update-DR operation completes the write to any update latches in the register.
In PDL, the iRead (or iScan) command, if needed, specifies the data expected to be captured and shifted out so it
can be compared to the actual read data from the scan. The iWrite (or iScan) command, if needed, specifies new
data to be shifted into the register. The shift-out of the captured data and shift-in of the new data are overlapped
simultaneously during the Shift-DR state of the TAP controller state machine.

Multiple iRead and iWrite (or iScan) commands accumulate write and expect data for a single TDR, but those
data are not used until an iApply command actually performs a scan. For the register that has had one or more
iRead or iWrite (or iScan) commands specified since the last iApply, the iApply command will first load a new
instruction if the current instruction does not select the specified register and will take action to include any
excluded register segments that are referenced by the iRead, iWrite, or iScan commands, and then shift the data
register. The instruction required for each TDR, the position of the named register or register field within the TDR,
and any excludable segments are all defined in the BSDL for the component.

C.2.5 Register state definition

The current content of the IR and various TDRs within the unit under test are not directly visible from outside the
component. Since PDL does not require that every bit of a TDR be specified prior to every register scan, and even
encourages setting values only for select fields within the TDR, PDL assumes that the current state, both write data
and expect data, and for Level-1 PDL, captured data and bit-by-bit fail data, of all scannable registers in the
component is maintained internally. iRead, iWrite, and iScan commands then modify this state and the iApply
command applies this modified state to the physical registers.

The accumulation and maintenance of write and expect data could be implemented in many ways, but for
illustration, Figure C-3 assumes it is a static record structure called a scan frame. Within the scan frame, Level-0
PDL maintains two values for each IR and publically accessible TDR: a write (stimulus) value to be written to TDI
when the next scan of that register takes place; and an expected (read) value to be compared to the value read from
TDO during the next scan. Each of these values is the same width as the register itself.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

335
Copyright © 2013 IEEE. All rights reserved.

Figure C-3—PDL scan frame

Prior to execution, the write and expect data will be initialized as required by this standard and as specified in the
BSDL attributes. PDL uses the iWrite (or iScan) command to modify values in the write data and the iRead (or
iScan) command to modify values in the expect data. The modification continues for as many iRead, iWrite, or
iScan commands as are encountered prior to an iApply command, and all iRead, iWrite, and iScan commands
must reference fields of the same TDR. When multiple iRead, iWrite, or iScan commands modify the same bits,
the last value specified is used. This convention can be used to set all the bits in a register to a single value (e.g., all
0s) and then to set an individual bit to the opposite value (e.g., 1s):

iWrite my_reg 0 ; # Pad with zeros for full register
iWrite my_reg(234) 0b1 ; # Set bit (234) to ‘1’
iApply

NOTE—Registers may be modified as above within a given PDL procedure. If procedures are executed in parallel, such access
to the same field of a common register from two different PDL procedures is not allowed.

When an iApply command is executed, PDL will move the data for the entire TDR to the TDI to TDO scan path,
including scanning the instruction register, when necessary, moving the TAP through the appropriate states, etc. In
addition, PDL maintains two Boolean error flags called the accumulating and the local fail flags that report errors
either for the entire test or since the last iApply command, respectively. This is all transparent to the PDL procedure
itself.

In optional Level-1 PDL, the iApply command will also record the captured data and bit-by-bit fail data so that any
of these data (write, expect, capture, and fail) may be accessed with the Level-1 PDL iGet command and used in Tcl
code.

Figure C-4 shows the iApply command data flow from the PDL maintained data to the unit under test (UUT). The
UUT could be a single component or a chain of components as shown in the use model, Figure C-1. While this
figure illustrates the concept as if it were hardware, all of this could be done by software as well. The iRead,
iWrite, and iScan commands modify the default data in the database for the various fields, which is then assembled
by the iApply command into the output, expect, and mask data for the TDR to be scanned. In Level-1 PDL, the
iApply command also collects the capture data and the bit-by-bit fail data for the database. In either case, unmasked
mis-compares are used to set one or both of the fail flags.

Instruction

My_TDR

Init_Data

Device_ID

Boundary

Bypass

XXXXXX 0 1

0

XXXXXX

XXXXXX

XXXXXX

1 10 0 0 0
31 310 0

Register iWrite (stimulus) iRead (expected)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

336
Copyright © 2013 IEEE. All rights reserved.

Figure C-4—Data flow during an iApply command

The first of the two “Fail Flag” registers in Figure C-4 accumulates fail information over multiple iApply
commands, possibly for the entire test, while the second accumulates fail information only for a single iApply
command. These two fail flags differ only in the source of their “Clear Fail” source.

After the completion of an iApply, the write data are retained unmodified, since the TDR may have to be written
again later after only a part of the register has been modified by an iWrite or iScan command. However, since only
the bits specified by an iRead or iScan command prior to the iApply (or the default fixed capture bits specified in
this standard or with CAPTURES values in the register access or field definitions) are compared to the read scan
frame data, and since the expect value is generally independent of history, the expect data are reset to that default
value after completion of an iApply command.

Each register or register field that can be referenced in an iRead or iWrite command has a precise calculable
location (position and length) within the scan chain of the unit under test. This information is derived from the
component BSDL and, if needed, the board netlist. Each register or register field that can be referenced in an iScan
command has a precise position within the scan chain, but only its initial length is known, and therefore, the current
length must be specified each time the command is used.

Where excludable segments exist in a TDR, the location and state of those segments (included or excluded), and the
location of the controlling DOMCTRL and SEGSEL fields, will need to be maintained as well. If the write or
expect data for a currently excluded segment are changed, then the following iApply command will need to perform
the scans necessary to include the segment before performing the data scan. In Level-1 PDL, captured and fail data
will only exist for included and selected portions of the TDR, and excluded or unselected fields will have to be held
to the last value captured, if any, or set to a state indicating that they have not been scanned and, therefore, no data
are available. (An iRead command with the name of a field in the excluded or unselected segment, but no data
value, can cause the segment to be included and then captured.)

C.2.6 Level-0 PDL commands

Table C-1 lists the Level-0 PDL commands defined in this standard. Detailed syntax and semantic checks for each
command are defined in C.2.9.

Unit Under
Test

(UUT)

TDI

TDO

Output Data

Expect Data

Expect Mask

Capture Data

Fail Data

iWrites

iReads

Accumulating
Fail Flag

(Sticky)

0

0

012N-1

012N-1

012N-1

012N-1

012N-1

Level-1 PDL

Local
Fail Flag

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

337
Copyright © 2013 IEEE. All rights reserved.

Table C-1—PDL Level-0 commands

Command Parameters Purpose

Procedure definition

iSource <PDL file name> Include a PDL file containing procedure definitions, which
is read as if the contents are inline. All PDL procedures
must be defined before they are called.

iPDLLevel <level> -version <1149.1_version> Identify PDL level and version for all of the following
procedures in a file.

iProcGroup <Entity, Package, or instance name> Identify the object or instance with which the following
PDL iProc procedures are associated.

iProc <proc_name> <options>
{ <arguments> } { <commands> }

A PDL procedure.

Test setup

iSetInstruction <instruction> Select instruction for a register accessed by multiple
instructions.

iClock <ClockName> -period <seconds>
<on|off>

Define the system clock.

iClockOverride <IntClockName>
 -source <ClockName>
 -freqMultiplier <real> <on|off>

Define on-chip clock multipliers.

iPrefix <instance_or_null> Specify (partial) hierarchy for registers.

Test execution

iWrite <register or instance> <value> Queue data to be written.

iRead <register or instance> [<value>] Queue data to be compared with what is read.

iApply [options] [<label>] Execute queued operations.

iScan <register or instance> <length> -si
<si_data> -so <so_data>

Queue data for “black box” register or segment.

Flow control

iCall [-direct]
 [<instance>.]<proc_name>
 [<argument values>]

Transfer execution to a PDL procedure associated with the
object associated with the named or current instance; or
associated directly with the instance.

iRunLoop <delayspec> Issue a number of clocks or wait an absolute time.

iLoop

Mark the beginning of a conditional loop.

iUntil -match | -mismatch
 [-maxloop <maxcnt> [<text]]

Loop until any iApply -nofail in the loop meets the specified
condition or the maximum loop count is reached.

ifTrue Execute commands based on last iApply –nofail.

ifFalse Execute commands based on last iApply –nofail.

ifEnd End of conditional execution.

Optimization

iMerge -begin | -end Provides guidance on where tools can optimize multiple

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

338
Copyright © 2013 IEEE. All rights reserved.

Command Parameters Purpose

PDL procedures.

iTake <resource> Tag an object to be ‘in-use’ to provide guidance where tools
can optimize PDL.

iRelease <resource> Release an object from ‘in-use’ to provide guidance where
tools can optimize PDL.

Miscellaneous

}
iSetFail

[-quit] [<text>] Set the status to “FAIL”; stop the test if the -quit parameter
is specified, and output the <text>.

iNote -comment | -status <text> Creates a tool identifiable comment intended to pass either
detailed annotation information to the output vectors
(-comment) or execution status information to the system
(-status).

Low-level
commands

iTRST -on | -off Assert or de-assert the TAP TRST* pin, and remain in TLR
state after TRST* is off. Only executed at the top level of
the current unit under test.

dures that are run
stand-alone.
iTMSreset

 Enter TLR state via TMS. Only executed at the top level of
the current unit under test.

iTMSidle Enter RTI state via TMS.

NOTE—This table is informative, and no attempt is made to define the syntax. Angle brackets (< >) are used to show elements
that are design-specific, as opposed to language keywords. The vertical bar (|) is used to separate a list of options.

The iRead, iWrite, and iApply commands do most of the work in creating scans of the UUT. The iScan
command supports queuing data for registers that are not documented in detail in the BSDL. The rest of the
commands are needed in order to write procedures supporting this core capability.

The procedure definition commands provide the definition and context necessary so that named procedures can be
called, and their basic definition is understood. The iProc command, mentioned earlier, defines a procedure.
iPDLLevel establishes the PDL level and the compliance of following procedures. iProcGroup associates
procedures with specific objects or instances in the UUT so they can be identified when called by an iCall
command. iSource allows multiple files to be pulled together to define all the procedures for a UUT.

The instruction to be used to access a register is determined from the instruction to register associations in the
BSDL. If a register can be accessed by multiple instructions (such as the bypass or boundary-scan registers), then
the instruction associated with the register is specified either by default or by a preceding iSetInstruction
command.

Clocks can be identified and described using the iClock and iClockOverride commands.

The iPrefix command identifies an instance that subsequent commands will use to reference register fields.

Level-0 PDL supports a limited form of flow control. First, control can be passed from one procedure to another
using the iCall command. Delays, to allow for clocked processes in the UUT, for instance, can be inserted with the
iRunLoop command. When a register field is scanned with an iApply command, the captured value will be
compared to a fixed value, and the system will record whether the comparison matched or not. Looping and if-then-
else commands (iLoop, iUntil, ifTrue, ifFalse, and ifEnd) allow conditional execution of some set of commands

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

339
Copyright © 2013 IEEE. All rights reserved.

based on the result of that comparison. The iSetFail command allows the accumulating fail flag to be set to “FAIL”
if the PDL software detects a failing condition.

Level-1 PDL supports the full flow control capabilities of Tcl.

PDL procedures may be executed in parallel when there are multiple objects in the scan chain, each supported with a
PDL procedure. While the details of how the various commands in the multiple procedures are to be aligned is
beyond the scope of this standard, the iMerge, iTake, and iRelease commands allow a PDL coder to provide
information to assist the process.

The iNote command allows text to be inserted in any compiled test vectors to help guide the test engineers.

Supporting software must not implement entering the Test-Logic-Reset TAP controller state at any time except in
response to the PDL iTMSreset or iTRST commands. This preserves data in the registers and helps prevent
interference between PDL procedures, which may otherwise operate in parallel. Note that the use of these reset
commands is heavily restricted as, in most test situations, any general reset will be performed as part of the
preparation for test, and does not need to be repeated during the test.

For those rare cases when they are needed, some additional low-level commands are provided to alter the normal
operation. The -shiftPause parameter on the iApply command can cause a register to be scanned multiple times
without going through the Update-DR and Capture-DR states for each shift. This supports pausing the shift to
permit Read-Modify-Write sequences, as well as some low-level tests of register integrity and connectivity. The
iTMSidle command and the -skipRTI flag on the iApply command force or prevent going through the Run-
Test/Idle TAP controller state when an instruction similar to RUNBIST is active.

C.2.7 Specification of names and values

There are several policies defining how register names and their associated values must be specified in PDL:

⎯ Omission of the register’s bit range is acceptable when the intent is to address the register’s full width.

⎯ Underspecification of a value (not enough bits) will result in the assignment of the specified bit values to the
least significant bits of the associated register. Upper bits are padded to zero for an iWrite, and to “X” for an
iRead.

Reg16bit is currently defaulted to all ‘0’
iWrite Reg16bit 0x555 ; # 16 bit register is now set to 0x0555

⎯ Overspecification of a value (too many bits) is allowed only if the overflow bits are all 0.

The commented examples below indicate the range of usages and the policies applied. All register fields are 10 bits
wide and contained in a single TDR.

iProc main_pdl { } {
 iWrite reg_a 0 ; # implicit reg width, decimal value
 iWrite reg_a(3) 1 ; # overwrite of single bit of a multi-bit reg
 iApply ; # TDR 1

 iRead reg_p 0x000 ; # implicit reg width; lead “0b00” truncated
 iRead reg_q 0 ; # implicit reg width; decimal value
 iRead reg_r 2 ; # implicit reg width; decimal value
 iRead reg_s 0xA ; # implicit reg width; hex value (padded)
 iRead reg_x ; # no value specified, expect default
 iRead reg_y 0x25A ; # implicit reg width, lead “0b00” truncated
 iApply ; # TDR 2
}

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

340
Copyright © 2013 IEEE. All rights reserved.

C.2.8 Retargeting

Every iProc command, at the time it is defined, is associated with a specific object (BSDL entity or package name)
or instance. When that iProc command is called, it will always be called for a specific instance. That instance holds
a unique position in the object hierarchy of the UUT.

The iProc command, when written, cannot know what the UUT instance hierarchy is, and in fact, an iProc
command may need to be used for multiple instances in any one hierarchy, and for many different hierarchies.
Therefore, at the time that the iProc command is called, PDL assumes the full hierarchical instance path of the
current procedure (called the context instance path, or context path for short) is an implicit argument to the called
procedure, and this hierarchical path is pre-pended to all register references (iWrite, iRead, etc.) and to all called
procedure names (iCall) called within the procedure. This allows the iProc command to be written once for a
reusable object, and to be automatically re-targeted to specific instances when used. This allows PDL to find the
appropriate register and register field definitions.

iProcGroup is the command that associates the PDL procedures to a specific BSDL entity name or Package name
(for reusable IP on a component), when they are defined. iProcGroup also may link the PDL procedures to a
specific instance in the hierarchy when different instances require a different procedure, such as may happen for the
init_data register.

For each component (IC or IP), there are one or more instances in the unit under test (UUT). Each register or field
instance may be addressed by the hierarchically concatenated instance names from the UUT down to the containing
instance, which is finally concatenated to the register or register field name from the BSDL or BSDL Package. This
means that all register names are local to the specific object, and the specific hierarchy of instances must be used to
identify the specific object containing the named register. Obviously, when addressing a register, the instruction
register inherits the same hierarchy, but just down to the IC (TAP) level, as indicated by having a BSDL entity
<component name> associated with the object.

Similarly, procedures called with the iCall command require the same hierarchically concatenated instance names
down to the instance of the object associated with the PDL being called. This inheriting of the hierarchical instance
names allows PDL written for a lower level object to be reused at higher levels.

The hierarchy of concatenated instances below the level of the object associated with the current procedure may be
explicitly added to each register or procedure name, or it may be supplied for use with multiple registers by the
iPrefix command, in addition to the inheritance of the context instance path above the current level as described
above. Table C-2 shows a simple example of how the instance path is built up through a series of iCall and iPrefix
commands. Note that at each level, the PDL only includes levels of hierarchy contained within the object associated
with that procedure. Each level of hierarchy adds its own instance(s) to the full path. At the time of execution, the
“flat” interpretation provides a full path from the UUT down to each called procedure or register referenced in the
current procedure. Also note that the iPrefix command affects the path to the registers but not called procedures.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

341
Copyright © 2013 IEEE. All rights reserved.

Table C-2—Handling PDL procedure hierarchy

 Hierarchical PDL procedures “Flat” interpretation

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Top PDL (Context Path is empty)
U3 is instance of Chip_C
 iCall U3.init_setup

IC PDL (Context Path is U3)
i1 is instance of SERDES
 iCall i1.init_setup

IP PDL (Context Path is U3.i1)
SERDES contains chan(0 TO 7)
 iPrefix chan(0)
 iCall powercheck
 iWrite protocol XAUI
 iWrite TX_swing full

Effective retargeting

 iCall U3.init_setup

 iCall U3.i1.init_setup

iCall U3.i1.powercheck
iWrite U3.i1.chan(0).protocol XAUI
iWrite U3.i1.chan(0).TX_swing full

C.2.9 Simple PDL Example

Referring again to Figure C-1, an example U3.PDL file with two procedures is shown below. The two procedures
are “init_setup,” which is specific to instance U3 of IC Chip_C, and “init_run,” which is specific to all instances of
the IC Chip_C. A more extensive example for Figure C-1 is in C.5.

U3.PDL

iPDLLevel 0 -version STD_1149_1_2013 ; # level-0 PDL only
iProcGroup U3 ; # Associate the following procs with the chip instance

this procedure becomes U3.init_setup internally to PDL
iProc init_setup -export { } {
 iPrefix i1
 iWrite Clock 125Mhz ; # use of BSDL mnemonics
 iWrite Voltage 0x40 ; # use of hex values
 iWrite Protocol XAUI ; # use of BSDL mnemonics
 iApply
}

iProcGroup Chip_C ; # Associate the following procs with the chip type
this procedure becomes Chip_C.init_run internally to PDL
iProc init_run { } {
 iRunLoop 10000 ; # 10,000 TCK cycle delay
 iRead i1.init_status(1) Pass; # use of single register bit
 iApply
}

#end of file

A board-level PDL could then use the following to execute INIT_SETUP for U3.

iSource U3.PDL
iPDLLevel 0 -version STD_1149_1_2013 ; # level-0 PDL only
iProcGroup board
iProc top { } {
 iCall -direct U3.init_setup ; # Do not look up type from instance

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

342
Copyright © 2013 IEEE. All rights reserved.

 iCall U3.init_run ; # Look up type (Chip_C) from instance (U3)
}
end of file

The first line of the PDL indicates what level of PDL is present. It is then followed by commands that source other
files with required procedures, then a command that specifies what object these procs belong to, and then a
procedure that calls the procedures init_setup and init_run. Note that the call to U3.init_setup uses the -direct
parameter to indicate that this procedure is instance specific, not object specific. No lookup of the instance to
determine the object is performed for this call. “Init_setup” procedures are often instance specific, rather than
applying to all instances of an object.

A PDL may also describe the operation of IP blocks. The following example illustrates the use of iProcGroup for
object types rather than for instances. The first PDL in this example is MEMB.PDL and represents the procedures
associated with the registers in the package MEMB. Figure C-1 shows IC U1 with two instances of MEMB: mem1
and mem2.

MEMB.PDL

iPDLLevel 0 -version STD_1149_1_2013 ; # level-0 PDL only
iProcGroup MEMB ; # Associate procs to object MEMB

iProc start_bist {bistreg bist_mode} {
 iWrite $bistreg 0b1 ; # $bistreg chooses register
 iWrite BIST_mode $bist_mode ; # $bist_mode: argument substitution
 iApply
 iRunLoop 10000
}

iProc run_bist -export { } {
 # software converts instance path U1.mem1 to a type lookup
 iCall start_bist BIST_engage(42) 0b110 ; # U1.mem1 or U1.mem2
 iRead bist_sig Pass
 iApply
}

end of file

A PDL for devices of type CHIP_A can be described as follows.

Chip_A.PDL

iSource MEMB.PDL ; # Bring in MEMB procedures so they can be called.
iPDLLevel 0 -version STD_1149_1_2013 ; # level-0 PDL only
iProcGroup CHIP_A ; # type CHIP_A, which has a BSDL CHIP_A.BSDL

iProc “main” is normally executed after interconnect test
iProc main { } {
mem1 and mem2 are instances of memb.
Note that these could be run sequentially or in parallel.
iMerge -begin
 iCall mem1.run_bist; # Call MEMB.run_bist for instance mem1
 iCall mem2.run_bist; # Call MEMB.run_bist for instance mem2
iMerge -end
}
end of file

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

343
Copyright © 2013 IEEE. All rights reserved.

A PDL for a board with U1 of type CHIP_A

iSource CHIP_A.pdl ; # find and define all CHIP_A procedures
iPDLLevel 0 -version STD_1149_1_2013 ; # level-0 PDL only
U1 is an instance of CHIP_A
iCall U1.main ;# call CHIP_A.main for instance U1

end of file

C.3 PDL Level 0 command reference

The Syntax, Rules, Recommendations, and Permissions in this xlause are normative, and they provide the formal
definition of Level-0 PDL. Introductory text, Notes, and Examples are descriptive.

C.3.1 Understanding a PDL “string”

All of PDL is considered to be a string containing one or more commands. Semicolons and newlines are command
separators. Each command is composed of a sequence of words, and the words are separated by one or more space
or horizontal tabulation characters. Level-0 PDL follows a compatible subset of the conventions of Tcl as described
here. Level-1 PDL incorporates all of Tcl, which goes beyond the following description.

A command is evaluated in two steps. First, the command (the collection of characters between command
separators) is broken into words with whitespace as separators. The backslash-newline substituting is performed
before the command is broken into words, and the other substitutions described below (backslash, command, and
value) are performed after the command is broken into words. These substitutions are performed in the same way for
all commands. Second, the first word of the command is used to locate a command procedure to carry out the
command, and all of the remaining words of the command are passed to the command procedure. Each PDL
command will interpret the words passed to it according to the syntax (BNF) and semantics (Rules,
Recommendations, and Permissions) defined in this annex. These rules apply after all substitutions are performed.

The only backslash substitution supported in Level-0 PDL is the backslash-newline-whitespace character sequence.
These characters are replaced by a single space character. In effect, two lines are merged into one. This backslash
sequence is unique in that it is replaced before the command is actually broken into words. This means that it will be
replaced even when it occurs between braces, and the resulting space will be treated as a word separator if it is not
enclosed in braces or quotes.

Command substitution, that is, starting a word with a bracket ([), is not supported in Level-0 PDL.

Value substitution occurs if a word contains a dollar sign ($). The dollar sign and (in Level-0 PDL) the following
PDL identifier are replaced with the value of the PDL identifier prior to use. The value is substituted verbatim, and
no further substitution processing is performed. For example:

iProc myproc { reg value } {
 iWrite my$reg $value
}

...
iCall myproc Reg5 0x55 ; # In a higher level proc, writes myreg5.
...

In Level-0 PDL, substitution variables can only be defined as an argument in a procedure definition, as shown in the
above example. The values may only be defined either in the call of the procedure, as shown, or as default values in
the procedure definition. Due to these restrictions, the $name(index) and ${non-PDL name} forms of value
substitution are not supported in PDL0. (${PDL name} may be used.)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

344
Copyright © 2013 IEEE. All rights reserved.

The above substitutions within a word do not affect the boundaries of words in a command. For example, during
variable substitution, the entire value of the variable becomes part of a single word, even if the variable’s value
contains spaces.

When a word starts with a double-quote (") character, then the word will be terminated by the next double-quote
character. Semicolons, close brackets, whitespace, or newline characters, within the word, are treated as ordinary
characters and included in the word. Substitutions (variable, command, and backslash—limited as just described
above in Level-0 PDL) are performed within the word as described below. The double-quotes are removed prior to
passing the word to a command processor.

If the first character of a word is an open brace ({), then the word is terminated by the matching close brace (}). No
substitutions are performed on the characters between the braces except for the backslash-newline substitutions
described above, nor do semicolons, newlines, close brackets, whitespace, and so on receive any special
interpretation. The word will consist of exactly the characters between the outer braces. The braces are not retained
as part of the word.

There is one significant difference between the use of quotes and braces: If a substitution variable is included, then if
it is in a word enclosed by quotes, the substitution takes place before the word is passed to the command function,
but if it is in a word enclosed in curly braces, then the substitution does not take place. For example:

 iProc myproc { value1 } {
 iWrite rega "$value1"
 iWrite regb {$value1}
}

...
iCall myproc 0x55 ; # In a higher level proc
...

The result is that rega will get the value 0x55, and regb will not as the string $value1 is not a compliant value for the
iWrite command.

If a pound sign character (also called the hash character) (#) appears at a point where PDL is expecting the first
character of the first word of a command, then the pound sign character and the characters that follow it, up through
the next newline, are treated as a comment and ignored. The comment character only has significance when it
appears in the position of the beginning of a command.

There is no separate PDL element called a “string,” and every “word” may be enclosed in double quote marks (“”)
or curly braces ({ }) or not. The quotes or curly braces are not retained as part of the word. For example, the
following two lines are equivalent:

iWrite myreg 0x55
"iWrite" {myreg} "0x55"

C.3.2 BNF conventions

In this annex, the BNF syntax is used only to define the PDL commands and their arguments. The syntax of PDL
commands is presented in this standard in the same modified Backus-Naur form (BNF) used for BSDL. The
definition is as follows:

⎯ Any item enclosed in chevrons (i.e., between the character < and the character >) is the name of a syntax
item (a token) that will be defined in this annex or in Annex B. To assist in differentiating PDL tokens from
BSDL tokens, all PDL tokens use underscores instead of spaces between words. Example: <VHDL
identifier> versus <PDL_identifier>.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

345
Copyright © 2013 IEEE. All rights reserved.

⎯ Items enclosed between braces (i.e., between the character { and the character }) can either be omitted or
included one or more times. Where the brace characters are required in the PDL syntax, they will be shown
by the tokens <L_brace> and <R_brace>. In Table C-1, the tokens { and } are shown explicitly for
compactness.

⎯ Items enclosed between square brackets (i.e., between the character [and the character]) can be either
omitted or included only one time.

⎯ Parenthesis [i.e., the characters (and)] are not used in this BNF. Where the parenthesis characters are
required in the PDL syntax, they will be shown by the tokens <L_paren> and <R_paren>.

⎯ Text shown in bold Helvetica type shall be included exactly as it is presented in this annex except that
command arguments preceded by a minus sign (-) are case-insensitive..

⎯ Alternative syntaxes (choices) are separated by a vertical bar (|).

⎯ The symbol ::= is read as “is defined as.”

⎯ Whitespace (spaces, tabulation, carriage returns, etc.) is used in these BNF descriptions to provide enhanced
readability of the BNF and is not part of the syntax.

C.3.3 PDL lexical elements and common syntax

C.3.3.1 Lexical element specifications

The lexical elements form the atomic, axiomatic elements of the language.

General rules

a) PDL shall follow the conventions of Tcl except as noted in this standard.

NOTE 1—The “conventions of Tcl” specifically include the processing of the input string into commands and
words, with substitutions, and the calling of the command so identified. See C.3.1 for an overview and multiple
sources on the Internet for details.

b) The following tokens are used in the syntactical and semantic descriptions:

1) <space> shall be a single blank space character.

2) <white_space> shall be any combination of one or more space or horizontal tabulation characters.

3) <newline> shall be any combination of nonprinting characters used by the current file system to
move following text to the start of the next line when printed or displayed, or the end of the file (see
<EOF>).

4) <backslash> shall be the character \.

5) <semicolon> shall be the character ;.

6) <hash_mark> shall be the character #.

7) <period> shall be the character ..

8) <comma> shall be the character ,.

9) <colon> shall be the character :.

10) <plus_sign> shall be the character +.

11) <minus_sign> shall be the character -.

12) <L_brace> and <R_brace> shall be the characters { and }, respectively.

c) <comment> shall start with a <hash_mark> character ("#"), if and only if it appears at the point where
PDL is expecting the first character of a command name (the first non-whitespace character on a line or
after a semicolon), and ends with a <newline> character; and all characters between those two characters
are ignored.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

346
Copyright © 2013 IEEE. All rights reserved.

NOTE 2—If they follow a PDL statement on the same line, a semicolon is required as a separator. No comment can
be inserted in the middle of a command. Comments may extend over multiple lines using the <backslash><newline>
character pair or a new comment may be started on each line.

d) <EOF> shall represent the end of a file, which is treated as a <newline> and parsing stops.

e) Only PDL command names, <PDL_identifiers>, and <substitution variables> shall be case-sensitive.

f) The length of a line in PDL shall be unlimited.

g) <ct> shall indicate a command terminator consisting of a <newline> (without a preceding <backslash>),
<semicolon>, or <EOF>.

h) If there are multiple commands on a single line, or a command followed by a comment, they shall be
separated by <semicolon>.

i) A single x or X character in scan data shall define a don’t-care bit in binary and four (4) bits of don’t care
in hexadecimal.

NOTE 3—Scan data with random don’t-care bits will likely require a binary representation. A hex value retrieved by
the iGet command and with both known and don’t-care bits in a hex digit is an error and that error is represented as
undefinable with the character U, which is not a compliant value in <hex_numX>. Decimal numbers cannot contain
don’t-care bits by definition.

j) Scan data shall be defined with the least significant bit physically closest to the output scan port, and scan
data always shift from the most significant bit toward the least significant.

Numeric literal rules

k) <bin_num1> shall be a contiguous string of characters starting with 0b followed by one of the set [01]
followed by zero or more of the characters in the set [01_<white_space><newline>], and if
<white_space> or <newline> appears in the middle of a value, then the value shall be enclosed in double-
quotes or curly braces.

l) <bin_numX> shall be a contiguous string of characters starting with 0b followed by one of the set
[01xX] followed by zero or more of the characters in the set [01xX_<white_space><newline>], and if
<white_space> or <newline> appears in the middle of a value, then the value shall be enclosed in double-
quotes or curly braces.

m) <hex_num1> shall be a contiguous string of characters starting with 0x followed by one of the set [0-9a-
fA-F] followed by zero or more of the characters in the set [0-9a-fA-F_<white_space><newline>], and if
<white_space> or <newline> appears in the middle of a value, then the value shall be enclosed in double-
quotes or curly braces.

n) <hex_numX> shall be a contiguous string of characters starting with 0x followed by one of the set [0-9a-
fA-FxX] followed by zero or more of the characters in the set [0-9a-fA-FxX_<white_space><newline>],
and if <white_space> or <newline> appears in the middle of a value, then the value shall be enclosed in
double-quotes or curly braces.

NOTE 4—An iWrite, iRead, and iScan may use numbers in hexadecimal or binary with a clarity separator of one
or more underscore characters or spaces. An example is 0b1000__1001. This and bit values of X are not Tcl number
compatible but are allowed in application-specific extensions such as iWrite and iRead. An example using spaces
might be “0b1000 1001” or {0b1000 1001}.

o) <dec_num1> shall be a contiguous string of characters in the set [0-9]; multiple character values shall not
start with 0, and they shall have a numeric value in the range of (232-1) down to zero.

NOTE 5—A multicharacter decimal number beginning with 0 is interpreted as an octal number in Tcl.

p) All numeric values (integer or real) shall be non-negative.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

347
Copyright © 2013 IEEE. All rights reserved.

Identifier rules

q) <VHDL identifier> shall be as defined in rule a) of B.5.4.

r) <PDL_identifier> shall be a contiguous string of characters starting with any character in the set [a-zA-
Z] followed by one or more of the characters in the set [a-zA-Z0-9_], and it is case sensitive.

NOTE 6—PDL identifiers allow multiple underscores in a row and at the end of the identifier; VHDL identifiers do
not. PDL identifiers are case sensitive, and VHDL identifiers are not. Otherwise the definitions are the same.

s) <substitution variable> shall be the special character dollar-sign ($) pre-pended without whitespace to a
<PDL identifier>, optionally enclosed in braces, and terminated by any character not allowed in a <PDL
identifier>, including the optional closing brace.

NOTE 7—In Level-0 PDL, a <substitution variable> may only be defined as an argument to a procedure being
defined in an iProc command. In Level-1 PDL, a <substitution variable> may also be defined using Tcl constructs.
Substitution variables are case sensitive.

Text string rules

t) <text> shall be a single word composed of a contiguous set of one or more of the characters [0-9a-fA-F],
plus the special characters tilde (~), tic (`), at-sign (@), dollar-sign ($), percent-sign (%), caret (^),
ampersand (&), asterisk (*), underscore (_), minus-sign (-), plus-sign (+), equal-sign (=), and vertical-bar
(|), colon (:), apostrophe ('), chevrons (< >), comma (,), period (.), exclamation-mark (!), question-mark
(?), backslash (\), and slash (/), and if the text is enclosed in quotes or curly braces, then it may also
include <white_space> and <newline> characters.

C.3.3.2 Substitutions

Level-0 PDL only supports a subset of the Tcl language substitution capability. Level-1 PDL supports the full Tcl
capability. Specifically, Level-0 PDL does not support:

⎯ Command substitution

⎯ Backslash substitution, other than <backslash><newline>

⎯ Variable substitution names that are not <PDL_identifiers>

⎯ Variable substitution in the command name

Variable substitution is allowed in any word of a command other than the command itself. This includes both
syntactic tokens and dash-parameter keywords. In many cases, it is possible that the result of a substitution could
create words that violate the syntax or semantics for the command, and which must be caught by the command
processor as it checks the incoming words. In many cases, such as a mandatory keyword, substitution may not be
useful, but it is allowed unless the result is invalid for the command.

In Level-0 PDL, the <substitution_variable> name can only be defined as an argument to an iProc command, and
the value can only be assigned either as a default value in the iProc command argument or as the argument of an
iCall command. This means that a <substitution_variable> may only be used in commands within an iProc
command. In Level-1 PDL, Tcl constructs can define <substitution_variable> names and values at any point, so
there is no such restriction.

The definition of a Level-0 PDL <substitution_variable> allows the <PDL_identifier> to be enclosed in braces. This
is needed only when the <substitution_variable> is embedded in a string that does not otherwise properly delimit the
<substitution_variable>. Consider the variable “xyz” in the following example:

iProc myproc {xyz} {
iNote -status "abc$xyz def\n" ; # Compliant, space delimiter
terminates xyz

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

348
Copyright © 2013 IEEE. All rights reserved.

iNote -status "abc$xyzdef\n" ; # Non-compliant, no delimiter
terminating xyz
iNote -status "abc${xyz}def\n" ; # Compliant, braces used as xyz
delimiter

}

It is not possible to properly identify the <substitution_variable> in the second iNote command because the end of
the <PDL_identifier> is not delimited by a character not allowed in a <PDL_identifier>. This can be resolved by
inserting braces around the <PDL_identifier> as shown in the third line. The curly braces are removed when the
substitution is performed.

Rules

a) Other than explicit restrictions for Level-0 PDL, any discrepancy between the rules of this substitutions
clause and standard Tcl implementations shall be resolved by using the Tcl implementation.

b) The <backslash><newline>[<white_space>] character sequence within a command shall be replaced by a
single <space> character prior to breaking the command into words, causing the next line of text to be
concatenated to the current line.

NOTE 1—Tcl, and therefore PDL Level-1, also support using the backslash character (\) to define or substitute various
text formatting characters, Unicode characters (single and double byte), and “escape” characters that would normally
not be allowed within a word. PDL level-0 commands do not support such uses of the backslash, although the
backslash character is allowed in a <text> word.

c) In Level-0 PDL, no word shall start with the “[” character; that is, command substitution shall not be
supported.

d) A <substitution_variable>, including any braces around the <PDL_identifier>, shall be replaced by its
value after the command has been broken into words, but prior to passing it as an argument to the
command processor and subsequent checking of syntactical and semantic rules.

NOTE 2—If a <substitution_variable> has a value that embeds whitespace or newline characters, the result of the
substitution is still considered a single word. For example, the value “able baker” is considered a single word when
used in a PDL command, not two. In some cases, use of whitespace or newline characters in a substitution value will
result in syntax or semantic errors for the PDL command.

e) In Level-0 PDL, a <substitution_variable> shall be allowed in any word of a command within an iProc
except the command name itself.

f) $PDL_INSTANCE_PATH shall be a predefined <substitution_variable> with a value of the
<instance_path> on the call to the current procedure.

g) $PDL_CONTEXT_PATH shall be a predefined <substitution variable> with a value of the full context
path to the current procedure.

NOTE 3—One possible use of these predefined substitution variables is in an iNote command to display the current
path or current instance.

h) If a <text> string is enclosed in double quotes (“”), <backslash><newline>[<whitespace>] and variable
substitution shall be performed within the string for Level-0 PDL, all Tcl defined substitutions shall be
performed for Level-1 PDL, the double quotes shall be removed, and the resulting character string
(including any whitespace or newline characters) shall be passed as a single word to the PDL command
processor.

NOTE 4—“ myparm ” is NOT the same as “myparm” or myparm. Everything between the quotation marks is part of
the “word” that is passed, including leading or trailing spaces. Similarly, “able baker” is a single word, not two words.
The same applies for braces. This is in conformance with Tcl usage.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

349
Copyright © 2013 IEEE. All rights reserved.

i) If a <text> string is enclosed in a pair of braces ({ }), <backslash><newline>[<whitespace>] substitution
shall be performed, but other backslash, variable, and command substitutions shall not be performed within
the string, the pair of braces shall be removed, and the resulting character string (including any whitespace
or newline characters) shall be passed as a single word to the PDL command processor.

NOTE 5—Long binary and hex values that are broken across multiple lines can be passed into iWrite, iRead, and
iScan commands if the entire value is enclosed in a single pair of either quote marks or curly braces. This is a Tcl
construct where the space and newline separated values are seen as one value, and may be used with any binary, hex, or
text value. Such enclosing braces or quotes are stripped before the value is passed to the command function. Note that
this is very different from the BSDL approach of quoting partial strings on single lines and then concatenating them.

C.3.3.3 Common syntax

Syntax

<register_inst> ::= <TDR_spec> | <field_instance>
<TDR_spec> ::= <TDR> [<array_index_list>]
<field_instance> ::= [<instance_path> <period>] <full_field_name>
<instance_path> ::= { <instance_ident> <period> } <instance_ident>
<instance_ident> ::= <segment ident> | <array_spec>
<array_spec> ::= <array segment ident> <array_index_list>
<array_index_list> ::= <L_paren> <array_index> { <comma> <array_index> } <R_paren>
<array_index> ::= <dec_num1> | <dec_range>
<dec_range> ::= <dec_num1> <colon> <dec_num1>
<full_field_name> ::= <extended field name> [<array_index_list>]

<rvalue> ::= <dec_num1> <period> <dec_num1> [e [<sign>] <dec_num1>]
<sign> ::= <plus_sign> | <minus_sign>
<seconds> ::= <rvalue>

Rules

a) The <register_inst> shall contain no embedded whitespace or new line characters,

b) The <rvalue> shall contain no embedded whitespace or new line characters.

c) If <sign> is not specified, the exponent shall default to a positive value.

d) All bit numbers listed in the <array_index_list>, either as an <integer> or within a <range>, shall be unique
and a value within the <range> of the associated <array ident> or within the range (<field length> – 1
downto 0) of the associated <TDR> or <extended field name>, all as defined in BSDL.

NOTE—While the individual tokens are linked, many of the tokens in the above syntax are defined in the BSDL
REGISTER_FIELDS or REGISTER_ASSEMBLY attributes in B.8.19.1 and B.8.21.1. The instance hierarchy, in
particular, is defined in REGISTER_ASSEMBLY attributes.

Description

A <register_inst> may be either a TDR as defined in the REGISTER_ACCESS attribute, or a register field
instantiated in a REGISTER_ASSEMBLY attribute. In both cases, it is possible to address a subset of bits within
the register using a combination of bit numbers and ranges.

When a TDR is defined in a REGISTER_ASSEMBLY attribute, the order of entries in the list defines an implied
bit ordering starting with most significant bit (i.e., TDR length – 1) and ending with zero (0).

Therefore, for an iRead or iWrite command, bits within a TDR can be referenced in any of several ways: (1) by the
TDR name, possibly with an index or index range; or (2) by an field instance hierarchy, possibly with an index or
index range. The TDR or field name alone implies the entire TDR or field. For example:

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

350
Copyright © 2013 IEEE. All rights reserved.

attribute REGISTER_ASSEMBLY of example : entity is:
TDR_A (" &
 " (dataA[2]), " & -- same as TDR_A(4:3)

" (dataB[3]), "& -- same as TDR_A(2:0)
")" ;

This register is of length 2 + 3 = 5 bits; Therefore, the pairs of iWrite commands below access the same bit in the
TDR:

iWrite TDR_A(3) 0b1
iWrite dataA(0) 0b1
iApply
iWrite TDR_A(1) 0b1
iWrite dataB(1) 0b1
iApply

C.3.3.4 PDL reserved words

PDL is a context-sensitive language and, as a result does not, in general, require any reserved words.

Rules

a) All identifiers that start with STD_1149_ shall be reserved.

Recommendations

b) All PDL command names, in any text case, should not be used as identifiers in order to minimize
confusion.

C.3.4 PDL File

A PDL file has a specific structure. Comments, as defined in the lexical elements, may appear anywhere in the file
where a command may appear.

Syntax

<PDL_File> ::= { <iSource_cmd> } <iPDLLevel_cmd> <iProc_group>

 { [<iPDLLevel_cmd>] <iProc_group> } <EOF>

<iProc_group> ::= <iProc_group_0> | <iProc_group_1>
<iProc_group_1> ::= [<Tcl_cmds> <iProcGroup_cmd>] [<Tcl_cmds>] { <iProc_cmd> <Tcl_cmds> }
<iProc_group_0> ::= [<iProcGroup_cmd>] <iProc_cmd> { <iProc_cmd> }

Rules

a) The <PDL_File> shall be Level-0 PDL from the beginning through the first iPDLLevel command, which
will set the PDL level for subsequent commands.

b) A <iProc_group_1> shall not appear following an iPDLLevel command setting the PDL level to 0.

c) The token <Tcl_cmds> is not defined in this standard, except that it shall represent one or more valid
commands in the current Tcl environment for Level-1 PDL.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

351
Copyright © 2013 IEEE. All rights reserved.

Permissions

d) In Level-1 PDL (an <iProc_group_1>), Tcl commands may appear as allowed by Tcl rules.

C.3.5 Procedure definition commands

These commands exist at the top level of a PDL file, and they establish the compliance and association of the
procedures, as well as define the procedures themselves.

C.3.5.1 iSource command

The iSource command is used to import PDL files containing iProc procedures that may then be called from
procedures in the current PDL file. All of the PDL procedures necessary for test need not be contained in one file,
but iProc commands in separate PDL files are not visible until they have all been included by using an iSource
command. It is the only way to include IC- or IP-level PDL files such that the procedures contained in them are
made available to the calling PDL program.

NOTE 1—For Level-0 PDL procedures running in a Tcl environment, many of the substitution rules of C.3.3.2 are not detectable
by the time that the words are passed to the PDL command processors. The iSource command, in addition to finding and
opening the named file, can also scan the file contents for violations of those rules.

Syntax

<iSource_cmd> ::= iSource <text> <ct>

Rules

a) All iSource commands shall appear before any other command in each PDL file.

b) <text> shall be the valid file name of a PDL file in the current file system, and further shall be enclosed in
quotes or curly braces if it includes any embedded whitespace or new line characters.

c) When the sourced PDL file contains iSource commands, no iSource command in the sourced PDL file
or any PDL file sourced below it shall source the current PDL file.

NOTE 2—The sourced files must form a tree, not a loop.

d) All procedures called from within an iProc command in a PDL file shall be previously defined either by an
iProc command in the current PDL file or by an iProc command within a PDL file previously sourced by
an iSource command in the PDL file.

Example

iSource XYZ_IO.PDL
iSource "my IO.PDL" ;# quotes or braces around file names with spaces in them

C.3.5.2 iPDLLevel command

The iPDLLevel command is the first command of each PDL file following any iSource commands. The
iPDLLevel command indicates both the PDL level and the version of PDL that it is compliant with. This command
is not allowed inside a PDL procedure (inside an iProc command) and constrains all procedure definitions in that
file following the iPDLLevel command up until another iPDLLevel command or the end of the file. The command
may appear more than once within the file to set the PDL level and version for following procedure definitions.

This standard only requires support for PDL that is Level-0 and conforms to the STD_1149_1_2013 version. PDL
can be viewed as just an extension of Tcl, and it is expected that other standards will define their own versions of
PDL or extensions of STD_1149_1_2013 PDL. In addition, it is possible that others will define and support

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

352
Copyright © 2013 IEEE. All rights reserved.

extensions. The iPDLLevel command provides the means to identify such extensions, and for those that do not
support such extensions to skip them by ignoring all commands until the next iPDLLevel command or <EOF>,
whichever comes first.

Syntax

<iPDLLevel_cmd> ::= iPDLLevel <level> -version <version_string> <ct>

<level> ::= 0 | 1
<version_string> ::= STD_1149_1_2013 | <PDL_identifier>

NOTE 1—As other standards and later versions of this standard support PDL, additional <version_string> identifiers will be
added.

Rules

a) The iPDLLevel command shall appear as the first command after any optional iSource commands in
each PDL file.

b) The iPDLLevel command shall not appear within an iProc command.

c) For any <level> and <version_string>, all following procedures (iProc commands) up to the next
iPDLLevel command shall contain only PDL commands conforming to those two specifications.

d) Any tool claiming compliance with this standard shall accept PDL with a specified <level> of 0 and a
<version_string> of STD_1149_1_2013.

NOTE 2—Support of PDL Level-1 or of versions other than STD_1149_1_2013 are not required for a tool to claim
compliance with this standard.

Permissions

e) The iPDLLevel command may appear as needed to indicate which procedures conform to a specific
<level> and <version_string> pair.

Example

iPDLLevel 0 -version STD_1149_1_2013 ; # level-0 1149.1 PDL only

iPDLLevel 1 -version My_Std_1149_1 ; # level-1, with user extensions

C.3.5.3 iProcGroup command

The iProcGroup command associates PDL procedures following the command to a specific object or instance.
This relationship is established for all procedures until the next iProcGroup command is encountered. This
command enables tools to manage libraries of PDL procedures by associating specific procedures with each object
and, when necessary, instance in the system, where PDL procedures for different objects (components or IP) or
instances may have duplicate procedure names. The association of a specific instance of an object to an object type
is done separately based on board netlists, use of IP packages, register field definitions in BSDL, and so on. The
iProcGroup command is required for all iProc commands except those at the top level.

The iProcGroup command is not required for the top-level PDL procedures, and if an iProcGroup command
does not appear before an iProc command, then the procedure being defined is assumed to be associated with the
current unit under test. (The context instance path of such a procedure is the null string.) Procedures defined without
a previous iProcGroup command are not reusable at higher levels of hierarchy.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

353
Copyright © 2013 IEEE. All rights reserved.

Syntax

<iProcGroup_cmd> ::= iProcGroup <object_or_instance> <ct>

<object_or_instance> ::= <component name> | <user package name> | <instance_path>

NOTE—<component_name> is defined in BSDL B.8.1.1. <user package name> is defined in BSDL B.10.1.

Rules

a) The iProcGroup command shall not appear within an iProc command.

b) The iProcGroup command shall associate all following procedure definitions (iProc commands), up to
the next iProcGroup command, with the <object or instance>.

c) <object or instance> shall be the name of an object or instance in the currently defined instance hierarchy.

d) <component name> and <user package name> shall be as defined in B.8.1.1 and B.10.1, respectively.

e) An iProcGroup value established within a file shall be cleared at the end of the file.

Permissions

f) The iProcGroup command may appear as needed to change the object or instance affiliation of
subsequent procedures.

Example

MYIO.PDL file
iPDLLevel 0 -version STD_1149_1_2013
iProcGroup MYIO

MYIO Procedures
iProc setup -export { swingval } {
 iWrite swing $swingval
}

iProc AC_Mode -export { onoff } {
 iWrite ACMODE $onoff
}

#end of file, iProcGroup cleared.

main.pdl
...
iSource myio.pdl
iPDLLevel 0 -version STD_1149_1_2013
iProcGroup MYIC

iProc myproc { } {
 ...
}

C.3.5.4 iProc command

The iProc command defines a named, callable, PDL procedure with descriptive optional parameters and optional
arguments that may be passed to the procedure. Following Tcl practice, the argument name is intended to be used as

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

354
Copyright © 2013 IEEE. All rights reserved.

a substitution variable within the procedure, and any default value for an argument cannot itself contain a
substitution variable (there is no way to define it outside of the iProc command).

Several procedure names have special meaning: “init_setup” and “init_run” to be used for automated initialization of
components. If the INIT_STATUS or INIT_RUN instructions are coded in the associated BSDL, then the test
software will expect the corresponding procedure name in the associated PDL. Procedure “ecid” describes the writes
and reads necessary to access the ECID code of an IC. The procedure name “main” may be used at any level, and
includes all tests recommended for execution by the object designer. At the board level, this procedure (if present)
will normally be called after interconnect test (EXTEST) is complete.

Syntax

<iProc_cmd> ::= iProc <proc_name> { <proc_option> } <L_brace> [<proc_arguments>] <R_brace>

<L_brace> <proc_command> { <proc_command>} <R_brace> <ct>

<proc_option> ::= -export | -TMSreset | -TRSTreset | -mission | -noninvasive |

-noninteractive | <information>
<information> ::= -info <text>
<proc_name> ::= <PDL_identifier> | init_setup | init_run | ecid | main
<proc_arguments> ::= { <no_default_argument> } { <default_argument>}
<no_default_argument> ::= <argument_name>
<default_argument> ::= <L_brace> <argument_name> <argument_default> <R_brace>
<argurment_name> ::= <PDL_identifier>
<argument_default> ::= <text>
<proc_command> ::= <L0_command> | <L1_command>
<L0_command> ::=
 <iWrite_cmd> | <iRead_cmd> | <iScan_cmd> | <iApply_cmd> |
 <iCall_cmd> | <iRunLoop_cmd> | <iLoop_cmd> | <iUntil_cmd> |
 <ifTrue_cmd> | <ifFalse_cmd> | <ifEnd_cmd> |

<iPrefix_cmd> | <iSetInstruction_cmd> | <iClock_cmd> | <iClockOverride_cmd> |
<iMerge_cmd> | <iTake_cmd> | <iRelease_cmd> |

 <iNote_cmd> | <iSetFail_cmd> |
 <iTRST_cmd> | <iTMSreset_cmd> | <iTMSidle_cmd>
<L1_command> ::= <iGet_cmd> | <iGetStatus_cmd> | <Tcl_cmds>

Rules

a) If the <level> stated in the most recent iPDLLevel command is 0, then neither an <L1 command> nor a
Tcl command shall appear within the iProc.

b) The token <Tcl_cmds> is not defined in this standard, except that it shall represent any valid command in
the current Tcl environment for Level-1 PDL.

c) The <proc_name> shall be unique among procedure names within an <iProc_group>.

d) If the INIT_SETUP, INIT_SETUP_CLAMP, and/or INIT_RUN instructions exist in the BSDL, then a set of
PDL procedures shall be associated with the BSDL by an iProcGroup command and procedures with the
names init_setup and/or init_run, respectively, shall be provided in that set.

e) If provided, at any object level, procedure names init_setup and/or init_run and all procedures invoked
from them by iCall commands:

1) Shall prepare the associated object or instance for interconnect test (e.g., EXTEST) initialization and
perform the initialization, respectively.

2) Shall be Level-0 PDL procedures.

3) Shall not contain any reset commands.

f) If provided, at any object level, procedure name “main” shall execute a preferred set of tests as defined by
the object provider.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

355
Copyright © 2013 IEEE. All rights reserved.

NOTE 1—In a board test scenario, any “main” procedure would normally be executed after completion of
interconnect test.

g) Any procedure with the name “ecid” shall be a Level-1 PDL procedure that accesses and returns the
Electronic Chip Identification value.

NOTE 2—Processing the “ecid” procedure is not required for a tool to claim compliance with this standard.

h) The init_setup, init_run, and ecid procedures, if provided, shall not contain an iTRST or iTMSReset
command at any level of the procedure hierarchy; that is, they shall not have the
-TRSTreset or -TMSreset keywords.

i) The <proc options> are descriptive and shall be interpreted as follows:

1) -export: this procedure is to be visible to and able to be called directly by the PDL user.

NOTE 3—When this option is not specified, the iProc name is visible only within the <iProc_group> in which
it appears and can be called only by an iProc within that <iProc_group>.

2) -TMSreset: required if this procedure or a procedure called from this procedure contains an
iTMSreset command.

3) -TRSTreset: required if this procedure or a procedure called from this procedure contains an iTRST
command.

4) -mission: this procedure is intended to be executed while the associated object is in mission mode,
and may alter mission mode behavior.

5) -noninvasive: this procedure is intended to be executed in either test or mission modes and will not
interfere with or change any mission mode behavior.

6) -noninteractive: this Level-1 PDL procedure only contains Level-0 PDL and Tcl commands that can
be rolled out to Level 0 PDL, and is able to be treated as Level-0 PDL in a tool that also supports
Level-1 PDL; in particular, it contains no commands that access the status or the captured data.

NOTE 4—A Level-1 PDL procedure with the -noninteractive keyword can be converted into a compliant
Level-0 PDL.

7) -info <text>: the <text> contains additional description of this procedure, similar to the <text> with an
iNote command.

j) The <proc options> -mission, and -noninvasive shall be mutually exclusive.

k) In Level-0 PDL, no iProc command shall have an <argument_name> of args.

NOTE 5—The name “args” has special meaning for a iProc and for a Tcl proc. It is processed differently than other
user-defined argument names.

l) The end of an iProc shall clear any iPrefix value, and the context instance path present before the
procedure was called shall be restored.

Predefined procedure names

There are four predefined procedure names: init_setup, init_run, ecid, and main.

The init_setup and init_run procedures are the PDL procedures used to define the execution of the INIT_SETUP or
INIT_SETUP_CLAMP, and of the INIT_RUN instructions, respectively. While it is possible to use those instructions
to perform different initializations for different tests, these procedure names should be reserved for performing any
initialization needed for interconnect test. The init_setup procedure is used to write and read all needed fields
defined in the init_data register, including any with deferred values in the BSDL. The init_run procedure is used to
perform any sequential operations necessary to bring the component to the proper known and safe state required for
testing to proceed. See 8.17 for general information on initialization instructions, 8.18 for information on the

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

356
Copyright © 2013 IEEE. All rights reserved.

INIT_SETUP or INIT_SETUP_CLAMP instruction, 8.19 for information on the INIT_RUN instruction, Clause 14
for the init_data register, and Clause 15 for the init_status register.

The init_setup and init_run procedures must be capable of running in any environment able to perform EXTEST, so
they cannot be interactive procedures, which access data returned from the unit under test, either data scanned out or
the accumulating status. They can contain Tcl structures that, when interpreted, generate multiple Level-0 PDL
statements, referred to as unrolling the Level-1 PDL to Level-0 PDL; at which point, the procedure can be treated as
a Level-0 PDL procedure. These procedures must not contain any reset commands. While the intent is that
initialization be performed using just the init_data and init_status registers, there is no restriction on accessing other
registers as needed.

The ecid procedure also must not contain any reset commands and must be coded in Level-1 PDL since it returns a
value. It can be run at any time needed. The main procedure is completely unrestricted and would be a set of tests to
be run in addition to and usually after the interconnect test.

Any number of iSource commands may appear before the first iPDLLevel command in the file.

C.3.6 Test setup commands

C.3.6.1 iPrefix command

The purpose of the iPrefix command is to support temporary instance hierarchy within the object associated with
the current PDL procedure. The specified value provides an instance path name prefix for all subsequent register and
register field names. If defined, all following register or register field names will be prefixed with the <partial_path>
value plus a trailing period (.).

An iPrefix command with the minus sign as an argument clears the current prefix.

Since the language is procedural, this command must be entered prior to any command that needs the instance path
prefix. Note that if only one or two names need the instance path prefix while many others do not, it may be simpler
to omit the command and include the instance path on only those names that require it.

The iPrefix command within a procedure only references hierarchy below the object associated with the procedure.
This is necessary for reuse of the PDL procedure in different environments. Hierarchy down to the object associated
with the procedure, called the context instance path, is made available when the procedure is called and an iPrefix
command inside the procedure simply adds additional level(s). An iPrefix value is not passed down to a called
procedure, but it is retained for use after the called procedure returns. iPrefix does not affect the target of an iCall.
At the end of the procedure, any iPrefix value established in the procedure is cleared.

If a <partial_path> value is specified by an iPrefix command, it will be appended to the context instance path,
established when the procedure was called, and then that combination will be prepended to the following
<register_inst> register or register field references and to <port ID> IC port name references.

Note that while the value of an iPrefix command has a specific structure, no checking is normally done on the
value. It is just a string. Only when the full name is assembled and passed to a command such as iWrite or iRead is
the fully qualified name checked against the relevant objects in the structural database built from the BSDL.

Syntax

<iPrefix_cmd> ::= iPrefix <instance_or_null> <ct>
<instance_or_null> ::= <partial_path> | <minus_sign>
<partial_path> ::= <instance_path> | <prefix_path> | <compound_path>
<compound_path> ::= <instance_path> <period> <prefix_path>
<prefix_path> ::= { <prefix identifier> <period> } <prefix identifier>

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

357
Copyright © 2013 IEEE. All rights reserved.

Rules

a) The <partial_path> value shall contain no whitespace or new line characters.

b) The <partial_path> value shall be prepended to all following <register_inst> or <port ID> occurrences
within the current PDL, and it shall use a <period> as separator.

c) An <instance_or_null> value of <minus_sign> shall clear the current <partial_path>; that is, it shall set it to
the null string.

d) The <partial_path> value shall be cleared at the end of the current procedure.

Examples

U1 is an instance of object “Chip”
iCall U1.myproc myinst2 ; # Top level call to “Chip.myproc” PDL procedure
iPrefix is now null
iCall U1.nextproc ;

#Chip PDL
iProcGroup Chip

iProc myproc { mypath } {
 iPrefix myinst1 ; # identifies an instance path below chip
 iRead bootreg 0x55 ; # now iRead U1.myinst1.bootreg
 iPrefix $mypath ; # If $mypath is null, generates an error
 iRead bootreg 0x44 ; # now iRead U1.myinst2.bootreg
 iRead myreg 0b1 ; # now iRead U1.myinst2.myreg
 iPrefix - ; # removes the local instance path
 iRead myinst3.jregA 0b0 ; # now iRead U1.myinst3.jregA
 iPrefix myinst1 ; # any prefix is cleared at the end of the iProc
}

iProc nextproc { } {
 iNote -status "inside nextproc iPrefix is not defined\n"
}

C.3.6.2 iSetInstruction command

The purpose of the iSetInstruction command is to remove the ambiguity of which instruction to use when
accessing a register or register field that can be selected for scan by multiple instructions. The obvious example is
the boundary-scan register, which can be scanned by PRELOAD, SAMPLE, EXTEST, or INTEST, among the
standard instructions. There are defaults for all registers that can be selected by multiple instructions, but changes
will be needed at times.

The command takes a single value of the instruction name. This pairs the instruction to the register that the
instruction selects for scan per the definitions in this standard or in the REGISTER_ACCESS BSDL attribute.
This pairing is inherited by all child processes in the call hierarchy below the current procedure, and it remains in
effect until explicitly changed by another iSetInstruction command.

The iSetInstruction command can only appear in a procedure associated with a BSDL object by an iProcGroup
command since the instruction names are not known otherwise.

Syntax

<iSetInstruction_cmd> ::= iSetInstruction <instruction name> <ct>

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

358
Copyright © 2013 IEEE. All rights reserved.

Rules

a) The iSetInstruction command shall only be used at the TAP (chip) level, that is, in procedures associated
with an iProcGroup command to a <component name> as defined in BSDL.

b) If an iSetInstruction command is not specified in the calling hierarchy at or above the current procedure,
the default instruction for the boundary register shall be PRELOAD if it exists; otherwise it shall be
SAMPLE, the default instruction for the bypass register shall be BYPASS, the default instruction for the
device_id register shall be IDCODE, the default instruction for the init_data register shall be INIT_SETUP,
and the default for a design-specific TDR shall be the first instruction named for the register in the
REGISTER_ACCESS attribute.

c) The assignment of a specific instruction to access a TDR by an iSetInstruction command shall persist
until another iSetInstruction command changes the setting or the end of the procedure containing the
iSetInstruction command; and further, upon completion of a procedure containing an iSetInstruction
command, the assignment that existed before that procedure was called shall be restored.

Examples

Put the chip into test mode for init.
 iSetInstruction init_setup_clamp ;
Prepare to release test-mode persistence.
 iSetInstruction clamp_release ; # Selects bypass register.

C.3.6.3 iClock and iClockOverride commands

The purpose of the iClock command is to define a clock at any level of packaging. The purpose of the
iClockOverride command is to define the relationship between two clocks. One or both of these commands must
be included in the PDL hierarchy if a clock is specified in an iRunLoop command.

The -period parameter indicates a minimum period with units of seconds that, after inversion, also defines a
maximum system clock frequency in Hz. Note that unless otherwise specified by the -off parameter, all system
clocks are assumed to be free-running and therefore always available. When a clock is multiplied by an internal PLL
or other frequency multiplier or divider prior to being used, the frequency relationship is defined by
the -freqMultiplier parameter. Normally, the source clock would come from an IC port, and the result of the
multiplication would be the clock used, for example, in an IP block.

These commands set the local fail flag to indicate whether the system has determined there is an issue with the
named clock or not. PDL does not have a mechanism to escape from a clocked delay if the clock is not available, so
when the system determines that the clock is not available, this command will set the local fail flag to “FAIL” and
the PDL conditional statements can be used to bypass the part of the procedure requiring that clock, or use the
iSetFail command to abort the procedure.

Syntax

<iClock_cmd> ::= iClock <clock_name> [-period <seconds>] [<clock_state>] <ct>

<iClockOverride_cmd> ::= iClockOverride <int_clock> -source <clock_name>

-freqMultiplier <rvalue> [<clock_state>] <ct>

<clock_name>::= <src_clock> | <int_clock>
<src_clock> ::= <port ID>
<int_clock> ::= <PDL_identifier>
<clock_state> ::= -on | -off

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

359
Copyright © 2013 IEEE. All rights reserved.

Rules

a) If the fully qualified name formed by concatenation of the context instance path passed to the current
procedure, any current <partial path> established by an iPrefix command, and the <clock_name> value of
this command is a clock name defined by the SYSCLOCK_REQUIREMENTS BSDL attribute,
<clock_name> shall be a <src_clock>.

b) If <clock name> is a <src_clock>, and the system determines that the specified clock is not available, the
local fail flag shall be set to “FAIL” by the iClock and iClockOverride commands; in all other cases, the
local fail flag shall be set to “PASS” by these commands.

NOTE 1—This standard does not formally define how the system would determine that the specified clock signal was
not available, but some ways would include that the clock pins were unconnected in a BSDL pin map or tied off in the
board netlist, or that the test system could not provide the required clocks. Setting the local fail flag allows use of
ifTrue and ifFalse commands to bypass code dependent on the unavailable clock signal.

c) If the fully qualified name formed by concatenation of the context instance path passed to the current
procedure, any current <partial path> established by an iPrefix command, and the <clock_name> value of
this command is not a name defined by the SYSCLOCK_REQUIREMENTS BSDL attribute,
<clock_name> shall be an <int_clock>.

d) An <int_clock> shall be an arbitrary name for a clock that is only valid within the current procedure.

NOTE 2—The clock name may be passed down through lower levels of PDL as an argument on iCall commands.
Where it is used this way, and does not match a port name defined by the SYSCLOCK_REQUIREMENTS BSDL
attribute, it will be treated as a local name within each PDL procedure.

e) In any clock distribution structure, possibly across multiple procedures, built of one or more iClock and
iClockOverride commands, at least one iClock command shall have the -period parameter,
and instances of the -period parameter in such a structure shall be compatible with each other, and shall be
compatible with the frequency range specified in the SYSCLOCK_REQUIREMENTS BSDL attribute, if
appropriate.

f) The <clock_state> shall default to -on, and the <clock_state> set to -off shall document the desire that the
clock be shut off at its source.

g) For the iClockOverride command, the period of the <int_clock> shall be equal to the period of the
<clock_name> divided by the freqMultiplier value.

Examples

; #(500 MHz source clock)
iClock MySclk -period 2.0e-09 ; # minimum period: 2.0 ns

Below are PDL snippets for an IP (MEMB) and the component using it (CHIPA). The PDL for the IP is supplied by
the IP vendor, and it includes an iRunLoop command for the memory BIST. Both the sys_clock (the component
port) and the int_clock (used in the IP) are defined in the component level, in this case.

 # MEMB IP PDL from vendor AbCD
...
iProc membist {clk_name} {
 ...
 iApply

 iRunLoop 1000000 -sck $clk_name
 ...
}

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

360
Copyright © 2013 IEEE. All rights reserved.

CHIPA PDL from vendor XYZinc
Uses two instances of MEMB: mem1 and mem2
Clock names have to be passed down as arguments because they are
not visible in lower level PDL otherwise.
...
iProc main { } {
 ...
 iClock F125MHz -period 8.0e-9 ; # F125MHz is a CLOCK port on CHIPA
 # mem2 is an instance of memb
 iCall mem2.membist F125MHz ; # call memb.membist for instance mem2
 ...
 iClockOverride memclk -source F125MHz -FreqMultiplier 2.0
 # mem1 is an instance of memb
 iCall mem1.membist memclk ; # call memb.membist for instance mem1
 ...
}

C.3.7 Test execution commands

C.3.7.1 iRead and iWrite commands

The purpose of the iRead command is to define data to be compared with the data shifted out of the named register
instance during a subsequent iApply command. The purpose of the iWrite command is to define data to be shifted
into the named register instance during a subsequent iApply command. These two commands manage the data to be
shifted.

Multiple iRead and iWrite commands that access the same TDR can be entered prior to an iApply command. Each
iRead and iWrite command modifies the current scan frame data. Therefore, multiple references to the same
register can overwrite the values set by previous commands on a bit-by-bit basis. No data are shifted into or out of a
register unless a subsequent iApply command is executed.

Syntax

<iRead_cmd> ::= iRead <register_inst> [<expect_value>] <ct>

<iWrite_cmd> ::= iWrite <register_inst> <write_value> <ct>

<expect_value> ::= <valueX>
<valueX> ::= <bin_numX> | <hex_numX> | <dec_num1> | <mnemonic identifier>
<write_value> ::= <value1> | -reset | -default | -safe
<value1> ::= <bin_num1> | <hex_num1> | <dec_num1> | <mnemonic identifier>

NOTE 1—-<mnemonic identifier> is defined in BSDL (see B.8.18).

Rules

a) The iRead command shall modify the expect data for the specified register or register field instance, and if
a register field is modified by multiple iRead commands before an iApply command, the result shall be
that of the last iRead command on a bit-by-bit basis.

b) The iWrite command shall modify the write data for the specified register or register field instance, and if
an instance is modified by multiple iWrite commands before an iApply command, the result shall be that of
the last iWrite command on a bit-by-bit basis.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

361
Copyright © 2013 IEEE. All rights reserved.

c) The expect data shall be initialized on a bit-by-bit basis as follows prior to the first iRead command and
after each iApply command, and for only the specified register field upon execution of an iRead command
with no <valueX> specified:

1) To any capture value mandated by this standard.

2) Otherwise, to any “CAPTURES” value specified on a register access or register field definition in either
the BSDL or the Package associated with the object (see <value assignment>, B.8.20.1).

3) Otherwise, to the “don’t-care” value of X.

NOTE 2—Since iApply is only required to compare the bits specified by the cumulative iRead commands since the
last iApply, including the implied iRead of all prespecified capture values, the expect data do not need to be preserved
after an iApply. They may be set back to the initialized values.

d) Before the first iApply command for a specific TDR, any undefined write data shall be initialized on a bit-
by-bit basis as follows:

1) For the boundary-scan register, to the “safe” value specified for each cell in the
BOUNDARY_REGISTER attribute.

2) Otherwise, to the logic value of 0.

NOTE 3—Only expect data are allowed to contain X or x values. X or x would be an error in the write, capture, or fail
data at the time of or after an iApply command.

e) The <register_inst> shall not resolve to a zero-length field.

f) If the -reset parameter is specified on an iWrite command instead of on a specific value, the write data for
that <register_inst> shall be set to:

1) The <safe bit> element of each <cell entry> (see B.8.14.3) with a <function> of ControlR.

2) The RESETVAL value, if specified, for each field in the <register inst> other than a <cell entry> (see
<value assignment> B.8.20.1).

g) If the -default, or -safe parameter is specified on an iWrite command instead of on a specific value, the
write data for that instance shall be set to:

1) The <safe bit> element of each <cell entry>.

2) The DEFAULT, or SAFE value, respectively, and if specified, for each field in the <register inst> other
than a <cell entry> (see <value assignment> B.8.20.1).

h) If the binary equivalent of the <write_value> contains an X in any bit position, then that bit position in the
data queue shall be unchanged.

i) An iRead command followed by the DEVICE_ID register name without an expected value shall set the
expected value to the first specified value of the attribute IDCODE_REGISTER.

j) The fully qualified name formed by concatenation of the context instance path passed to the current
procedure, any current <partial_path> established by an iPrefix command, and the <register_inst> value of
this command shall be the name of a register or register field defined in the current instance hierarchy.

k) Any underscore, <whitespace>, or <newline> characters embedded in a <value1>or <valueX> shall be
stripped; that is, the underscore, <whitespace>, and <newline> characters do not count as a character in the
numeric value.

l) The most significant 1 bit in the binary equivalent value of <value1> or <valueX> shall be located within the
length specified for the <register_inst>.

NOTE 4—This allows a hexadecimal value to be assigned to a register field with a length that is not an exact multiple of
4, as long as the excess most significant bits are 0.

m) If the binary equivalent value of <value1> or <valueX> has fewer bits than the specified number of bits of
the register, the bits shall be right justified (closest to TDO) in the register and the remaining high-order bits
shall be set to 0 for an iWrite command and to X for an iRead command.

n) The <mnemonic identifier> value shall not evaluate to others.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

362
Copyright © 2013 IEEE. All rights reserved.

Examples

iRead Bypass ; # check for default bypass register of zero
iApply
iRead device_id ; # check the first device_id in the BSDL
iApply

Examples with internal registers are shown below. All registers are defined as length 10.

iRead myReg1 0b0101011010 ; # set expect data
iApply ; # compare all 10 bits

iRead myReg1(7) 0b0 ; # set new expect data
iApply ; # compare myReg1 to xx0xxxxxxx

iRead myreg3 ; # expect default data
iApply ; # compare all 10 bits

iRead myreg1 0b010X0x01 ; # X-filled, compare to 0bXX010x0x01
iRead myinst.myreg2 0b11 ; # X-filled, compare to 0bXXXXXXXX11

Next is OK because highest order binary ’1’ is in reg length
iRead myreg3 0x1xd ; # Hex value, compare to 0b01xxxx1101
iApply

iRead myreg3 ; # default expect data
iApply

Next statement is an Error: highest order ‘1’ bit outside reg length
iRead myreg3 0xfxd ; # 0b1111xxxx1101 exceeds length of reg
iApply

iSetInstruction PRELOAD
iWrite boundary ; # preload with "safe" values or ‘0’
iApply

The boundary register has multiple instructions that access the register. The iSetInstruction command instructs the
tool to load the PRELOAD instruction into the .instruction register prior to setting the boundary register to its default
“safe” value.

All registers in the following example are defined as length 10:

iWrite myreg1 0b1111111101 ; # value length equals register
iWrite myreg2 0b11 ; # same as 0b0000000011
iWrite inst1.myreg3 0xffd ; # Invalid, hi-order bit outside register

C.3.7.2 iApply command

The purpose of the iApply command is to perform a scan of the TDR referenced by iWrite, iRead, or iScan
commands since the last iApply command. All iWrite, iRead, and iScan commands between iApply commands
must reference register fields that are part of the same TDR. To perform the scan of the referenced TDR, the iApply
command may have to change the active instruction and perform additional scans of TDRs to include or select
segments that contain referenced fields.

Note that it is perfectly acceptable to reference two selectable or excludable segments that are mutually exclusive.
The iApply command then has to select and scan each segment, one at a time, and the order in which they will be

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

363
Copyright © 2013 IEEE. All rights reserved.

scanned is not defined. If there are dependencies (data written to one segment affect the captured data in another
segment) between the selectable or excludable segments and other segments in the TDR, the results may differ
depending on the exact order in which they were scanned. The PDL writer must exercise care in such situations to
make sure that the code is completely deterministic.

When any TDR is scanned, initialized expect data, as modified by iRead or iScan commands for the referenced
TDR, is compared with the returned value, and accumulating and local fail flags, as appropriate, are set to “FAIL” if
there is a miscompare. Simultaneously, the accumulated write data are written to the TDR. Note that the write data
or expect data for a referenced register need not have changed; just that an iWrite, iRead, or iScan command
referenced that register. If no iRead, iWrite, or iScan commands were specified since the previous iApply, then
the same TDR, with the current configuration of excludable and selectable segments, is scanned with the
accumulated write data and with initialized and unmodified expect data bits for the current configuration.

If the TDR to be scanned is not selected for scan by the currently active instruction, then the iApply command
performs an instruction register (IR) scan to make the TDR the selected TDR. If a field referenced in an iRead,
iWrite, or iScan command is currently excluded or not selected, the iApply command generates the necessary
scans (possibly including changing the active instruction) to include or select the needed segments. For every TDR
scan, the iApply command also checks any register constraints (see B.8.22) that apply before scanning the register,
and aborts the scan and the test if the constraint evaluates to true and has error severity. Finally, a data scan
operation for the referenced register is performed.

The label associated with an iApply command is arbitrary and only for reference.

The iApply can terminate in any TAP controller state desired, although that would normally be either the Run-
Test/Idle or Pause-DR states. The behavior of the iApply command can be altered in several ways:

⎯ The -nofail parameter changes what expected data are used for comparisons and how the two fail flags are
set.

⎯ The -skipRTI parameter supports instructions that perform specific actions in the Run-Test/Idle TAP
controller state by not entering that state while loading the instruction and test data registers.

⎯ The -shiftPause parameter pauses at the end of the Shift-DR TAP controller state and causes the next
iApply command to resume shifting without intervening update or capture operations.

The -nofail parameter alters the behavior of the iApply command by limiting the comparisons to only the expect
data queued by any iRead or iScan commands since the previous iApply command, and limiting the response to
any miscompares to setting the local fail flag. This is to allow this iApply command to set the condition for an
iUntil, ifTrue, or ifFalse command to interrogate without triggering the normal response to miscompares.

The iApply command manages two fail flags in PDL. First, an accumulating fail flag indicating overall PASS/FAIL
status, which is initialized to PASS prior to the start of PDL execution and set to FAIL by miscompares between the
data being scanned out and the expect data. This flag is not affected by comparisons in an iApply -nofail
command. Note that the iSetFail and iUntil commands may also set the accumulating fail flag to FAIL. Second, a
local fail flag that is used for the iUntil, ifTrue, and ifFalse commands that is set to PASS prior to each iApply
command and set to FAIL only if the expect data supplied by iRead or iScan commands since the previous
iApply command miscompares.

Beyond setting the accumulating fail flag, the handling of any miscompares of iRead or iScan data to the data
actually scanned out of the unit under test is not specified in this standard. That said, it should be noted that the
procedure can be written using a conditional command to force termination of the test process if required. For
instance, an iRead of the initialization data register may check that critical initialization input pins are set correctly,
and testing might have to be terminated if that comparison fails.

The -skipRTI parameter forces the TAP controller to not go to or through the Run-Test/Idle state during the
execution of this instance of the iApply command. This is primarily used to help avoid initiating a test that starts in
the Run-Test/Idle TAP controller state of the currently active instruction. The TAP controller state machine may

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

364
Copyright © 2013 IEEE. All rights reserved.

then be directed to the Run-Test/Idle state with the iTMSidle command when required to start the test. Note that this
parameter does not imply or assume any particular default path through the state machine, only that whatever the
normal transition path is, it will be modified (if necessary) to skip the Run-Test/Idle state for all scans needed to
complete the command. At the end of the iApply -skipRTI command, the Pause-DR TAP controller state is used to
wait for the next command.

Every iApply command causes the TDR to be shifted by the total length of the TDR. The -shiftPause parameter
on one or more iApply commands allows the TDR to be shifted by some multiple of the total length of the TDR,
once per iApply command. On the first iApply -shiftPause command, the TDR performs a capture and shift,
subsequent iApply -shiftPause commands only perform the shift, and the first iApply command without
the -shiftPause parameter will perform a shift and update. In effect, the -shiftPause parameter concatenates the
shifts of the iApply commands with the parameter to the shift of the following iApply command. This mode is
common in many programmable components.

An example “pseudo-code” illustrating the flow of the iApply command is shown in Annex E.

Syntax

<iApply_cmd> ::= iApply { <iApply_parm> } [<label>] <ct>

<iApply_parm> ::= -nofail | -skipRTI | -shiftPause
<label> ::= <PDL_identifier>

Rules

a) If the register fields referenced in iWrite, iRead, and iScan commands since the last iApply command
are in excludable segment(s) that are currently excluded, or selectable segment(s) that are not currently
selected, the iApply command shall perform any additional data register scans needed to include or select
the segment before performing the data register scan of the referenced fields; and furthermore, if there are
multiple such register fields to be scanned that cannot be included or selected at the same time, then they
will be included or selected in sequence and the order in which each will be included or selected and then
scanned is undefined.

b) If the register field(s) to be scanned is in a TDR that is not selected for scan by the currently active
instruction, before performing the data register scan, the iApply command shall perform an instruction
register scan to make active an instruction that does select the required TDR, using the instruction defined
in the iSetInstruction defaults or explicitly specified by an iSetInstruction command when more than
one instruction could be used.

NOTE 1—This applies to data register scans needed to include or select register segments as well as the referenced
register fields.

c) If there were no iWrite, iRead, and iScan commands since the last iApply command, then the TDR
selected by the currently active instruction in its current configuration of excludable and selectable
segments shall be scanned using the accumulated write data and the default expect data.

d) For any data register scan, the iApply command shall perform the following steps:

1) Clear the local fail flag prior to performing the first scan of the referenced TDR.

2) Shift the write data accumulated for the current configuration of the referenced TDR to the scan-in of
the TDR.

3) Compare the data from the scan-out of the referenced TDR with only the expect data accumulated for
the current configuration of the TDR since the last iApply, setting the local fail flag appropriately.

4) If the -nofail parameter is not specified, compare the scan-out of the referenced TDR with the default
expect data for the current configuration of the TDR as modified by the expect data accumulated since
the last iApply, setting the accumulating fail flag appropriately.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

365
Copyright © 2013 IEEE. All rights reserved.

5) If the procedure is Level-1 PDL, capture and maintain the scan-out and bit-by-bit failure values of the
current configuration of the referenced TDR, replacing any previously captured and fail values for the
same register segments.

e) All iWrite, iRead, and iScan commands since the last iApply command, if any, shall reference register
fields in only one TDR.

f) If the TDR to be scanned is within the domain of any register constraints (see B.8.22; including any
constraints specified for the entity or package), the iApply command shall evaluate those constraints, and
if any such constraint with a <constraint severity> of error evaluates to TRUE, the scan shall not be
performed and the test shall be stopped.

NOTE 2—If Level-0 PDL is compiled, constraint checking only needs to be done at compile time. Constraints defined
for a domain that does not include the TDR being scanned need not be evaluated. The accumulating and local fail flags
are not affected by the result of constraint checking. The meanings and actions to be taken for <constraint severity> of
warning or info are not defined by this standard.

g) The <iApply_parm> parameters shall appear either zero or one times each.

h) If the -skipRTI parameter is specified, the iApply command shall not pass through the Run-Test/Idle TAP
controller state between any of the scans required to complete the command and shall end in the Pause-DR
TAP controller state after the last data register scan.

i) After the execution of an iApply command, the accumulated write data defined by all preceding iWrite
and iScan commands shall be retained with the exception of a register field defined as assignment type
PULSE0 or PULSE1; in which case, the field shall be reset to 0.

NOTE 3—After execution of an iApply command, rule c) of C.3.7.1 applies to expect data.

j) In a Level-1 PDL procedure, any time the iApply command is executed, the capture data shall be updated
with data from TDO for the scanned TDR, and sufficient data shall be retained to provide a map of each
register bit that miscompares.

k) When the -shiftPause parameter is specified, an iApply command shall, upon completion of shifting the
TDR, pause the shift by traversing the Shift-DR > Exit1-DR > Pause-DR state sequence and end in the
Pause-DR state.

l) When shift is currently paused due to a prior iApply command with the -shiftPause parameter, an
iApply command shall resume shifting by traversing the Pause-DR > Exit2-DR > Shift-DR state sequence.

m) All iRead, iWrite, iScan, and iSetInstruction commands defining data for a sequence of iApply
commands from the first iApply command with the -shiftPause parameter through the first iApply
command without the -shiftPause parameter shall reference the same TDR using the same instruction.

n) The last iApply command of a procedure shall not have the -shiftPause parameter.

o) The effect of an iApply command shall be the same as if the commands following the iApply command
are not executed until the iApply command has completed.

p) If a TDR can be selected for scanning by more than one instruction, the default instruction or the
instruction specified for this register using the iSetInstruction command shall be used by the iApply
command.

Recommendations

q) When excludable register segments are controlled from a different TDR than the one containing the
excludable segment, they should be explicitly opened before being scanned by an iApply command.

Examples

myreg [12] ... CAPTURES 0bxxxx_xxxx_xx01 <= Error bits.
iWrite myreg 0xf0d ; # same as 0b111100001101
iApply ; # apply write data

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

366
Copyright © 2013 IEEE. All rights reserved.

Rescan to ensure that error bits of default capture value have not changed.
Because field is not excludable/selectable, no iRead required.
iApply ; # repeat last scan.

write to specific device instances
iWrite U1.mybscell 0x1
iWrite U1.myinternalreg 0x1
iApply

iWrite myreg 0x1
iApply FirstReg ; # tag this iApply with the label FirstReg

Init_status register is two bits ("Pass" and "Done")
iRead init_status 0x11
iApply ;

To verify a TDR (perhaps after inclusion of an excluded segment), the following Level-0 PDL could be used:

...
iWrite myTDR 0b10011 ; # pattern is right justified, ‘0’ filled
iApply -shiftPause ; # No update
iRead myTDR 0b10011
iWrite myTDR -safe ; # Could write any desired data here.
iApply ; # No capture, Error indicates the register is not correct.
...

C.3.7.3 iScan command

The purpose of the iScan command is to define write and expect data for a “private” or “black box” register or
register segment in an IC or IP block. A “private” register could be defined in the BSDL REGISTER_ACCESS
attribute, including an initial length, but without any additional structural information in a BSDL
REGISTER_FIELDS or REGISTER_ASSEMBLY attribute. A “private” register segment is defined in a BSDL
REGISTER_FIELDS or REGISTER_ASSEMBLY attribute as a single contiguous field without any detail. Note
that the iScan command cannot be used with “private” instructions unless the registers are documented in the
REGISTER_ACCESS attribute.

A test procedure using an iScan command must take full control of the “private” register or register segment,
including any possible excludable segments. The iScan command supplies the length and both write and expect
data for the “private” register segment, which will be applied by the next iApply command. As the length can
change after each iApply, the length and write data may not be correct for use in a later iApply command.
Whenever a “private” register or register segment is used that is simply undocumented, but does not change length
or violate any of the rules of this standard, iWrite and iRead are preferable to iScan.

The iScan command can be intermixed with iWrite and iRead commands prior to an iApply command as long as
all such commands reference fields in the same TDR. However, once the iScan command is used for a register or
register segment, it must be used prior to every subsequent iApply command accessing that TDR until the end of
the procedure or a reset is issued to restore the initial length. This is required since the write data and even the length
of the “private” register or register segment are unknown from one iApply to the next. It is required that the final
iScan of a procedure provide the correct current length and write data for the register or register segment so that
other procedures may scan that TDR without having to use iScan commands.

A length value defines the length of both the input and output scan data. All four (4) values must be defined for
every iScan command.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

367
Copyright © 2013 IEEE. All rights reserved.

Syntax

<iScan_cmd> ::= iScan <register_inst> <length> -si <scan_data_in> -so <scan_data_out> <ct>

<length> ::= <dec_num1>
<scan_data_in> ::= <bin_num1> | <hex_num1>
<scan_data_out> ::= <bin_numX> | <hex_numX>

Rules

a) The most significant 1 bit in the binary equivalent value of <scan_data_in> and <scan_data_out> shall be
located within the <length> value, and if the length of the binary equivalent value is less than the <length>
value, PDL shall right-justify the value (closest to TDO) and pad the value with zeros for <scan_data_in>
and with X for <scan_data_out>.

NOTE 1—This allows a HEX value to be assigned to a register field with a length that is not an exact multiple of 4, as
long as the excess most significant bits are 0.

b) Any underscore, <whitespace>, or <newline> characters embedded in <scan_data_in> and
<scan_data_out> shall be stripped; that is, the underscore, <whitespace>, and <newline> characters do not
count as characters in the scan data.

c) The iScan command shall specify the length and modify both the expect data and the write data for the
specified register or register field instance, and if a register field is modified by multiple iScan, iRead,
and iWrite commands before an iApply command, the <length> specified by all such iScan commands
shall be the same and the resulting write and expect data shall be that of the last command on a bit-by-bit
basis.

d) The fully qualified name formed by concatenation of the context instance path passed to the current
procedure, any current <prefix path> established by an iPrefix command, and the <register_inst> value of
this command shall be the name of a register or register field defined in the current instance hierarchy.

e) Within an iProc, the final iScan command for a particular <register inst> shall provide the correct current
length and write data for that <register inst> to allow subsequent scanning of the TDR.

NOTE 2—This allows for “private” registers or register fields with variable length or variable configurations. If the
register or register field changes length or configuration, then a final iScan with the correct length value and write data
must be performed so that the correct information is known to PDL. Within an iProc, prior to that final iScan
command for a particular <register inst>, any iApply command scanning the TDR must have an iScan command first
to set the length and write data if the length or configuration of the register or register segment does not match the
previous iScan command.

Examples

myreg1, 2, and 3 are fields in a single TDR.
iScan myreg1 8 -si 0b01010101 -so 0b11xx00xx
iScan myreg2 8 -si 0b11 -so 0b11 ; # scan-in zero-filled to 0b00000011
 # scan-out ‘X’-filled to 0bxxxxxx11
iScan myreg3 6 -si 0xfd -so 0xxx ; # Error: length mismatch
iApply

C.3.8 Flow-control commands

C.3.8.1 iCall command

The iCall command passes control to (calls) another PDL procedure, suspending the current procedure until the
called procedure returns. The procedure name is fully qualified by the instance to which it applies. The instance is
used to look up the associated object in order to identify the specific procedure to call, unless the -direct parameter

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

368
Copyright © 2013 IEEE. All rights reserved.

is specified; in which case, the procedure is assumed to be associated directly with the instance. Each iCall would
concatenate the instance path of the target procedure to the context instance path of the calling procedure and pass
that to the called procedure as the context instance path for the called procedure.

Syntax

<iCall_cmd> ::= iCall [-direct] <proc_string> { <argument_value> } <ct>

<proc_string> ::= [<instance_path> <period>] <proc_name>
<argument_value> ::= <text>

Rules

a) The <instance_path> shall contain only instance names of objects that are instantiated within the object
associated with the calling iProc.

b) The <proc_name> shall be a PDL procedure associated with the object type or instance selected by the
context instance path prepended to the <instance_path>.

c) The <proc_string> shall contain no embedded whitespace or new line characters.

d) The <instance_path> shall be appended to the context instance path of the current (calling) procedure to
form the full context instance path for the called procedure.

NOTE—The context instance path passed into the top procedure is the null string.

Examples

 Portion of U1 PDL Code MYIO.PDL

1
2
3
4
5
6
7
8
9
10
11
12
13
14

iSource MYIO.PDL ;# this first->
iPDLLevel 0 -version \
 STD_1149_1_2013
iProcGroup U1

iProc INIT_SETUP {
configure IOs of type MYIO
 iCall IO(1).setup SATA
 iCall IO(1).AC_mode OFF
 iCall IO(2).setup SRIO
 iCall IO(2).AC_Mode OFF
 iApply
}
iProcGroup cleared upon
return from PDL
<EOF>

iPDLLevel 0 -version \
 STD_1149_1_2013
iProcGroup MYIO ; # MYIO Procedures

iProc setup { swingval } {
 iWrite swing $swingval
}

iProc AC_Mode { onoff } {
 iWrite ACMODE $onoff
}
iProcGroup MYIO cleared upon
return from iSource
<EOF>

A board-level PDL might then include the following, in order to use the above:

iSource U1.PDL ; iSource U2.PDL ; # source files for each chip on board
 ...
 iCall –direct U1.INIT_SETUP ; # Call init_setup for instance U1
 iCall ... ;# subsequent iCalls
 iCall U2.INIT_SETUP ; # Call init_setup for instance U2
 ...
--

A PDL for chip type ABCIC could be as follows:

iPDLLevel 0 -version STD_1149_1_2013 ; # level-0 PDL only

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

369
Copyright © 2013 IEEE. All rights reserved.

iProcGroup ABCIC

iProc init { IO Protocol } {
 iWrite $IO.Channel.Protocol $protocol
}

IO1 through IO4 are instances a “SERDES” within the chip type ABCIC.
See Channel and REGISTER_MNEMONICS for definitions.
iProc init_setup -export { } {
 iCall init IO1 SATA
 iCall init IO2 SRIO
 iCall init IO3 SATA
 iWrite IO4.Channel.Protocol SATA ; # Same as “iCall init IO4 SATA”.
 iApply
}

EOF

A subsequent call for the init_setup procedure of U1 of type ABCIC is

 iCall U1.init_setup ; # Lookup instance U1, call ABCIC.init_setup for U1

C.3.8.2 iRunLoop command

The purpose of the iRunLoop command is to delay any additional register loads or unloads, either by waiting a
minimum absolute amount of time or by generating a minimum number of clock cycles. A typical application for the
iRunLoop command is to generate clocks for a component hardware state machine or built-in self-test (BIST). Of
the instructions defined in this standard, PDL procedures in support of RUNBIST, INIT_RUN, ECIDCODE, and
INTEST might require the iRunLoop command. If multiple iRunLoop commands are specified, additional clock
cycles or wait time will be generated. The command simply documents the delay required, but it does not change
anything in the unit under test.

If a cycle count is specified but the -sck parameter is not, it is assumed that the clock is the test clock (TCK). If a
system clock is specified, the clock name must have been specified in a previous iClock or iClockOverride
command.

Since the clock name supplied with the -sck parameter may be the input to an IP block, it may be the name for an
internal clock net, which may be the result of internal clock multiplication documented with an iClockOverride
command. See C.3.6.3 for a description of how to determine the appropriate clock count in this situation.

Absolute time can be specified in seconds as a real number, and it may be the preferred way of specifying a delay
since the cycle time of TCK is often unknown and system clocks may be difficult to count, which could result in an
estimated delay rather than in actual counting. The delay value defines the minimum time or number of cycles of the
specified clock to be executed; greater delays or overcounting must be allowed.

When waiting for a fixed time, or counting system clock cycles, the recommendation to stop TCK to the test logic in
order to reduce the noise in the system can be documented by using the -tck_off parameter. The allowed stop states
are defined in the BSDL.

Syntax

<iRunLoop_cmd> ::= iRunLoop <delayspec> <ct>

<delayspec> ::= <time_spec> | <cycle_count>
<time_spec> ::= -time <seconds> [-tck_off]

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

370
Copyright © 2013 IEEE. All rights reserved.

<cycle_count> ::= <dec_num1> [-sck <clock> [-tck_off]]
<clock> ::= <src_clock> | <int_clock>

Rules

a) Either <time_spec> or <cycle count> shall be interpreted as a minimum value.

b) If a <cycle count> is specified, but the -sck parameter is not, the TCK test clock shall be counted.

c) If the -time parameter is specified, the time shall be expressed as a real number of seconds.

d) If the -sck parameter is specified, the <clock> shall be a <clock name> of a preceding iClock
command or an <int_clock> of a preceding iClockOverride command in this procedure or a higher
calling procedure.

NOTE—The iClock or iClockOverride command may be at a higher level of the PDL hierarchy; in which case,
the <clock> name would be passed in as an argument on the iProc command.

e) The effect of the iRunLoop command shall be the same as if no further commands in the current
procedure are executed until the iRunLoop command returns.

Recommendations

f) If the -tck_off parameter is specified, the TCK signal to the unit under test should be held at a static
state defined in the BSDL TAP_SCAN_CLOCK attribute during the execution of the iRunLoop
command.

Examples

iRunLoop 2000 ; # generate 2,000 TCK clocks
iRunLoop -TIME 100.0e-6 ; # clock (with TCK) for 100 microseconds

MEMB IP PDL from vendor AbCD
...
iProc membist {clk_name } {
 ...
 iApply
 iRunLoop 1000000 -sck $clk_name ; # clk_name is defined in calling PDL
 ...
}

CHIPA PDL from vendor XYZinc
Uses two instances of MEMB: mem1 and mem2
...
iProc main { } {
 ...
 iClock F125MHz -period 8.0e-9
 # mem2 is an instance of memb
 iCall mem2.membist F125MHz
 ...
 iClockOverride memclk -source F125MHz -FreqMultiplier 2.0
 # mem1 is an instance of memb
 iCall mem1.membist memclk
 ...
}

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

371
Copyright © 2013 IEEE. All rights reserved.

C.3.8.3 iLoop and iUntil commands

The paired iLoop and iUntil commands allow the user to specify PDL statements to be repeated until there is either
a match or mismatch of expected values. The PDL statements between the iLoop and iUntil commands are
executed at least once. When the iUntil command is encountered, PDL either continues past the iUntil command or
returns to the iLoop command based on the local fail flag and the -match or -mismatch parameter.

An iApply command normally sets the accumulating fail flag when expect data mismatch. To prevent that, the
-nofail parameter is coded on the iApply command immediately preceding the iUntil command so that the result of
the comparison is captured only in the local fail flag. The condition to be tested is specified within the loop by one
or more iRead or iScan commands preceding the final iApply command within the loop. Even within the loop,
iRead or iScan commands associated with earlier iApply commands do not affect the conditional test.

The iUntil may never reach a satisfactory condition to exit the loop. IP or IC vendors supplying PDL may not be
able to properly predict the length of time a particular iApply is going to take; hence, the timeout values specified
by the PDL writer may be too short to allow proper looping or too long and then impact test time. The optional
-maxloop <maxcnt> limit may be supplied by the PDL writer to provide an escape from the loop.

iLoop and iUntil provide a looping construct that is solely reliant on expect data comparisons. “While” and “For”
loops provided by Tcl in Level-1 PDL provide access to variables and mathematical expressions of those variables,
which are not available in Level-0 PDL.

NOTE—This style of looping has similarities to “matchloops” on IC ATE, but in this context, they are different in that the
matching or mismatching is done on an IEEE 1149.1 register value. The pitfalls of edge placement, skew, and timing common
for ATE matchloops using IC I/O pins running at speed are not present.

Syntax

<iLoop_cmd> ::= iLoop <ct>
<iUntil_cmd> ::= iUntil <condition> [-maxloop <maxcnt> [<text>]] <ct>
<condition> ::= -match | -mismatch
<maxcnt> ::= <dec_num1>

Rules

a) The iLoop and iUntil commands shall always appear as a pair, and always in that order.

b) At least one iRead or iScan and one iApply command shall appear between the iLoop and iUntil,
possibly within a procedure called inside the loop.

c) The following commands shall not appear between an iLoop and iUntil or within any procedure called
between an iLoop and iUntil:

1) The conditional commands iLoop, iUntil, ifTrue, ifFalse, and ifEnd; that is, conditional commands
may not be nested.

2) The low-level commands iTMSreset, iTRST, and iTMSidle.

d) The following commands shall not appear between an iLoop and iUntil but may appear within a
procedure called between an iLoop and iUntil: iSetInstruction, iClock, and iClockOverride.

e) When the iUntil -mismatch command is executed, control flow shall return to the matching iLoop
command only if all expect data specified by iRead or iScan commands before the last iApply within the
loop did not miscompare with the data scanned out of the TDR (i.e. the local fail flag is PASS).

f) When the iUntil -match command is executed, control flow shall return to the matching iLoop command
if any expect data specified by iRead or iScan commands before the last iApply within the loop did
miscompare with the data scanned out of the TDR (i.e. the local fail flag is FAIL).

g) If the -maxloop <maxcnt> on an iUntil command is exceeded, the accumulating fail flag (retrieved by the
iGetStatus command) shall be set to FAIL and the <text>, if provided, shall be reported in the diagnostic
data for this test failure.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

372
Copyright © 2013 IEEE. All rights reserved.

Example A

In this example, a vendor XYZ is supplying a routine to be called to configure the vendor’s SERDES IP for
INIT_SETUP.

iProc XYZ_SERDES { } {

iWrite Swing Full_swing
iWrite Protocol XAUI
iWrite WE 0
iWrite RD 1
iApply
iWrite WE 1
iApply
iRunLoop 100 ;# clock the statemachine

iLoop
 iWrite RD 0
 iApply
 iWrite RD 1 ;# Toggle RD on SERDES until RDY goes high
 iApply
 iRead RDY 1
 iApply -nofail
iUntil -match -maxloop 5 “SERDES initialization timed out”

#; I/O are ready to use
}

Example B

iProc XYZ_EXIO { } {

Loop until non-zero voltage appears

iLoop ;# repeat

 iWrite ADDR VREFADDR
 iWrite WE 0
 iApply
 iWrite WE 1
 iApply

 iRead VREF-VOLTAGE 0x00 ;# Loop until VREF is ON
 ;# any non-zero value
 iApply -nofail
iUntil -mismatch -maxloop 10 “VREF-VOLTAGE never turned on”

}

C.3.8.4 ifTrue, ifFalse and ifEnd commands

ifTrue and ifFalse commands allow Level-0 PDL branching based on the local fail flag, which reflects the
comparison of captured data with expected data of the last iApply. ifTrue and ifFalse may appear in any order to
allow preferred positioning of PDL commands. The ifEnd command marks the end of the conditional commands.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

373
Copyright © 2013 IEEE. All rights reserved.

ifTrue and ifFalse are designed for the IP or IC PDL writer to provide a basic ability to test for an expected value
and perform an action based on that conditional result. It provides a basic flow control mechanism for Level-0 PDL
that is dependent only on expect data comparisons. It does not need variables, and therefore, it is more contained
than the Level-1 PDL or Tcl “if-else” commands.

An iApply command normally generates a failure when expect data mismatch. To prevent that, the -nofail
parameter is coded on the iApply command immediately preceding the ifTrue or ifFalse commands so that the
result of the comparison is captured only in the local fail flag without generating a failure. If the last iApply
-nofail had no miscompares, then the commands between the ifTrue and either ifFalse or ifEnd are executed.
Otherwise the commands between ifFalse and ifTrue or ifEnd are executed. The order of the ifTrue and ifFalse
commands is immaterial, and either can be omitted or have an empty set of commands following it.

Syntax

<ifTrue_cmd> ::= ifTrue <ct>
<ifFalse_cmd> ::= ifFalse <ct>
<ifEnd_cmd> ::= ifEnd <ct>

Rules

a) No more than one ifTrue command and/or one ifFalse command shall be associated with one subsequent
ifEnd command.

b) ifTrue, ifFalse, and ifEnd shall not be allowed after an iMerge -begin and before an iMerge -end
command.

c) The iLoop, iUntil, ifTrue, ifFalse, and ifEnd commands shall not appear between any two of ifTrue,
ifFalse, and ifEnd.

d) iApply, iWrite, iRead, and iScan shall be the only commands allowed between any two of ifTrue,
ifFalse, and ifEnd.

e) For the ifTrue command, when the local fail flag is PASS, the commands between the ifTrue command
and either the ifFalse or the ifEnd command, whichever occurs first, shall be executed.

f) For the ifFalse command, when the local fail flag is FAIL, the commands between the ifFalse and either
the ifTrue or the ifEnd command, whichever occurs first, shall be executed

Example A

In this example, XYZ company produces a SERDES IO. SERDES IO is compatible with ABC standard 1.0 and 2.0.
Two new ABC standards are in discussion. XYZ company likes to keep a small version number as part of the I/O
such as to be able to recognize changes from one version of the IP to another.

-- Excerpts from BSDL Package Body
attribute REGISTER_MNEMONICS of SerdesH : package is
 "TERM (Test (0b110) < Test Mode Termination >, " &
 " CML (0b011) < CML Termination >, "&
 " Dis (0b001) < Termination current disabled >, "&
 " rsrvd (Others) <Reserved - Undefined behavior >), " &
 "ONOFF (ON (1) < enable >, " &
 " OFF (0) < off >), " &
 "CMMV (Norm_cm (1) < Normal mission mode >, " &
 " Test_cm (0) < Test mode CMMV set to 0V >), " &
 "SWING (1200mV (0b11) <Boundary Scan Output Swing, mVdfpp>, " &
 " 1000mV (0b10), " &
 " 800mV (0b01), " &
 " 700mV (0b00))" ;&

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

374
Copyright © 2013 IEEE. All rights reserved.

attribute REGISTER_FIELDS of SerdesH : package is
 "init_data[11] ("&
-- TDI
-- "*" = Value is required but deferred to BSDL level
 "(VERSION [4] IS (10 DOWNTO 7) NOPO), "&
 "(UPD [1] IS (6) DEFAULT(ONOFF(OFF) RESETVAL(ONOFF(OFF)) NOPI
PULSE0), "&
 "(TERM2 [3] IS (3, 5, 4) DEFAULT(TERM(*)) NOPI), "&
 "(TERM1 [3] IS (5 DOWNTO 3) DEFAULT(TERM(*)) NOPI), "&
 "(CMMV [1] IS (2) DEFAULT(CMMV(*)) NOPI), "&
 "(SWING [2] IS (1 DOWNTO 0) DEFAULT(SWING(*)) NOPI) "&
 ")";

#Start of PDL for Package.
iProc INIT_SETUP { } {
iRead VERSION 0b01
iApply -nofail

ifTrue ;# The first version uses TERM1
 iWrite TERM1 Test
ifFalse ;# Version 2 the bits are swizzled
 iWrite TERM2 Test ; # set the bits differently on this rev
ifEnd

iWrite SWING 800mv
iWrite CMMV Test_cm
iWrite UPD ON
iApply
iWrite UPD OFF ;# prevents further updates
iApply
}

Example B

In this example, the IC vendor has two different settings based on the IC fuse values.

iProc initial { } {
iRead fuse(0) 0b0

iApply -nofail

ifTrue ;# Rev 0 has several features not enabled
 iCall init_setup1
ifFalse
 iCall init_setup2
ifEnd
}

C.3.9 Optimization commands

C.3.9.1 iMerge command

The iMerge command is used to identify which called procedures could be optimized to minimize the number of
scans required. Typically, these would be procedures that are independent and operate on different fields of the same
TDR; in which case. only a single scan would be required to satisfy iApply commands in multiple procedures. This

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

375
Copyright © 2013 IEEE. All rights reserved.

command is not intended to either require or restrict merging by PDL; it simply documents the PDL provider’s
belief that this block of procedure calls is a prime candidate for merging.

By default, all procedures are sequential. This standard does not define any merging algorithms, and merging is not
required for compliance. It is also compliant to do merging outside the iMerge block. The primary requirement for
merging is that the end results of merged scans be the same as the results without any merging.

Syntax

<iMerge_cmd> ::= iMerge <block_flag> <ct>
<block_flag> ::= <-begin> | <-end>

Rules

a) Both the iMerge -begin and iMerge -end commands shall appear if either does, and the iMerge -begin
command shall appear before an iMerge -end command.

b) No other PDL command shall exist between an iMerge -begin and iMerge -end other than the iCall,
iNote, iTake, or iRelease commands.

c) If procedures called between an iMerge -begin and iMerge -end are merged, the state of the write data
and the UUT at the iMerge -end command shall be identical to the state that would exist if the merging
had not occurred and the procedures were executed sequentially in the stated order.

Example

In this example, a single TDR contains defined fields for two cores with PLLs, and one I/O IP block with AC
coupling, which can be turned off as shown in Figure C-5.

Figure C-5—iMerge example

First, here are the two files from the XYZ IP provider for setting up the PLL and IO objects. The PLL in the
XYZ_CORE requires a rising edge on the WE bit to move the scanned data into the PLL control registers, meaning
two scans of the PLL_WE register field are required.

iPDLLevel 0 -version STD_1149_1_2013 ; # level-0 PDL only
iProcGroup XYZ_CORE

iProc setpll { val } {
PLL_WE is 1 bit and PLLREG is 1 bit

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

376
Copyright © 2013 IEEE. All rights reserved.

 iWrite PLL_WE 0
 iWrite PLLREG $val
 iApply
 iWrite PLL_WE 1
 iApply
}
#end of file

iPDLLevel 0 -version STD_1149_1_2013 ; # level-0 PDL only
iProcGroup XYZ_IO

iProc setACMode { val } {
 iWrite AC_MODE $val
 iApply
}
#end of file

Here are some of the top-level test commands calling the above procedures. If there was no optimization, then there
would be five scans of the TDR (one for each iApply in each called procedure; the example ignores the possibility
of needing to deal with IR scans or excluded segments in this example):

iSource XYZ_CORE.PDL
iSource XYZ_IO.PDL
...
iMerge -begin
U1.Core1 is an instance of XYZ_CORE
 iCall U1.Core1.setpll OFF ;# XYZ_CORE one
U1.Core2 is an instance of XYZ_CORE
 iCall U1.Core2.setpll OFF ;# XYZ_CORE two
U1.i1 is an instance of XYZ_IO
 iCall U1.i1.setACMode OFF ;# XYZ_IO one
iMerge -end
...

Given the procedure calling sequence in the top-level commands, there would be five scans of this TDR. While
allowed, it is hardly optimal. Since the procedures are independent of each other, and operate on different instances
of the register fields, ideally it would be beneficial to have these optimized for execution. During optimization, the
iMerge command suggests that the PDL processor merge the three calls by aligning the scans of the TDR in each
procedure, which results in two TDR scans as shown in the table.

 U1.Core1.PLLREG U1.Core1.PLL_WE U1.Core2.PLLREG U1.Core1.PLL_WE U1.i1.AC_MODE

Scan1 OFF 0 OFF 0 OFF

Scan2 OFF 1 OFF 1 OFF

C.3.9.2 iTake and iRelease commands

The iTake command specifies a resource, which is to be exclusively reserved for use by a single PDL routine. The
iRelease command relinquishes control of a resource, which had been exclusively reserved by an iTake command.

The iTake and iRelease commands, like the iMerge command, simply provide guidance to PDL so that any
merging can be optimized without resource conflicts. It would be an error if two procedures requiring the same

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

377
Copyright © 2013 IEEE. All rights reserved.

resource at the same time were scheduled to execute in parallel. Some resources, particularly a <port ID>, are only
available to PDL procedures associated with an IC. If no merging is being performed, they are ignored.

Syntax

<iTake_cmd> ::= iTake <resource> <ct>
<iRelease_cmd> ::= iRelease <resource> <ct>
<resource> ::= <reg_resource> | <port_resource> | <name_resource>
<reg_resource> ::= -register <register_inst>
<port_resource> ::= -port <port ID>
<name_resource> ::= -name <PDL_identifier>

Rules

a) The iRelease command shall follow an iTake command for the same <resource>.

b) If the iTake command appears within a procedure, an iRelease command for the same <resource> shall
appear before the end of the procedure.

c) Two procedures shall not be merged in a way that both take the same resource at the same time.

d) For a <port_resource>, the fully qualified name, formed by the concatenation of the context instance path
passed to the current procedure, any current <partial path> established by an iPrefix command, and the
<port ID> value of this command shall match a <port name> defined in the current instance hierarchy.

e) For a <reg_resource>, the fully qualified name, formed by the concatenation of the context instance path
passed to the current procedure, any current <partial path> established by an iPrefix command, and the
<resource> value of this command shall be the name of a register or register field defined in the current
instance hierarchy.

f) For a <name_resource>, a given <PDL_identifier> shall be used to mean the same resource wherever used
in the set of PDL procedures for a UUT.

NOTE—This <name_resource> is not defined in BSDL.

Example

...
iProcGroup PLL

iProc PLLCONFIGURE { val } {
 iWrite PLLEN $val
 iApply
}

...

iProc IOSetup { } {

 iTake PLLEN ; # if this routine is merged, need PLLEN to be ON
 ; # until I/O setup can complete
 iWrite PLLEN ON ; # enable PLL such that I/O state machines are clocking
 iApply
 iWrite ACMode OFF
 iApply
 iLoop
 iRead Rdy
 iApply -nofail
 iUntil -match

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

378
Copyright © 2013 IEEE. All rights reserved.

 iRelease PLLEN

 iWrite Swing 400mv ; # no state machine required, direct voltage setting
 iApply ; # this iApply can be merged
}
#end of file

top level PDL
...
iMerge -begin ;# merging is requested, but the iTake prevents it.
 # i1 is an instance of PLL
 iCall i1.IOSetup
 iCall i1.PLLCONFIGURE OFF
iMerge -end
...

Both of the procedures PLLCONFIGURE and IOSetup attempt to set the PLLEN field, and to conflicting values.
The iTake command in IOSetup reserves the PLLEN field for its exclusive use, and the iApply command in
PLLCONFIGURE cannot be merged until the final iApply in IOSetup, which then allows the fields Swing and
PLLEN to be set at the same time.

C.3.10 Miscellaneous commands

C.3.10.1 iNote command

PDL provides two mechanisms for comments. Strings intended for documenting PDL source are delimited by the
<hash_mark> character “#” and the <newline> character. iNote, with the -comment parameter, is a command for
passing detailed comments to any output vector format to improve readability and debug of such vectors. For
instance, if PDL is being converted into scan-load vectors for an IC tester, it may be possible to embed this comment
information in the final vector set. iNote with the -status parameter is a command for passing status or progress
comments to the system.

As always, substitution variables appropriate for the current PDL level can appear in the <text>.

Syntax

<iNote_cmd> ::= iNote <purpose> <text> <ct>
<purpose> ::= -comment | -status

Recommendations

a) The iNote -comment command should be used to provide detailed comments in any PDL that may be
used to generate test vectors.

b) The iNote -status command should be used to denote important milestones in the test flow.

Example A

#this comment is not processed, the iNote commands below are.
iNote -comment "Re-setting WE from 1 to 0\n"
iNote -status "Completed writing initialization data to I/O\n"
iWrite WE 0
iApply
end

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

379
Copyright © 2013 IEEE. All rights reserved.

Example B

iProc Write_WE { val } {

iNote -comment "Setting WE = $val\n"
iWrite WE $val
iApply

}

C.3.10.2 iSetFail command

Generally, expected results are compared with actual results and a fail flag is set when the two are different. Each
time this happens, the tester can simply record enough information to allow later diagnostics or can stop the test.
PDL maintains a copy of the accumulating fail flag, and the iSetFail command allows that copy of the
accumulating fail flag to be set, the optional -quit parameter specifies whether the tester should continue or stop,
and the optional <text> string can contain information supporting debug and diagnostics. The iSetFail command is
intended to be used within conditional commands that test for conditions beyond the automatic comparison of
captured with expected data that occurs during an iApply. The -quit parameter is recommended if the failing
condition could damage a component.

Syntax

<iSetFail_cmd> ::= iSetFail [-quit] [<text>] <ct>

Rules

a) The iSetFail command shall set the accumulating fail flag of the test to FAIL.

b) If the -quit parameter is also provided, the test shall stop.

Recommendations

c) The <text>, if provided, should be treated as diagnostic information for the failure.

d) The -quit parameter should be used if the detected failure condition could damage any components in the
unit under test.

Examples

...
iSetFail -quit {Chip temperature 3 is out of range, quitting.}
...

...
iSetFail "SRIO voltage on $instance incorrectly set to $swing."
Quotes permit $parm substitution
...

C.3.11 Low-level commands

PDL is, by design, a very TDR-centric language. Details such as which instruction needs to be loaded and TAP
controller state sequences are deliberately hidden. There are, however, a few low-level commands provided for
special circumstances. These include the reset commands (iTRST and iTMSreset) and a command to return from
any other TAP controller state to the Run-Test/Idle (iTMSidle). The -skipRTI and -shiftPause parameters of the
iApply command also support low-level functions.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

380
Copyright © 2013 IEEE. All rights reserved.

These commands are intended to support specific capabilities of this standard not directly supported by the typical
iApply type scan. They are not a general low-level test capability. For example, resetting the entire unit under test is
typically handled by the test environment, and therefore, use of reset commands is generally discouraged within
PDL procedures intended for reuse.

In general, none of these commands can be merged for test scan optimization, but they must be in procedures that
are run stand-alone.

C.3.11.1 iTMSreset and iTRST commands

The purpose of the iTMSreset command is to move the TAP controller to the Test-Logic-Reset state by holding the
TMS TAP port high for at least five consecutive rising edges of the TCK TAP port. It does not use the TRST* TAP
port.

The purpose of the iTRST command is to move the TAP controller to the Test-Logic-Reset state by holding the
TRST* TAP port low. It does not use the TCK and TMS TAP ports.

In either case, write data for all test data register fields with a specified reset type are set to the specified reset value
as appropriate for the type of reset defined for the register field (see B.8.19). Test-Logic-Reset becomes the starting
TAP controller state for the next command.

Note that these commands are intended to be used sparingly and typically in test procedures that exercise the test
logic itself and verify that it is functional. In particular, such routines might test the response of the TAP and TMP
controllers and the instruction and test data registers to the reset commands.

Normally, both the process of preparing the unit under test (UUT) for test, including any initializing resets, and the
process of returning the UUT to nontest operation, including any needed resets, is performed outside of any specific
test procedures such as init_setup. Use of either reset command within a procedure also effectively prevents that
procedure from being executed in parallel with other procedures. They are, therefore, not allowed in any of the
predefined procedures defined in this standard (see iProc, C.3.5.4).

Syntax

<iTMSreset_cmd> ::= iTMSreset <ct>

<iTRST_cmd> ::= iTRST <on_off> <ct>
<on_off> ::= -on | -off

Rules

a) A reset (moving the TAP controller state to Test-Logic-Reset) shall not be performed by any procedure
except in response to an explicit iTMSreset or iTRST command.

b) The iTRST -on command shall cause the TRST* TAP port, if provided, to be driven to its active state
(logic low).

c) The iTRST -off command shall cause the TRST* TAP port, if provided, to be driven to its inactive state
(logic high).

NOTE 1—An iRunLoop command can be used between the iTRST -on and iTRST -off commands to provide a
minimum of a few TCK clock cycles of active TRST*. The timing of the iTRST -on and iTRST -off commands, back
to back, is undefined and could be very brief.

d) The iTMSreset command shall cause the TMS TAP port to be driven to a logic high for a minimum of
five consecutive rising edges of the test clock TCK.

e) The iTMSreset or iTRST commands shall set the appropriate RESETVAL values into the write data as
specified in the BSDL (see B.8.20) and shall set the currently active instruction as specified in the BSDL.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

381
Copyright © 2013 IEEE. All rights reserved.

f) The iTMSreset or iTRST commands shall not appear in any of the predefined procedures specified in
C.3.5.4.

g) The iTMSreset or iTRST commands shall not appear within a procedure containing the iMerge
command or within any procedure called from a procedure within the iMerge command.

NOTE 2—The TRST*, TMS, and TCK TAP ports may be shared across multiple components in a unit under test, so
the reset commands, even if written in the PDL for a single component, may affect multiple components and effectively
are equivalent to an iTake command for all such components and the resources on those components.

h) All procedures containing the iTMSreset or iTRST commands shall be defined by an iProc command
with the -TMSreset or -TRSTreset parameter, respectively.

NOTE 3—The use of these parameters identifies procedures that include a reset command, enabling tools to identify
and limit these procedures to the special purposes for which they are intended.

Recommendations

i) When a register field is no longer needed by a PDL procedure, the register field should be set to an
appropriate state using an iWrite command possibly with one of the parameters -reset, -safe, or
-default.

Example

turn power on
iTRST -On ; # Assert TRST* low
iRunLoop 1000 ; # wait until power is stable
iTRST -Off ; # de-assert TRST*

Reset the test logic
iTMSreset ; # move to the Test-Logic-Reset TAP controller state

C.3.11.2 iTMSidle command

The iTMSidle command simply moves the TAP controller state to the Run-Test/Idle TAP controller state. This may
be used, for example, to start a test that requires the Run-Test/Idle TAP controller state (such as RUNBIST), or to
leave the Test-Logic-Reset TAP controller state after one of the reset commands.

Syntax

<iTMSidle_cmd> ::= iTMSidle <ct>

Rules

a) If the current TAP controller state is not Run-Test/Idle, the iTMSidle command shall traverse any allowed
sequence of TAP controller states to reach the Run-Test/Idle state.

Examples

Reset the test logic
...
iTMSreset ; # move to the IEEE 1149.1 state of Test-Logic-Reset
iRunLoop 30 ; # Stay in Test-Logic-Reset for thirty TCK cycles
iTMSidle ; # move to the IEEE 1149.1 state of Run-Test/Idle
...

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

382
Copyright © 2013 IEEE. All rights reserved.

Perform memory BIST in Run-Test/Idle TAP controller state
...
iWrite memBist ... ; # Load bist instruction and load control register
iApply -skipRTI ; # Do not go through RTI yet!
iTMSidle ; # Start the test
...

C.4 PDL Level 1 command reference

The Syntax, Rules, Recommendations, and Permissions in this clause are normative and provide the formal
definition of Level-1 PDL commands. Introductory text, Notes, and Examples are descriptive.

Level-0 PDL lacks the ability to return data from a register, to use variables, logical expressions, while/for loops,
and other constructs that may be necessary to fully describe the operation of some on-chip IP blocks and their
related diagnostics. This clause describes the additional commands that are part of Level-1 PDL in this standard.
Level-1 PDL includes the commands of Level-0 PDL, Level-1 PDL, and the open-source Tool Command Language
(Tcl).

Support of Level-1 PDL is not required for compliance with this standard. PDL intended to describe production test
procedures may not be able to support the additional complexity of Tcl, where PDL intended to describe interactive
debug procedures would profit from such support.

No single language is perfect for all situations, or preferred by all practitioners, but the choice of Tcl as the base for
Level-1 PDL is not arbitrary. The Tcl language is already in extensive use in the engineering community, and Tcl is
itself extensible; it is a publicly available language and interpreter. IEEE 1801 specifies new Tcl commands for
describing the power intent of a design. Tcl procedures can be interfaced with other languages as needed. As a
result, it is an acceptable language for reuse and interchange of procedure documentation.

At the same time, nothing in this standard or in the Tcl language itself would preclude calling PDL from other
languages, or translating PDL into another language. As far as this standard is concerned, PDL is the language for
documenting and exchanging IEEE 1149.1-compliant procedures in a standard format.

There are many sources of information on Tcl on the Internet as well as in textbooks and articles. There is no formal
standard.9

There is a data retrieval command and a status retrieval command in the Level-1 PDL commands as shown in
Table C-3.

9 For a summary of current Tcl language syntax, see the following Internet locations: http://wiki.tcl.tk/10259 and http://wiki.tcl.tk/299. For more
details on using the Tcl language, see the following Internet location: http://sourceforge.net/projects/tcl/.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

383
Copyright © 2013 IEEE. All rights reserved.

Table C-3—PDL Level-1 commands

Command Parameters Purpose

iGet

<register>
 [-si | -so | -expect | -fail]
 [-hex | -bin | -dec | -
mnem]

Return a Tcl string representing the value associated with a register in the
specified format.

iGetStatus [-clear] Get the PASS/FAIL status since the last time it was cleared.

C.4.1 Level-1 PDL operation

Just like Level-0 PDL, Level-1 PDL maintains data for writing to the register or register field (set via an iWrite or iScan
command) and data that are expected from the register (set via an iRead, iScan, or BSDL CAPTURES specification).
In addition, Level-1 PDL maintians TDO data scanned out during the most recent scan (captured by an iApply
command), and sufficient information to return the bit-by-bit failure information (also captured by an iApply command).

Other than this change in the behavior of the iApply command, all Level-0 PDL commands behave the same in Level-1
PDL as they do in Level-0 PDL.

C.4.2 iGet command

Comparing expected data to received data in Level-0 PDL has limitations. In many test scenarios, the expected data
are not known or a single expected value is not possible. Level-1 PDL includes an iGet command, which acts like a
function and returns the value of a register or register segment from the values currently maintained by Level-1 PDL
procedures. Returning and manipulating values requires variables and a complete language, so this standard
specifies Tcl to be used with the PDL commands.

There is a difference between Level-0 PDL and Level-1 PDL that is important to the operation of the iGet
command. As noted, Level-0 PDL itself is restricted so that it may be compiled (or translated, the two terms are used
synonymously here) into test programs suitable for manufacturing (production) test. These test programs usually run
on automated test equipment (ATE), sometimes referred to as load-and-go or memory-behind-pins testers. While
Level-0 PDL will maintain the write and expect data during compilation of a procedure, the potential output
languages typically do not support maintaining such data during execution of the compiled test program. Thus, the
iGet command cannot rely on being able to access that write or expect data maintained by a compiled Level-0 PDL
procedure, even if called from a Level-1 PDL procedure. The iGet command is therefore restricted to returning
values maintained by Level-1 PDL procedures, or Level-0 PDL procedures that are interpreted as if they were
Level-1 PDL procedures. On occasion, in an interactive environment, this may require an additional scan of a TDR
already scanned in a compiled Level-0 PDL procedure in order to retrieve data for the iGet command to access.

Level-0 PDL procedures can also be called from Level-1 PDL procedures in an interactive mode where they are
interpreted as if they are Level-1 PDL procedures instead of using the precompiled version, and the iGet command
could then access the data maintained by the combination of the Level-0 and Level-1 PDL procedures.

iGet returns a Tcl string representing the current value associated with a register and maintained by a Level-1 PDL
procedure. By default, iGet returns the data most recently scanned out (the -so) of the given register in the
hexadecimal (-hex) format.

Optionally the write (-si), expected (-expect), or miscompared bit-by-bit (-fail) values may be specified as
arguments to return additional information about the register.

The empty string will be returned as an error indication when the mnemonic format is requested but PDL cannot
match the register value to a mnemonic identifier, and when expected data containing don’t-care bits (X or x) is

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

384
Copyright © 2013 IEEE. All rights reserved.

requested in the decimal format. When the hexadecimal format is requested, the character U, which is not an
allowed hexadecimal character, will be returned for any hexadecimal character that cannot be represented due to
don’t-care bits.

A radix may be specified using the keyword -hex for hexadecimal, -bin for binary, -dec for decimal, or -mnem
for mnemonic. iGet is used in conjunction with iApply, iWrite, iRead, and/or iScan commands. The iRead
command followed by an iApply command forces the target register to be scanned such that the contents of the
register can be examined.

Syntax

<iGet_cmd> ::= iGet [<data_source>] [<format>] <register_inst> <ct>
<data_source> ::= -si | -so | -expect | -fail
<format> ::= -hex | -bin | -dec | -mnem

Rules

a) The iGet command shall return a string, for the specified <register inst>, of the appropriate current value
(based on the <data_source> parameter) in the format specified (by the <format> parameter), and if either
of these parameters is not specified, then the default for <data_source> shall be -so and the default for
<format> shall be -hex.

b) The fully qualified name formed by concatenation of the context instance path passed to the current
procedure, any current <partial path> established by an iPrefix command, and the <register_inst> value of
this command shall be the name of a register or register field defined in the current instance hierarchy.

c) When the -so <data_source> parameter is specified or no <data_source> is specified, the iGet command
shall return the value captured for the specified register during the most recent iApply in a Level-1 PDL
procedure, or shall return the character X on a bit-by-bit basis if some or all bits of the specified register
have not been captured by a previous iApply command in a Level-1 PDL procedure or a Level-0 PDL
procedure treated as a Level-1 PDL procedure.

NOTE 1—X would not normally appear in captured data. There could be a situation where a segment is excluded, and
therefore has never been scanned, while the rest of the register is scanned, and X is substituted for the excluded and
never scanned bits.

d) When the -si <data_source> parameter is specified, the iGet command shall return the current write value
of the specified register accumulated in a Level-1 PDL procedure or a Level-0 PDL procedure treated as a
Level-1 PDL procedure.

e) When the -expect <data_source> parameter is specified, the iGet command shall return the current expect
value of the specified register accumulated in a Level-1 PDL procedure or a Level-0 PDL procedure treated
as a Level-1 PDL procedure.

NOTE 2—Initialization of register fields is defined in C.3.11.1 and in C.3.7.1. After an iApply, the expect data reverts
to the initialized state as expected values set with iRead are cleared after an iApply.

f) When the -fail <data_source> parameter is specified, the iGet command shall return a value with a 0 for
each bit of the specified register that matched or where the expected data were X, and return a 1 for each bit
that that did not match, for the most recent execution of an iApply command in a Level-1 PDL procedure
or a Level-0 PDL procedure treated as a Level-1 PDL procedure.

g) When the -mnem <format> parameter is specified, the iGet command shall return the <mnemonic
identifier> with a value matching the current <data_source> value from the <mnemonic definition>
associated with the <register_inst> of this command, with the match to be performed as follows:

1) Any X in the mnemonic value shall match any value in the corresponding position of the data value.

2) The highest order 1 bit in the mnemonic value shall fit within the length of the <register inst>.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

385
Copyright © 2013 IEEE. All rights reserved.

3) If the mnemonic value length is less than the length of the <register inst>, then the mnemonic value
will be right-justified and padded with 0 bits prior to the comparison.

h) When the -mnem <format> parameter is specified, a <register inst> that does not have a mnemonic
definition for the given field of a register or with a data value that does not match a mnemonic shall return
the single character string U.

i) When a -bin value is being returned, the first two characters of the string shall be 0b.

j) When a -hex value is being returned, the first two characters of the string shall be 0x.

k) When a -hex value is being returned, and the register or register field length is not an exact multiple of 4
bits, the extra high-order bits in the hex value shall be set to 0.

l) When a -hex value is being returned, and a hex digit contains a mixture of bits that are X and 0 or 1, then
the hex digit shall be set to U (Undefinable, an error).

m) When a -dec <format> parameter is specified, and the register or register field value contains an X or x
character, the value returned shall be the single character string U.

Example A

NOTE—In all of the examples, the iGet and iGetStatus commands are shown enclosed in square brackets. This is Tcl syntax
that forces the evaluation of what is in the square brackets before the rest of the expression, essentially passing the result of the
expression inside the square brackets to the rest of the expression.

iRead U1.device_id ; # Initialized to first value from BSDL
iApply

Assume the device_id register has the following values in the scan frame after the above iApply:

Register -si (iWrite) -expected (iRead) -so
device_id 0x55555555 0xX4345601 0x14345601

set result [iGet U1.device_id] ; # Default is -so -hex
 puts "Device ID = $result"

The output would be Device ID = 0x14345601.

set result [iGet -si U1.device_id]
 puts "The value written to DEVICE_ID is $result"

The output would be “The value written to DEVICE_ID is 0x55555555.”

Example B

iRead U1.device_id
iApply

set result [iGet U1.device_id]

 if {$result == 0x14345601} {
 iCall U1.run_testv1 ;# run the procs that work with rev1
 }
 elseif {$result == 0x04345601} {
 iCall U1.run_testv0 ;# run the older tests which are limited
 }
 else {

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

386
Copyright © 2013 IEEE. All rights reserved.

 puts "Found new U1.device_id = $result. No tests were executed"
 }

Example C

swing and protocol are register fields associated with mnemonic
descriptions having the values shown in the comments.
set val1 [iGet -si -mnem swing] ; # 500mv, 1000mv 1500mv
set val2 [iGet -si -mnem protocol] ; # SRIO, SATA

if { $val1 == "500mv" && $val2 == "SRIO" } {
 puts "The I/O cannot be set to 500mv in SRIO mode"
} ; # This test could be done before the iApply to check for correct values.

Example D

iProc ecid { } {

iWrite ECIDEN 1 ; # ECIDEN is a one-bit enable bit for reading the ECID
iLoop
 iRead ECIDRDY 1 ; # Status bit
 iApply -nofail
iUntil -match

iRead ECID ; # Not needed if ECIDEN, ECIDRDY and ECID are in the same TDR.
iApply ; # The ECID value will be there when exiting the loop.
return [iGet ECID]
}
...
set result [iCall U1.ecid]
puts "ECID = $result"

The output would be ECID = 0x10014356, assuming that is the value for the ECID.

Example E

routine to read the strapping input pins and set I/O voltage for
related I/O to proper voltage for interconnect testing

iProcGroup XYZ_IO

iProc set_IO_voltage { } {
 iRead IO_VSEL_Pins ; # Five bit value tells us the strapping for I/O
 iApply ; # No expected value, just get it.

 # If pins are not set correctly, smoke can result.
 set result [iGet IO_VSEL_Pins]
 if {$result == 0b100} { ;# each bit sets a different voltage
 iWrite voltage 1.8V
 iApply
 }
 elseif {$result == 0b010} {
 iWrite voltage 2.5V
 iApply

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

387
Copyright © 2013 IEEE. All rights reserved.

 }
 elseif {$result == 0b001} {
 iWrite voltage 3.3V
 iApply
 }
 else {
 iSetFail -quit "Invalid value $result on IO_VSEL pins, terminate test."
}
#end of file

Assuming that the above procedure was exported, then the test engineer in his board-level procedure might include
the equivalent of:

board level call to set io1
U1.IO1 is an instance of XYZ_IO
iCall U1.IO1.set_IO_voltage

Example F

This example shows how an IC or IP PDL provider might add error checking to the procedure. Note that this would
be before the iApply command that actually scanned the values into the register.

...; # Other iWrite commands for this register.

set val1 [iGet -si -mnem U1.DOMSELA] ; # DOM A ON
set val2 [iGet -si -mnem U1.DOMSELB] ; # DOM B ON
if { $val1 == "ON" && $val2 == "ON" } {
 puts "ERROR Domain A cannot be turned on when Domain B is on"
 iWrite U1.DOMSELA OFF
 # return - turn one of them off and optional return
}

iApply
...

Example G

iProc ecid {eFuseLoadTime} {

#Pulse System reset
(reset_enable, reset_control are fields in the reset_select TDR)
iWrite reset_enable 0
iWrite reset_control 0
iApply
iRunLoop 10 ; # Wait for 10 TCK cycles
iWrite reset_control 1
iApply

eFuse load starts on de-assertion of reset
iRunLoop -time $eFuseLoadTime
iRead ECID ; # No expect data, just fetch the register value.
iApply

return [iGet ECID]
}

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

388
Copyright © 2013 IEEE. All rights reserved.

C.4.3 iGetStatus command

The iGetStatus command returns a four-character string of PASS or FAIL indicating the accumulated status of the
PDL application at the time of the call. The iGetStatus command is used to get the current pass/fail status based on
any miscompares that have been detected since the last time the status was set to PASS.

The accumulated status is set to PASS at the beginning of the top-level PDL program. It becomes FAIL when an
iApply produces miscompares based on expected data whether set with iRead, with iScan, or by initialization
rules. The accumulated status may also be set to FAIL by the iSetFail command. The -clear option of the
iGetStatus command clears the accumulating fail flag back to PASS after the current value has been returned.

Syntax

<iGetStatus_cmd> ::= iGetStatus [-clear] <ct>

Rules

a) The iGetStatus command shall return the accumulating fail flag as a string value of PASS if there have
been no miscompares in any iApply command since the status was last cleared, and shall return a string
value of FAIL otherwise.

b) If the -clear parameter is specified, the accumulating fail flag shall be cleared after determining the value
to return.

Example

Consider the example below. RegA and RegB are 3-bit fields in the same TDR and always capture 0b111.

iWrite RegA 0b000
iWrite RegB 0b111
iRead RegA 0b100
iRead RegB 0b010
iApply
set result [iGetStatus]
if { $result == "FAIL" } { puts "test failed" }

iGetStatus returns FAIL because there were miscompares.

C.5 Example BSDL and PDL for the use model

The following are stripped down examples of the different files that would be provided for the Use Model board in
Figure C-1 reproduced in Figure C-6 for convenience, and discussed in C.2.1. These files come from multiple
sources: the suppliers of the IP, the component suppliers, and the board test engineer.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

389
Copyright © 2013 IEEE. All rights reserved.

Figure C-6—Example circuit board

C.5.1 BSDL Packages for IP

These files permit the IP supplier to control the definition of the TDR or TDRs in the IP.

MEMB

package MEMB is
 use STD_1149_1_2013.all;
end MEMB;

package body MEMB is
 use STD_1149_1_2013.all;
 ...
attribute REGISTER_MNEMONICS of MEMB : entity is
 "Mode (chkbrd (0B000) <Checkerboard>, "&
 " Walk1 (0B001) <Walk 1/0 >, "&
 " GalPat (0B010) <GALPAT >, " &
 " GALROW (0B011) <FC on Write recovery>, "&
 " GALCOL (0B100) <FC on Write recovery>, "&
 " MATS+ (0B101) < March Algorithm >, "&
 " MOVI (0B110) < Moving Invert >, "&
 " March_C- (0B111) <Unlinked CFins >), "&
 "Run (Start (1), " &
 " Stop (0)), " &
 "Result (Pass (0B11), " &
 " Fail (0B01), " &
 " Not_Done (0BX0))";

 attribute REGISTER_FIELDS of MEMB : package is
 "MBist [6]("&
 "(Algorithm [3] IS (5 DOWNTO 3) DEFAULT (Mode (Walk1))), "&
 "(Command [1] IS (2) DEFAULT (Run (Stop))), "&
 "(Status [2] IS (1 DOWNTO 0) CAPTURES (Result(Pass))), "&
 ")";
 ...
end MEMB;

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

390
Copyright © 2013 IEEE. All rights reserved.

SERDES

package SERDES is
 use STD_1149_1_2013.all;
end SERDES;

package body SERDES is
 use STD_1149_1_2013.all;
 ...
 attribute REGISTER_MNEMONICS of SERDES : package is
 "SerDes_Protocol (off (0b000) <I/Os powered down>, "&
 " SATA (0b010) <SATA>, "&
 " SRIO (0b011) <Serial RapidIO>, "&
 " XAUI (0b100) <XAUI>, "&
 " Rsvd1 (0b101) <Undefined, do not use>, "&
 " Rsvd2 (0b11X) <Undefined, do not use>),"&
 "SerDesClkSettings(F125Mhz (0b00111), "&
 " F100Mhz (0b10101), "&
 " Invalid (Others) <Do not use!>),"&
 "OnOff (ON (1), OFF (0))";
 attribute REGISTER_FIELDS of SERDES : package is
 "serdes_init [8] ("&
 "(Protocol [3] IS (2 DOWNTO 0) DEFAULT(SerDes_Protocol(off))), " &
 "(CHClock [5] IS (7 DOWNTO 3) SAFE(SerDesClkSettings(F125MHz)))" &
 "serdes_bist [4] ("&
 "(Local_Loopback [1] IS (3) DEFAULT(OnOff(ON))), " &
 "(BER_en [1] IS (2) DEFAULT(OnOff(OFF))), " &
 "(GoDone [1] IS (1) DEFAULT(OnOff(OFF))), " &
 "(Pass [1] IS (0)))";
 ...
end SERDES;

C.5.2 BSDL files for components

These BSDL files must be supplied by the component supplier.

Chip_A

entity Chip_A is
 ...
 port (
 ...
 sysclock_100MHz : in bit;
 ...
)
 Use std_1149_1_2013.all;
 Use memb.all;
 ...
 attribute INSTRUCTION_OPCODE of Chip_A : entity is
 "RAMBIST (00000001)," &
 "INIT_SETUP (01000000)," &
 "INIT_RUN (01000001)," &
 "IC_RESET (00001111)," &
 ...
 attribute REGISTER_ACCESS of Chip_A : entity is
 "RAMBIST_CTL [12] (RAMBIST)" ; -- Two MEMB in series

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

391
Copyright © 2013 IEEE. All rights reserved.

 ...
 attribute BOUNDARY_REGISTER of Chip_A : entity is
 ...
 " 193 (BC_4, sysclock_100MHz, clock, X, OPEN1)," &
 ...

 attribute SYSCLOCK_REQUIREMENTS of Chip_A is

 "(sysclock_100Mhz, 100e6, 100e6, RAMBIST)";

 -- Build RAMBIST_CTL from MEMB Package and register fields (mem1 & mem2).

 attribute REGISTER_MNEMONICS of Chip_A : entity is

 "RSTCTL (assert (0), de-assert(1)) " ;

 attribute REGISTER_FIELDS of Chip_A : entity IS
 "RESET_SELECT[3] ("&
 "(Reset_Hold [1] IS (0) DEFAULT (RSTCTL (de-assert))), "&
 "(Reset_Enable [1] IS (1) DEFAULT (RSTCTL (de-assert))), "&
 "(Reset_Control [1] IS (2) DEFAULT (RSTCTL (de-assert))) "&
 ")";

 ...
 attribute REGISTER_ASSEMBLY of Chip_A : entity IS
 "RAMBIST_CTL (" &
 "(Mem1 IS MBist), " &
 "(Mem2 IS MBist) " &
 ")";
 ...
 attribute Register_Association of Chip_A : entity is
 "Mem1 : sysclock (sysclock_100MHz), " &
 "Mem2 : sysclock (sysclock_100MHz) ";
 ...
end Chip_A ;

Chip_B

entity Chip_B is
 ...
 port (
 ...
 sclock : in bit;
 ...
);

Use std_1149_1_2013.all;
Use memb.all;
 ...
 attribute INSTRUCTION_OPCODE of Chip_B : entity is
 "MEMBIST (001001)," &
 ...
 attribute REGISTER_ACCESS of Chip_B : entity is
 "MEMBIST_REG [6] (MEMBIST)" &

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

392
Copyright © 2013 IEEE. All rights reserved.

 ...
 attribute BOUNDARY_REGISTER of Chip_B : entity is
 ...
 " 73 (BC_4, sclock, clock, X, OPEN1)," &
 ...
 ;

 attribute SYSCLOCK_REQUIREMENTS of Chip_B is

 "(sclock, 100e6, 120e6, MEMBIST)";

 -- Build MEMBIST_REG from MEMB Package and MBIST fields (mem1).
 ...
 Attribute REGISTER_ASSEMBLY of Chip_B : entity IS
 "MEMBIST_REG (" &
 "(Mem1 IS MBist) " & -- register segment name from MEMB package file
 ")";
 ...
 Attribute Register_Association of Chip_B : entity is
 "Mem1 : sysclock (sclock) ";
 ...
end Chip_B ;

Chip_C

entity Chip_C is
 ...
 port (
 ...
 sysclk : in bit;
 ...
);
 Use std_1149_1_2013.all;
 Use serdes.all;

 ...
 attribute INSTRUCTION_OPCODE of Chip_C : entity is
 "SERDES_TEST (11110001)," &
 "INIT_SETUP (01100000)," &
 "INIT_RUN (01100001)," &
 ...
 attribute REGISTER_ACCESS of Chip_C : entity is
 "SERDES_CTL [4] (SERDES_TEST)" ;
 ...
 attribute BOUNDARY_REGISTER of Chip_C : entity is
 ...
 " 220 (BC_4, sysclk, clock, X, OPEN1)," &
 ...
 ;
 ...
attribute SYSCLOCK_REQUIREMENTS of Chip_C is

 "(sysclk, 156.25e6, 156.25e6, SERDES_TEST, INIT_SETUP, INIT_RUN)";

 ...

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

393
Copyright © 2013 IEEE. All rights reserved.

-- Build SERDES_CTL from SERDESIO Package and serdes_bist fields.
-- Build init_data from SERDESIO Package and serdes_init field.
 ...
Attribute REGISTER_ASSEMBLY of Chip_C : entity IS
 "INIT_DATA (" &
 "(i1 IS serdes_init) " & -- register segment from SERDES package file
 ")," &
 "SERDES_CTL (" &
 "(i2 IS SERDES_BIST) " &
 ")";
 ...
 Attribute Register_Association of Chip_C : entity is
 "i1 : sysclock (sysclk), " &
 "i2 : sysclock (sysclk) ";
 ...
end Chip_C ;

C.5.3 PDL files supplied by IP supplier

These files permit the IP supplier to control how test features in the IP get used at higher level packages.

MEMB

MEMB.pdl
iPDLLevel 0 -version STD_1149_1_2013
iProcGroup MEMB
iProc memory_bist {alg clk} {

"(Algorithm [3] IS (5 DOWNTO 3) DEFAULT (Mode (Walk1))), "&
"(Command [1] IS (2) DEFAULT (Run (Stop))), "&
"(Status [2] IS (1 DOWNTO 0) CAPTURES (Result(Pass))) "&

 iWrite Algorithm $alg
 iWrite Command Start
 iApply
 iRunLoop 10000 -sck $clk
 iRead Status Pass
 iApply
}

SERDES

SERDES.pdl
iPDLLevel 0 -version STD_1149_1_2013
iProcGroup SERDES
iProc serdes_bist { Local BER } {

 # "(Local_Loopback [1] IS (3) DEFAULT(OnOff(ON))), " &
 # "(BER_en [1] IS (2) DEFAULT(OnOff(OFF))), " &
 # "(GoDone [1] IS (1) DEFAULT(OnOff(OFF))), " &
 # "(Pass [1] IS (0)))";

 iWrite Local_Loopback $Local
 iWrite BER_en $BER
 iWrite GoDone ON
 iApply

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

394
Copyright © 2013 IEEE. All rights reserved.

 iRunLoop 100000 ;# use TCK cycles

 iRead GoDone 0 ;# 0 for DONE 1 for 'busy'
 iRead Pass 1 ;# 1 for pass 0 for fail
 iApply
}

C.5.4 PDL files supplied by component supplier

Chip_A

Chip_A.pdl
iSource memb.pdl
iPDLLevel 0 -version STD_1149_1_2013
iProcGroup CHIP_A

procedure causes IC level reset via the 1149.1 TAP
This clears IC after on-chip tests are run
iProc fuctional_reset { } {

"(Reset_Hold [1] IS (0) DEFAULT (RSTCTL (de-assert))), "&
"(Reset_Enable [1] IS (1) DEFAULT (RSTCTL (de-assert))), "&
"(Reset_Control [1] IS (2) DEFAULT (RSTCTL (de-assert))) "&

 iWrite Reset_Enable assert
 iWrite Reset_Control assert
 iApply

 iRunLoop 10

 iWrite Reset_Control de-assert
 iWrite Reset_Enable de-assert
 iApply
}

procedure to hold internal IC reset de-asserted during on-chip tests
and block any external board level resets while tests are running
iProc protect_reset { } {

 iWrite Reset_Enable assert
 iWrite Reset_Control de-assert
 iApply
}

iProc main { } {
 iClock sysclock_100MHz -period 1.0e-8

block board level resets to IC so tests will execute unimpeded
 iCall protect_reset

 iCall mem1.memory_bist MATS+ sysclock_100Mhz
 iCall mem2.memory_bist MATS+ sysclock_100Mhz

 iCall functional_reset
}

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

395
Copyright © 2013 IEEE. All rights reserved.

Chip_B

Chip_B.pdl
iSource memb.pdl
iPDLLevel 0 -version STD_1149_1_2013
iProcGroup CHIP_B
iProc main { } {
 iClock sclock -period 8e-9
 iCall mem1.memory_bist MATS+ sclock
}

Chip_C

Chip_C.pdl
iSource serdes.pdl
iPDLLevel 0 -version STD_1149_1_2013
iProcGroup CHIP_C
iProc main { } {
 iCall i2.serdes_bist ON ON
}

C.5.5 PDL files coded by test engineer

The test engineer must take “template” initialization PDL files, if provided by the component supplier, and modify it
for the specific instances on the board. As with IP, if there are one or more design-specific TDRs and test features in
the IC, the IC supplier may also provide PDL procedures for those.

The test engineer might also create a top-level PDL for the unit under test (UUT).

U1

U1.PDL

iSource CHIP_A.pdl
iPDLLevel 0 -version STD_1149_1_2013

iProcGroup U1 ; # Applies to all iProc commands

iProc init_setup { } {
 ...
}

iProc init_run { } {
 ...
 iLoop
 iRead init_status 0b11
 iApply -nofail
 iUntil -match
}
iProc fuctional_reset { } {
 ...
}

U2

No additional PDL is needed.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

396
Copyright © 2013 IEEE. All rights reserved.

U3

U3.PDL
iSource Chip_C.pdl
iPDLLevel 0 -version STD_1149_1_2013
iProcGroup U3

iProc init_setup { } {
 iWrite U3.i1.PROTOCOL XAUI
 iWrite U3.i1.CHClock F100Mhz
 ...
}
iProc init_run { } {
 iClock Sysclock_100MHz -period 10.0e-9 ; # minimum period: 10.0 ns
 iRead init_status 0b00
 iApply

 iRunLoop 25000000 -sck Sysclock_100MHz ; # 25 million system clocks

 iRead init_status 0b11
 iApply
}

U4

U4.PDL
iSource SERDES.pdl
iPDLLevel 0 -version STD_1149_1_2013

iProcGroup U4 ; # This duplicates same lines in U3.PDL.

iProc init_setup { } {
 iWrite U4.i1.PROTOCOL SRIO
 iWrite U4.i1.CHClock F100Mhz
 ...
}

iProc init_run { } {
 iClock Sysclock_100MHz -period 10.0e-9 ; # minimum period: 10.0 ns
 iRead init_status 0b00
 iApply

 iRunLoop 25000000 -sck Sysclock_100MHz ; # 25 million system clocks

 iRead init_status 0b11
 iApply
}

UUT

UUT.PDL This file could be in some other test language.
iSource U1.pdl
iSource Chip_B.pdl ;# needed for U2
iSource U3.pdl
iSource U4.pdl
iPDLLevel 0 -version STD_1149_1_2013

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

397
Copyright © 2013 IEEE. All rights reserved.

iProc power_up { } {
 iNote –status "Power-on Reset in progress.\n"
 iTRST -ON
 iRunLoop 1000
 iTRST -OFF
}

iProc init_setup { } {
 iNote -status "Initializing for test.\n"
 iCall -direct U1.init_setup
 iWrite U2.bypass 0b0
 iCall -direct U3.init_setup
 iCall -direct U4.init_setup
 iSetInstruction BYPASS
 iApply ; # Explicit parallel optimization
}

iProc init_run { } {
 iWrite U2.bypass 0b0 ; set instruction register of U2
 iApply

init_run routines may not be able to be optimized
 iCall -direct U1.init_run
 iCall -direct U3.init_run
 iCall -direct U4.init_run
}

A board level main could be generated by a test generation tool relying on
standardized iProc main to contain chip specific test procedures.
All tests to be run after EXTEST.
iProc main { } {
 iNote –status "Memory test in progress.\n"

iCall U1.main
 iCall U2.main
 iNote –status "Serdes test in progress.\n"
 # U3.i1 and U4.i1 are instances of serdes
 iCall U3.main
 iCall U4.main
 iNote –status "Tests Complete, resetting for functional operation.\n"
 iCall U1.functional_reset
}

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

398
Copyright © 2013 IEEE. All rights reserved.

Annex D

(informative)

Integrated examples of BSDL and PDL

The following examples show both the BSDL and the PDL for a single example. The first covers initialization, the
second for use of multiple IEEE 1500 wrapper serial ports.

D.1 Initialization example structure and procedures

D.1.1 Initialization example using register description attributes

An example application of the new register documentation attributes appears in several clauses in this annex. For
clarity, this material is consolidated, organized, and expanded here to provide a complete example of how the
various new attributes are intended to support test data register (TDR) documentation. To illustrate such use, the
SerDes documentation is placed in a user package as if it is provided by an IP supplier.

The init_data and init_status registers are newly specified registers in this standard that created the need for detailed
TDR documentation. The initialization data register may include various excludable segment controls that need to
be set up as part of initialization, and controls needed to set the functional logic in a safe state. The specific values to
be set in many of the fields of the init_data register are unknown at the time the BSDL is created, so the value to be
written or read is deferred and must be selected by the test engineer based on the specifics of the component usage
on the board design. See D.1.2 for the PDL procedures that would support initialization of this component.

Figure D-1 illustrates the hard IP that has been provided by the IP supplier in the example user package body. In
addition to a single SERDES port and a single data PLL (data PLL not shown), a full 9-bit byte with parity and an
embedded data PLL is also provided. The init_data fields are shown within both the SERDES and the PLL. The
boundary cell in the SERDES is also shown, although the IP provider cannot describe the boundary segment
because the I/O port names are not known. The IP supplier has manually documented the boundary register pair as
BC_8 and BC_2 in comments. (The boundary-scan chain is not used in the PLL but is wired through to maintain
ease of wiring.) The package documenting the supplied IP follows Figure D-1.

Note that the byte_init_data register segment defined in the package body has a bit length of 10 × 5 = 50 bits.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

399
Copyright © 2013 IEEE. All rights reserved.

Figure D-1—Hard SerDes IP defined in a package

package MyCorp_SERDES_1_2_3 is
 use STD_1149_1_2013.all;
end MyCorp_SERDES_1_2_3;

package body MyCorp_SERDES_1_2_3 is
 use STD_1149_1_2013.all;

 attribute REGISTER_MNEMONICS of MyCorp_SERDES_1_2_3 : package is
 "SerDes_Protocol ("&
 " off (0b000) <Powered down>, "&
 " Resvd0 (0b001) <Reserved for future use>, "&
 " SATA (0b010) <Serial Advanced Technology Attachment>, "&
 " SRIO (0b011) <Serial RapidIO>, "&
 " XAUI (0b101) <10 Gbps Attachment Unit Interface>, "&
 " Resvd1 (0b100) <Reserved for future use>, "&
 " Resvd2 (0b11X) <Reserved for future use> "&
 "), "&

+
-D

EN

C

IN

TX_swing

Protocol

+
-

PLL_Clk
out

in

Boundary
register

segment

Init_data
register

segment

out

in

I/O
Pads

SERDES

SERDES

SERDES

SERDES

SERDES

SERDES

SERDES

SERDES

SERDES

SERDES Hard IP

Boundary out

Init_data out

Boundary in

Init_data in

SERDES_BYTE
Hard IP

Parity

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

400
Copyright © 2013 IEEE. All rights reserved.

 "SerDes_TX_Outputs ("& -- Output driver swing level
 " off (0b00) <Powered down>, "&
 " Full_Swing (0b01) <100% Vdd Swing>, "&
 " 75%_Swing (0b10) <75% Vdd Swing>, "&
 " 52.7%_Swing (0b11) <52.7% Vdd Swing - Invalid for XAUI> "&
 "), "&

 "SerDesClockSettings ("& -- Only 2 valid settings
 " 125Mhz (0b00111), "&
 " 100Mhz (0b10101), "&
 " Invalid (Others) <Undefined behavior - Do Not Use> "&
 ")" ;

 attribute REGISTER_FIELDS of MyCorp_SERDES_1_2_3 : package is

 "Channel [5] ("&
 "(Protocol [3] IS (2,0,1) SAFE (SerDes_Protocol(*))), "&
 "(TX_Swing [2] IS (3,4) SAFE (SerDes_TX_Outputs(*))) "&
 "), "&

 "ChClock [5] ("&
 "(Freq [5] IS (4 downto 0) "&
 "DEFAULT (SerDesClockSettings (100Mhz))) "&
 ")" ;

-- NOTE: in each Channel, there are two boundary scan cells:
-- num cell port function safe [ccell disval rslt]
--TDO
-- n (BC_2, *, control, 0),
-- n+1(BC_8, port_id, bidir, X, n, 0, Z),
--TDI

 attribute REGISTER_ASSEMBLY of MyCorp_SERDES_1_2_3 : package is

 "byte_init_data (" &
 --TDI
 "(parity IS Channel), "&
 "(array byte(7 DOWNTO 5) IS Channel), "&
 "(byte_pll IS ChClock), "&
 "(array byte(4 DOWNTO 0) IS Channel) "&
 --TDO
 ")" ;
-- The “byte_init_data” register segment is 50 bits long.
-- 5 bits for the ChClock and 5 bits for each of 9 Channel instances.

end MyCorp_SERDES_1_2_3 ;

<EOF>

######################################

-- Chip name is INIT_Example.
entity INIT_Example IS
 ...

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

401
Copyright © 2013 IEEE. All rights reserved.

 PORT (
 ...
 DBus7 : inout bit_vector (8 downto 0);
 DBus6 : inout bit_vector (8 downto 0);
 DBus5 : inout bit_vector (8 downto 0);
 DBus4 : inout bit_vector (8 downto 0);
 DBus3 : inout bit_vector (8 downto 0);
 DBus2 : inout bit_vector (8 downto 0);
 DBus1 : inout bit_vector (8 downto 0);
 DBus0 : inout bit_vector (8 downto 0);
 ...
 VSEL_pin: in bit_vector(0 TO 4);
 ...
 Vdd_IO1: POWER_POS bit;
 ...
 USE STD_1149_1_2013.all;
 USE Mycorp_SERDES_1_2_3.all;
 ...
 attribute BOUNDARY_SEGMENT of INIT_Example : entity is
 "upper_four_byte_bus [72] ("&
 -- num cell port function safe [input/ccell disval rslt]
 " 71 (BC_8, DBus7(8), bidir, X, 70, 0, Z), "&
 " 70 (BC_2, *, control, 0), "&
 " 69 (BC_8, DBus7(7), bidir, X, 68, 0, Z), "&
 " 68 (BC_2, *, control, 0), "&
 " 67 (BC_8, DBus7(6), bidir, X, 66, 0, Z), "&
 " 66 (BC_2, *, control, 0), "&
 " 65 (BC_8, DBus7(5), bidir, X, 64, 0, Z), "&
 " 64 (BC_2, *, control, 0), "&
 " 63 (BC_8, DBus7(4), bidir, X, 62, 0, Z), "&
 " 62 (BC_2, *, control, 0), "&
 ...
 " 9 (BC_8, DBus4(4), bidir, X, 8, 0, Z), "&
 " 8 (BC_2, *, control, 0), "&
 " 7 (BC_8, DBus4(3), bidir, X, 6, 0, Z), "&
 " 6 (BC_2, *, control, 0), "&
 " 5 (BC_8, DBus4(2), bidir, X, 4, 0, Z), "&
 " 4 (BC_2, *, control, 0), "&
 " 3 (BC_8, DBus4(1), bidir, X, 2, 0, Z), "&
 " 2 (BC_2, *, control, 0), "&
 " 1 (BC_8, DBus4(0), bidir, X, 0, 0, Z), "&
 " 0 (BC_2, *, control, 0) "&
 ")";

 attribute BOUNDARY_SEGMENT of INIT_Example : entity is
 "lower_four_byte_bus [72] ("&
 -- num cell port function safe [input/ccell disval rslt]
 " 71 (BC_8, DBus3(8), bidir, X, 70, 0, Z), "&
 " 70 (BC_2, *, control, 0), "&
 " 69 (BC_8, DBus3(7), bidir, X, 68, 0, Z), "&
 " 68 (BC_2, *, control, 0), "&
 " 67 (BC_8, DBus3(6), bidir, X, 66, 0, Z), "&
 " 66 (BC_2, *, control, 0), "&
 " 65 (BC_8, DBus3(5), bidir, X, 64, 0, Z), "&
 " 64 (BC_2, *, control, 0), "&
 " 63 (BC_8, DBus3(4), bidir, X, 62, 0, Z), "&
 " 62 (BC_2, *, control, 0), "&

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

402
Copyright © 2013 IEEE. All rights reserved.

 ...
 " 9 (BC_8, DBus0(4), bidir, X, 8, 0, Z), "&
 " 8 (BC_2, *, control, 0), "&
 " 7 (BC_8, DBus0(3), bidir, X, 6, 0, Z), "&
 " 6 (BC_2, *, control, 0), "&
 " 5 (BC_8, DBus0(2), bidir, X, 4, 0, Z), "&
 " 4 (BC_2, *, control, 0), "&
 " 3 (BC_8, DBus0(1), bidir, X, 2, 0, Z), "&
 " 2 (BC_2, *, control, 0), "&
 " 1 (BC_8, DBus0(0), bidir, X, 0, 0, Z), "&
 " 0 (BC_2, *, control, 0) "&
 ")";
 ...
 attribute REGISTER_MNEMONICS of INIT_Example : entity is

 "SerDesCXVddSelLevel ("&
 " 1.8v (1) <1.8V power supply used>, "&
 " 1.5v (0) <1.5V power supply used> "&
 "), "&

 "Switch ("& -- Simple On/Off single bit field.
 " off (1) <Turn feature off ('0')>, "&
 " on (0) <Turn feature on ('1')> "&
 "), "&

 "InitCompletionCode ("& -- INIT completion codes.
 " NotStarted (0b00) <Waiting for initialization.>, "&
 " ResetPLL (0b10) <Resetting the system PLL.>, "&
 " ResetMemory (0b01) <Resetting the memory.>, "&
 " Completed (0b11) <Initialization complete.> "&
 "), "&

 "InitErrorCode ("& -- INIT error status codes.
 " NoError (0b00) <No errors.>, "&
 " PLLfail (0b10) <System PLL did not reset.>, "&
 " MemoryFail (0b01) <Memory did not reset.>, "&
 " AllFail (0b11) <System PLL and Memory did not reset.> "&
 "), "&

 "PLLConfigValues ("&
 " PLLsOff (0b000) <All PLLs off>, "& -- Stop All PLLs
 " PLL1on (0b001) <Only PLL1 on>, "&
 " PLL2on (0b010) <Only PLL2 on>, "&
 " PLL12on (0b011) <PLL1 & PLL2 on>, "&
 " PLL3on (0b100) <Only PLL3 on>, "&
 " PLL13on (0b101) <PLL1 & PLL3 on>, "&
 " PLL23on (0b110) <PLL2 & PLL3 on>, "&
 " PLL123on (0b111) <All PLLs on> "&
 "), "&

 "SerDesSampleOvrd (off (0), on (1)), "&

-- IO voltage configuration. These input pins are read in the
-- init_data register because they must be set at power-up
-- and checked before test.
 "IO_VSEL_Decodes ("&
 "B33_C33_L33 (0b00000) <BVdd=3.3V, CVdd=3.3V, LVdd=3.3V>, "&

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

403
Copyright © 2013 IEEE. All rights reserved.

 "B33_C33_L25 (0b00001) <BVdd=3.3V, CVdd=3.3V, LVdd=2.5V>, "&
 "B33_C33_L18 (0b00010) <BVdd=3.3V, CVdd=3.3V, LVdd=1.8V>, "&
 "B33_C25_L33 (0b00011) <BVdd=3.3V, CVdd=2.5V, LVdd=3.3V>, "&
 "B33_C25_L25 (0b00100) <BVdd=3.3V, CVdd=2.5V, LVdd=2.5V>, "&
 "B33_C25_L18 (0b00101) <BVdd=3.3V, CVdd=2.5V, LVdd=1.8V>, "&
 "B33_C18_L33 (0b00110) <BVdd=3.3V, CVdd=1.8V, LVdd=3.3V>, "&
 "B33_C18_L25 (0b00111) <BVdd=3.3V, CVdd=1.8V, LVdd=2.5V>, "&
 "B33_C18_L18 (0b01000) <BVdd=3.3V, CVdd=1.8V, LVdd=1.8V>, "&
 "B25_C33_L33 (0b01001) <BVdd=2.5V, CVdd=3.3V, LVdd=3.3V>, "&
 "B25_C33_L25 (0b01010) <BVdd=2.5V, CVdd=3.3V, LVdd=2.5V>, "&
 "B25_C33_L18 (0b01011) <BVdd=2.5V, CVdd=3.3V, LVdd=1.8V>, "&
 "B25_C25_L33 (0b01100) <BVdd=2.5V, CVdd=2.5V, LVdd=3.3V>, "&
 "B25_C25_L25 (0b01101) <BVdd=2.5V, CVdd=2.5V, LVdd=2.5V>, "&
 "B25_C25_L18 (0b01110) <BVdd=2.5V, CVdd=2.5V, LVdd=1.8V>, "&
 "B25_C18_L33 (0b01111) <BVdd=2.5V, CVdd=1.8V, LVdd=3.3V>, "&
 "B25_C18_L25 (0b10000) <BVdd=2.5V, CVdd=1.8V, LVdd=2.5V>, "&
 "B25_C18_L18 (0b10001) <BVdd=2.5V, CVdd=1.8V, LVdd=1.8V>, "&
 "B18_C33_L33 (0b10010) <BVdd=1.8V, CVdd=3.3V, LVdd=3.3V>, "&
 "B18_C33_L25 (0b10011) <BVdd=1.8V, CVdd=3.3V, LVdd=2.5V>, "&
 "B18_C33_L18 (0b10100) <BVdd=1.8V, CVdd=3.3V, LVdd=1.8V>, "&
 "B18_C25_L33 (0b10101) <BVdd=1.8V, CVdd=2.5V, LVdd=3.3V>, "&
 "B18_C25_L25 (0b10110) <BVdd=1.8V, CVdd=2.5V, LVdd=2.5V>, "&
 "B18_C25_L18 (0b10111) <BVdd=1.8V, CVdd=2.5V, LVdd=1.8V>, "&
 "B18_C18_L33 (0b11000) <BVdd=1.8V, CVdd=1.8V, LVdd=3.3V>, "&
 "B18_C18_L25 (0b11001) <BVdd=1.8V, CVdd=1.8V, LVdd=2.5V>, "&
 "B18_C18_L18 (0b11010) <BVdd=1.8V, CVdd=1.8V, LVdd=1.8V>, "&
 "Reserved (others) <Reserved -- Do Not Use!> "&
 ") " ;

attribute REGISTER_FIELDS of INIT_Example : entity is

 -- IP configuration register, see chip release documentation.
 -- Done in a register field because of non-contiguous bits;
 -- The PLL enable bits are used and the rest are defaulted in JTAG test.
 "configuration [15] (" &
 "(IP_reg [12] IS (14 DOWNTO 6, 4, 2, 0) " &
 "DEFAULT (0x0DB) NoPI), " & -- Required value for 1149 test.
 "(PLL_Enable [3] IS (5,3,1) SAFE (PLLConfigValues(PLLsoff)) NoPI) " &
 ")" ;

attribute REGISTER_ASSEMBLY of INIT_EXAMPLE : entity is
 -- Register Assembly of INIT_DATA register
 "init_data ("&
 -- TDI
 -- First 36 bits are unused.
 "(reserved1[36] SAFE(0b0) NoPI NoUpd), "&

 -- Observed in init_data because must be set at power-up.
 -- Deferred value must be specified for board.
 "(VSEL_bits [5] Captures(IO_VSEL_Decodes(*)) NoPO), "&

 -- Configuration register, 15 bits
 "(IP_Config IS configuration), "&

 -- Point to the IP package
 "(USING MyCorp_SERDES_1_2_3), "&

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

404
Copyright © 2013 IEEE. All rights reserved.

 -- First four bytes of channels are excludable
 -- Powered down in small package, power and segsel
 -- controlled by input 'Large_Package'
 -- 1 bit
 "(IO_En IS SegSel "&

"Domain_External(LargePkg) Segment(HiChan) TRSTreset), "&
 -- 4*50 bits = 200 bits, excludable.
 "(array Databus(7 DOWNTO 4) IS byte_init_data), "&
 -- Values for protocol and TX_swing are deferred
 "(IO_seg_mux IS SegMux Segment(HiChan)), "&
 -- Next four bytes of channels are fixed
 -- 4*50 bits = 200 bits.
 "(array Databus(3 DOWNTO 0) IS byte_init_data), "&
 -- Values for protocol and TX_swing are deferred

 -- Remove the IP package reference
 "(USING -), "&

 -- Register bits that are SERDES IP inputs, not part of IP itself.
 -- Power level supplied to SerDes internal gates;
 "(SerDesCXVddSel [1] DEFAULT (SerDesCXVddSelLevel(*)) MON), "&
 -- Powerup SerDes Test Receivers during SAMPLE operation
 "(SerDesSamplePowerUp [1] DEFAULT (SerDesSampleOvrd (off)) MON), "&
 -- 2^^10 possible decodes. See Reference Manual.
 "(DataTermSel [10] SAFE(0) NoPI), "&
 -- Reserved Field
 "(reserved2[8]) " &
 -- TDO
 "), " &
 -- The init_data register defined above has a minimum length of 277 bits:
 -- 36 (reserved1)
 -- + 5 (VSEL_bits)
 -- + 15 (IP_config)
 -- + 1 (IO_En, SEGSEL is always included.)
 -- + 4*50 (Databus(3 DOWNTO 0))
 -- + 1 (SerDesCXVddSel)
 -- + 1 (SerDesSamplePowerUp)
 -- + 10 (DataTermSel)
 -- + 8 (reserved2)
 -- =277
 -- Plus one excludable 4*50 bit segment (Databus(7 DOWNTO 4))

 -- Register Assembly for INIT_STATUS register - read-only per the standard
 "init_status ("&
 "(INITErrorStatus [2] " &
 "CAPTURES (InitErrorCode(NoError)) NoPO), " &
 "(INITCompletionStatus [2] " &
 "CAPTURES (InitCompletionCode(Completed)) NoPO) " &
 ") ";

attribute REGISTER_ASSEMBLY of INIT_EXAMPLE : entity is
 -- Register Assembly of BOUNDARY register
 "boundary ("&
 -- TDI
 ...
 -- LVdd I/O voltage domain
 "(upper_data_bus_En IS SegSel "&

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

405
Copyright © 2013 IEEE. All rights reserved.

"Domain_External(LargePackage) Segment(upper)), "&
 "(upper_data_bus IS upper_four_byte_bus), "& -- 72 cells
 "(upper_data_bus_mux IS SegMux Segment(upper)), "&
 "(lower_data_bus IS lower_four_byte_bus), "& -- 72 cells
 ...
 -- TDO
 ")";

attribute Register_Association of INIT_EXAMPLE : entity is
 -- Port ID 'VDD_IO1' is the power source for upper bank of I/O
 -- '1' = large package, '0' = small package.
 "upper_data_bus_En : PORT (Vdd_IO1), "&
 "IO_En : PORT (Vdd_IO1), "&
 "VSEL_bits(4) : PORT (VSEL_pin(4)), "&
 "VSEL_bits(3) : PORT (VSEL_pin(3)), "&
 "VSEL_bits(2) : PORT (VSEL_pin(2)), "&
 "VSEL_bits(1) : PORT (VSEL_pin(1)), "&
 "VSEL_bits(0) : PORT (VSEL_pin(0)) ";

attribute Power_Port_Association of INIT_EXAMPLE : entity is
 -- Port ID 'VDD_IO1' is the power source for upper bank of I/O
 "VDD_IO1 : (DBus4(0), DBus4(1), DBus4(2), DBus4(3), DBus4(4), "&
 " DBus4(5), DBus4(6), DBus4(7), DBus4(8), "&
 " DBus5(0), DBus5(1), DBus5(2), DBus5(3), DBus5(4), "&
 " DBus5(5), DBus5(6), DBus5(7), DBus5(8), "&
 " DBus6(0), DBus6(1), DBus6(2), DBus6(3), DBus6(4), "&
 " DBus6(5), DBus6(6), DBus6(7), DBus6(8), "&
 " DBus7(0), DBus7(1), DBus7(2), DBus7(3), DBus7(4), "&
 " DBus7(5), DBus7(6), DBus7(7), DBus7(8)) ";

...
<EOF>

D.1.2 Example PDL for INIT example

This example shows the init_setup and init_run PDL procedures for the component INIT_example. The component
is used on a specific board, and on that board, its instance value is U23. Board-level procedures are not shown, just
the initialization procedures for this component on that board.

Inspecting the BSDL reveals several register fields that have deferred values. These cannot be set within the PDL
procedures supplied by the component designer because the values will vary from instance to instance of use of the
component. So two init_setup PDL files are shown, one from the component supplier and the other written for the
specific instance of the component.

First is the PDL supplied by the IP supplier.

Supplied by MyCorp for the SerDes product line, version 1.2.3
These procedures set up data, but do not perform a scan.
iPDLLevel 0 -version STD_1149_1_2013
iProcGroup MyCorp_SERDES_1_2_3 ; # Code is for BSDL package

Set up a single channel
iProc setup_channel_init_data { proto swing } {
 iWrite Protocol $proto
 iWrite TX_Swing $swing
 }

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

406
Copyright © 2013 IEEE. All rights reserved.

Set up the hard IP byte (9 channels plus data PLL)
iProc setup_byte_init_data { proto swing freq } {
 iCall parity.setup_channel_init_data $proto $swing
 iCall byte(7:0).setup_channel_init_data $proto $swing
 iWrite byte_pll.Freq $freq
 }
<EOF>

Next is the PDL supplied from the component provider (the component provider will pass along the PDL files from
the IP provider).

Supplied by Acme Quick-Chip for chip INIT_Example
iSource MyCorp.SerDes_1_2_3.pdl
iPDLLevel 0 -version STD_1149_1_2013
iProcGroup INIT_Example ; # Code is for chip BSDL

The init_setup standard procedure.
This procedure may be used as a template for manually setting up
deferred values for a given instance, or as-is in conjunction with
an instance specific init_setup procedure.

NOTE: Lines commented out with data fields in chevrons: <data>,
must be specified for each instance of this component,
or another procedure provided for the instance that replaces
these lines.

iProc init_setup -export { } {
Set up the data queues for all read and write fields.
 iWrite reserved1 -safe
iRead VSEL_bits <decode>
 iWrite IP_Config.IP_reg -default
 iWrite IP_Config.PLL_Enable -safe
 iWrite IO_En Exclude
Databus(7:4) are initially excluded, but setting up the data doesn't hurt.
iCall Databus(7).setup_byte_init_data <proto> <swing> <freq>
iCall Databus(6).setup_byte_init_data <proto> <swing> <freq>
iCall Databus(5).setup_byte_init_data <proto> <swing> <freq>
iCall Databus(4).setup_byte_init_data <proto> <swing> <freq>
iCall Databus(3).setup_byte_init_data <proto> <swing> <freq>
iCall Databus(2).setup_byte_init_data <proto> <swing> <freq>
iCall Databus(1).setup_byte_init_data <proto> <swing> <freq>
iCall Databus(0).setup_byte_init_data <proto> <swing> <freq>
iWrite SerDesCXVddSel <voltage>
 iWrite SerDesSamplePowerUp on
 iWrite DataTermSel -safe
 iWrite reserved2 0b0

Check status of VSEL_bits and verify they are set correctly.
 iApply -nofail
 ifFalse
 iSetFail -quit "I/O voltage select pins are set incorrectly; stop test!"
 ifEnd

Check status of excluded segment (depends on package type)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

407
Copyright © 2013 IEEE. All rights reserved.

 iRead IO_En 0b1
 iApply -nofail
 ifTrue
 iWrite IO_En Include
 iApply ; # Include excludable segment
 ifEnd
 iApply ; # Load full register, possibly including excludable segment
Ready for init_run
 }

The init_run standard procedure.
This procedure is very simple, really requiring only a wait.
While it is expected that the status will be done after the wait,
a polling loop is included to allow delayed completion.
iProc init_run -export { } {
 iRunLoop 2500 ; # Wait 2500 TCK for internal init state machine
 iLoop
 iRead INITErrorStatus NoError
 iRead INITCompletionStatus Completed
 iApply -nofail
 iUntil -match -maxcnt 10 "Failure of initialization of INIT_Example."
 iNote -status "Initialization processing for INIT_Example complete.\n"
 }
<EOF>

The board test engineer could take the init_setup routine above and treat it as a template by manually substituting the
needed values for the U23 instance on the board, uncommenting those lines, and changing the iProcGroup to U23.
The test engineer may also have a test setup tool that reads the BSDL, recognizes all of the fields in the init_data
register with deferred values, and then asks the test engineer to choose (from mnemonic values, if provided) the
appropriate values for the U23 instance. The tool then could write out the following PDL procedure for execution,
and this procedure (which does not include any iApply commands) would be run before the init_setup procedure for
the INIT_Example component above, which was provided by the component supplier. In effect, this generated file
simply replaces the lines of the component file that were commented out due to deferred values.

This is a simple situation, and either the template approach or the separate PDL procedures work equally well. If the
init_setup procedure for the component were complex, then the board test engineer might prefer to not touch the
verified procedure from the component supplier and use the two files.

Generated by Maddox TestFast 1149.1 test generator
Run before init_setup procedure associated with chip
iSource MyCorp.SerDes_1_2_3.pdl
iPDLLevel 0 -version STD_1149_1_2013
iProcGroup U23 ; # Code is for instance U23 of chip INIT_Example

iProc init_setup -export { } {
 iRead VSEL_bits B25_C25_L18
 iCall Databus(7).setup_byte_init_data XAUI 75%_Swing 125Mhz
 iCall Databus(6).setup_byte_init_data XAUI 75%_Swing 125Mhz
 iCall Databus(5).setup_byte_init_data XAUI 75%_Swing 125Mhz
 iCall Databus(4).setup_byte_init_data XAUI 75%_Swing 125Mhz
 iCall Databus(3).setup_byte_init_data XAUI 75%_Swing 125Mhz
 iCall Databus(2).setup_byte_init_data XAUI 75%_Swing 125Mhz
 iCall Databus(1).setup_byte_init_data XAUI 75%_Swing 125Mhz
 iCall Databus(0).setup_byte_init_data XAUI 75%_Swing 125Mhz
 iWrite SerDesCXVddSel 1.8v
 }
<EOF>

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

408
Copyright © 2013 IEEE. All rights reserved.

D.2 Multiple wrapper serial port structure and procedures

D.2.1 Wrapper serial port structural description

This set of examples illustrates the use of the selectable segment capability, including documentation of broadcast
scan (scanning data into multiple registers in parallel).

IEEE Std 1500 defines test wrappers for “cores.” The IEEE 1500 architecture was designed to allow interface
compatibility with the IEEE 1149.1 test access port (TAP) controller. Indeed, the wrapper serial control (WSC)
interface (with the exception of the SelectWIR and optional TransferDR signals) for the wrapper serial port (WSP)
corresponds to the recommended TDR interface documented in Table 9-1 and Table 9-2. The actual description of
the WSP register structure, however, was not compliant and could not be documented in BSDL prior to the 2013
version of this standard. The scannable registers of a WSP are similar to the registers of this standard in that there is
a wrapper instruction register (WIR) and two or more wrapper data registers (WDRs), each selected by a value in
the WIR.

Single WSP

A typical, if simple, WSP with a single design-specific register in the core is shown in Figure D-2 and illustrates the
use of selectable segments to document a WSP.

Figure D-2—Simple wrapper serial port

This design contains a single register cell (which is not part of the IEEE 1500-compliant WSP as shown by the box)
to generate the SelectWIR signal and a WSP, as defined in IEEE Std 1500. The WSP contains two selectable
segment structures, the inner that selects between the available WDRs and the outer that selects between the WDR
and the WIR. In this example, there are three WDRs: the required wrapper bypass (WBY) and wrapper boundary
(WBR) registers, and one design-specific wrapper user (Wusr) register in the core. For the purposes of illustration,
the Wusr register controls and captures status from a self-test capability in the core.

Per IEEE Std 1500, the SelectWIR signal must be provided as part of the WSC, although it is shown separately here.
The wrapper scan in (WSI) fans out to all registers, and multiplexing circuits are used to select one register for
connection to the wrapper scan out (WSO). The WSP inside the box is what is defined in IEEE Std 1500. Note that
gating logic to control scan and update operations in the scan segments are not shown for simplicity.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

409
Copyright © 2013 IEEE. All rights reserved.

This structure could be documented in a BSDL user package as follows.

-- Supplied by MyCorp for REG_1500 version 1.0
package REG_1500 is
 use STD_1149_1_2013.all;
end REG_1500;

package body REG_1500 is

 use STD_1149_1_2013.all;

Attribute REGISTER_MNEMONICS of REG_1500 : package is
 "WIR_decode ("&
 "WS_BYPASS (0B0000) <Wrapper Bypass Instruction>, "&
 "WS_EXTEST (0B0001) <Wrapper Serial External Boundary Instruction>, "&
 "WS_INTEST (0B0010) <Wrapper Serial Internal Boundary Instruction>, "&
 "WS_BIST (0B0100) <BIST Instruction>, "&
 "WP_ALL (0B1xxx) <Wrapper Parallel instructions> "&
 ")," &
 "BISTGROUP ("&
 "Disable (0B0) < BIST has not been enabled >, "&
 "Enable (0B1) < BIST enabled > "&
 "),"&
 "STATGROUP ("&
 "PASS (0B1001), "&
 "FAIL (0B0111) "&
 ")," &
 "MODEGROUP ("&
 "MODE0 (0X0), "&
 "MODE3 (0X3) "&
 ")";

Attribute REGISTER_ASSEMBLY of REG_1500 : package IS
 "REG_1500 (" & -- The Select WIR bit and the Wrapper Serial Port
 -- Reset to WBY
 "(SELWIR [1] DelayPO ResetVal(0b0) TAPReset), "&
 "(WSP IS WSP_MUX) "&
 "), "&
 "WSP_MUX ("& -- The outer selectable segments: WIR and WDR
 "(SelectMUX "&
 -- Reset to WBY
 "(WIR IS WIR_Seg), "&
 "(WDR IS WDR_MUX) "&
 "SelectField (SELWIR) "&
 "SelectValues ((WIR : 0b1) (WDR : 0b0)) "&
 ") "&
 "), "&
 "WIR_Seg ((WIR_field [4] "&
 "ResetVal(WIR_decode(WS_BYPASS)) TAPReset)), "&
 "WDR_MUX ("& -- The inner selectable segments: WBY, WBR, and Wusr
 "(SelectMUX "&
 "(WBY IS Reg_WBY CAPTURES(0)), "&
 "(WBR IS Reg_WBR), "&
 "(WUSR IS Reg_WUSER) "&
 "SelectField (WIR) "&
 "SelectValues ("&
 "(WBY : WS_BYPASS, WP_ALL) "&

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

410
Copyright © 2013 IEEE. All rights reserved.

 "(WBR : WS_EXTEST, WS_INTEST) "&
 "(WUSR : WS_BIST) "&
 ") "&
 ") "&
 "), "&
 "REG_WBY ((WBY[1] NOPO)), " &
 "REG_WBR ((WBR[8])), " &
 "REG_WUSER ((CSR[4] CAPTURES(STATGROUP(-)) " &
 "DEFAULT(MODEGROUP(MODE0)) NOUPD)," &
 " (GO [1] ResetVal(BISTGROUP(Disable)) TapReset))" ;

end REG_1500;

Multiple selectable and gated WSP

In the more general case, there will be the requirement to scan only one selectable segment at a time, as well as to
scan data into different groups of selectable segments. In this example, three of the Reg_1500 structures defined
earlier are used, but with some new requirements: to scan each Reg_1500 independently while the others hold their
state; to scan the first two in parallel while the third holds its state; and to scan all three in parallel. The selection of
which Reg_1500 is connected in the scan chain is to be made independently from the selection of which of the
Reg_1500 segments are scanned, although there are obvious combinations of those selections that would lead to a
broken scan chain and need to be documented as constraints.

This separation of function (selecting the segments to be scanned and selecting the segment to be connected to the
scan chain) may be dictated in part by a “separation” between the controlling circuits (TAP, etc.) and the Reg_1500
instances. This could simply be a long distance across a component, or a separate power-down domain, or an
external component that is not compliant with IEEE Std 1149.1 in a “3-D” stack or on a board. In any case, in this
example, the component designer has determined that it is highly desirable that only one copy of the WSC be sent
across the “separation” and any gating of those control signals needed to control which Reg_1500 instance is
scanned be done locally to the IEEE 1500 instances by a local field in the TDR scan chain.

Figure D-3 shows an overall structure achieving these goals and needing to be documented.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

411
Copyright © 2013 IEEE. All rights reserved.

Figure D-3—Three wrappers with WSC gating logic

The three “Gating” blocks above the separation would block Update_1500, Shift_1500, and Capture_1500, as
appropriate to ensure that each WSP would hold its state when not selected for scanning by Gate_WSP. The
“Gating” block below the separation would block Update_1500, Shift_1500, and Capture_1500, as appropriate to
ensure that all three selectable WSPs held their values when none were selected for scan-out by Sel_WSP.

In documenting this structure, the A, Gate_WSP, and B register segments present a challenge. Note the wire from
the output of Sel_WSP register segment to the 0 input of the four-way multiplexer. This establishes the “scan fan-
out” point for the broadcast at that node, placing the A, Gate_WSP, and B segments in line in all three of the
selectable Reg_1500 segments. This can be done by defining the A, Gate_WSP, and B fields, using them in a
register segment, and then pointing to that instance with a <instance reference>, but then all three Reg_1500
segments have to be defined in separate register assemblies before they can be instantiated in the selectable segment
BSDL structure because there are two elements in each selectable segment.

In addition to the selectable WSP, another WSP with a different configuration of internal registers is added to the
scan chain after the selectable REG_1500 segments. It is on the “near” side of the separation, and for this example, it
is used to check the connections across the separation by putting the WSP on each side of the separation into
external test. This test is illustrated in the procedural code for this example. Figure D-4 shows the configuration of
this WSP.

“Separation”

Reg_1500

SI SO
 WSC

3
2
1
0

WSC:
Shift_1500

Capture_1500
Update_1500

Reset*
TCK

C
U

C
U

SI
SO

Sel_WSP

Gating Gating Gating

Gate_WSP
C U
C U

C U

core

C A

Reg_1500

SI SO
 WSC

Reg_1500

SI SO
 WSC

 WSC

SI SO
Reg_1500S

C U
C U B

core core

Gating

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

412
Copyright © 2013 IEEE. All rights reserved.

Figure D-4—WSP example for interconnect testing

This additional WSP itself could be documented in another User Package as follows.

package REG_1500S is
 use STD_1149_1_2013.all;
end REG_1500S;

package body REG_1500S is

 use STD_1149_1_2013.all;

Attribute REGISTER_MNEMONICS of REG_1500S : package is
 "WIR_decode ("&
 "WS_BYPASS (0B000) <Wrapper Bypass Instruction>, "&
 "WS_EXTEST (0B001) <Wrapper Serial External Boundary Instruction>, "&
 "WS_INTEST (0B010) <Wrapper Serial Internal Boundary Instruction> "&
 ")";

Attribute REGISTER_ASSEMBLY of REG_1500S : package IS
 "REG_1500S (" & -- The Select WIR bit and the Wrapper Serial Port
 -- Reset to WBY
 "(SELWIR [1] DelayPO ResetVal(0b0) TAPReset), "&
 "(WSP IS WSP_MUX) "&
 "), "&
 "WSP_MUX ("& -- The outer selectable segments: WIR and WDR
 "(SelectMUX "&
 -- Reset to WBY
 "(WIR IS WIR_Seg), "&
 "(WDR IS WDR_MUX) "&
 "SelectField (SELWIR) "&
 "SelectValues ((WIR : 0b1) (WDR : 0b0)) "&
 ") "&
 "), "&
 "WIR_Seg ((WIR_field [3] "&
 "ResetVal(WIR_decode(WS_BYPASS)) TAPReset)), "&

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

413
Copyright © 2013 IEEE. All rights reserved.

 "WDR_MUX ("& -- The inner selectable segments: WBY, WBR, and Wusr
 "(SelectMUX "&
 "(WBY IS Reg_WBY), "&
 "(WBR IS Reg_WBR) "&
 "SelectField (WIR) "&
 "SelectValues ("&
 "(WBY : WS_BYPASS) "&
 "(WBR : WS_EXTEST, WS_INTEST) "&
 ") "&
 ") "&
 "), "&
 "REG_WBY ((WBY[1] NOPO)), " &
 "REG_WBR ((WBR[24] NOPO)) ";

end REG_1500S;

The multiple gated WSP structure of Figure D-3 could then be documented as follows.

package REG_1500_ASSM is
 use STD_1149_1_2013.all;
end REG_1500_ASSM ;

package body REG_1500_ASSM is
 use STD_1149_1_2013.all;
 use REG_1500.all;
 use REG_1500S.all;

attribute REGISTER_MNEMONICS of REG_1500_ASSM : package is
 "WSP ("&
 " None (0B00) <Bypass all WSPs>, "&
 " WSP1 (0B01) <Observe WSP(1)>, "&
 " WSP2 (0B10) <Observe WSP(2)>, "&
 " WSP3 (0B11) <Observe WSP(3)> "&
 ")," &
 "BRDCST ("&
 " None (0B000) <All WSP held>, "&
 " WSP1 (0B001) <Scan WSP(1) only>, "&
 " WSP2 (0B010) <Scan WSP(2) only>, "&
 " WSP3 (0B011) <Scan WSP(3) only>, "&
 " 1AND2 (0B110) <Scan just WSP(1) and WSP(2)>, "&
 " ALLWSP (0B111) <Scan all WSPs > "&
 ")";

Attribute REGISTER_ASSEMBLY of REG_1500_ASSM : package IS
 "Reg_1500_MUX (" &
 "(Sel_WSP[2] ResetVal(WSP(None)) TAPReset) ,"&
 "(SELECTMUX " &
 "(WIRE1 is WIRE)," &
 "(ARRAY WSP(1 TO 3) IS WSP_inst) " &
 "SELECTFIELD (Sel_WSP) "& -- 4:1 selection
 "SELECTVALUES ("& -- Decode logic for connecting a WSP to Scan-Out
 "(WIRE1:None) (WSP(1):WSP1) (WSP(2):WSP2) (WSP(3):WSP3))"&
 "BROADCASTFIELD (Gate_WSP) "& -- Could use WSP_common.Gate_WSP
 "BROADCASTVALUES ("& -- Decode logic for gating WSC
 "(WSP(1),WSP(2),WSP(3) : ALLWSP) "&
 "(WSP(1),WSP(2) : 1AND2) "&
 "(WSP(1) : WSP1) "&

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

414
Copyright © 2013 IEEE. All rights reserved.

 "(WSP(2) : WSP2) "&
 "(WSP(3) : WSP3) "&
 ")"&
 "),"&
 "(WSP_1500S is Reg_1500S)" & -- Reg_1500S comes after MUX
 ")," & -- end REG_1500_MUX
 "WIRE ((WIRE[0])), "&
 "WSP_inst ("&
 "(WSP_common), "&
 "(WSP_1500 IS Reg_1500) " &
 "), "&
 "common_seg ((WSP_common IS common)), "&
 "common ("&
 "(A [1] NOUPD), "&
 "(Gate_WSP[3] ResetVal(BRDCST(None)) TAPReset), "&
 "(B [2]) "&
 ") " ;

attribute REGISTER_CONSTRAINTS of REG_1500_ASSM : package is
 "REG_1500_MUX (" &

 "(Gate_WSP == BRDCST{1AND2} && Sel_WSP == WSP{WSP3}) "&
 "ERROR < Sel_WSP of WSP3 not possible with Gate_WSP of 1AND2 >, "&

 "(((Gate_WSP == BRDCST{WSP2}) || (Gate_WSP == BRDCST{WSP3})) "&
 " && (Sel_WSP == WSP{WSP1})) "&
 "ERROR < Sel_WSP of WSP1 not possible with Gate_WSP of WSP2 or 3 >, "&

 "(((Gate_WSP == BRDCST{WSP1}) || (Gate_WSP == BRDCST{WSP3})) "&
 " && (Sel_WSP == WSP{WSP2})) "&
 "ERROR < Sel_WSP of WSP2 not possible with Gate_WSP of WSP1 or 3 >, "&

 "(((Gate_WSP == BRDCST{WSP1}) || (Gate_WSP == BRDCST{WSP2})) "&
 " && (Sel_WSP == WSP{WSP3})) "&
 "ERROR < Sel_WSP of WSP3 not possible with Gate_WSP of WSP1 or 2 > "&
 ")";

end REG_1500_ASSM;

These constraint statements document the conflicting combinations of values in the two segment selection fields
(Gate_WSP and Sel_WSP), which need to be coordinated.

If the WSPs on the other side of the separation are in a power-down domain, or on separate components that may be
missing during test, then the entire structure should be an excludable segment. This provides a second way of
dealing with the “wire” or bypass by using a SEGSEL and SEGMUX combination to exclude or include the entire
structure. The SEGSEL would capture the “ready to scan” signal indicating that the three IEEE 1500 WSPs may be
included in the scan chain. Where the “separator” is a boundary between die in a component and configuration data
are available to indicate whether or how many IEEE 1500 WSPs are present, these data could again be used as static
“ready to scan” signals and could simplify the problem of multiple configurations in manufacturing.

Figure D-5 shows a structure achieving these modified goals and needing to be documented. In this case, assuming
that the additional IEEE 1500 WSP is used only for testing connections across the separator, it is also in the
excluded segment, but it need not be.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

415
Copyright © 2013 IEEE. All rights reserved.

Figure D-5—Three wrappers with WSC gating logic and SEGSEL

Because the SEGSEL (Start_1500) and SEGMUX (End_1500) handle excluding the four IEEE 1500 WSPs, input
0 to the selection multiplexer is not used and the scan fan-out point is after the three registers that are in series with
the WSPs (after the “B” segment). This structure could be documented in BSDL as follows, and the same names are
used as in the previous package so that the same PDL will apply to both versions. One or the other would be used,
but not both.

package REG_1500_ASSM is
 use STD_1149_1_2013.all;
end REG_1500_ASSM ;

package body REG_1500_ASSM is
 use STD_1149_1_2013.all;
 use REG_1500.all;
 use REG_1500S.all;

attribute REGISTER_MNEMONICS of REG_1500_ASSM : package is
 "WSP ("&
 " WSP1 (0B01) <Observe WSP(1)>, "&
 " WSP2 (0B10) <Observe WSP(2)>, "&
 " WSP3 (0B11) <Observe WSP(3)>, "&
 " Open (others) <DO NOT USE, broken scan chain> "&
 "), "&
 "BRDCST ("&
 " WSP1 (0B001) <Scan WSP(1) only>, "&
 " WSP2 (0B010) <Scan WSP(2) only>, "&

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

416
Copyright © 2013 IEEE. All rights reserved.

 " WSP3 (0B011) <Scan WSP(3) only>, "&
 " 1AND2 (0B110) <Scan just WSP(1) and WSP(2)>, "&
 " ALLWSP (0B111) <Scan all WSPs >, "&
 " None (others) < DO NOT USE > "&
 ")";

Attribute REGISTER_ASSEMBLY of REG_1500_ASSM : package IS
 "Reg_1500_MUX ("&
 -- Other possible segments
 "(Start_1500 IS SegSel TAPReset SEGMENT(Seg_1500)), "&
 "(Sel_WSP[2] DelayPO ResetVal(WSP(WSP1)) TAPReset), "&
 "(A [1] NOUPD), "&
 "(Gate_WSP[3] DelayPO ResetVal(BRDCST(ALLWSP)) TAPReset), "&
 "(B [2]), "&
 "(SELECTMUX "&
 "(ARRAY WSP(1 TO 3) IS REG_1500) "&
 "SELECTFIELD (Sel_WSP) "& -- 3:1 selection
 "SELECTVALUES ((WSP(1):WSP1) (WSP(2):WSP2) (WSP(3):WSP3))"&
 "BROADCASTFIELD (Gate_WSP) "&
 "BROADCASTVALUES ("& -- Decode logic for WSC
 "(WSP(1),WSP(2),WSP(3) : ALLWSP) "&
 "(WSP(1),WSP(2) : 1AND2) "&
 "(WSP(1) : WSP1) "&
 "(WSP(2) : WSP2) "&
 "(WSP(3) : WSP3) "&
 ")"&
 "), "&
 "(WSP_1500S is REG_1500S), "&
 "(End_1500 IS SegMux SEGMENT(Seg_1500)) "&
 -- Other possible segments
 ")";

attribute REGISTER_CONSTRAINTS of REG_1500_ASSM : package is
 "REG_1500_MUX (" &

 "(Gate_WSP == BRDCST{1AND2} && Sel_WSP == WSP{WSP3}) "&
 "ERROR < Sel_WSP of WSP3 not possible with Gate_WSP of 1AND2>, "&

 "(((Gate_WSP == BRDCST{WSP2}) || (Gate_WSP == BRDCST{WSP3})) "&
 " && (Sel_WSP == WSP{WSP1})) "&
 "ERROR < Sel_WSP of WSP1 invalid with Gate_WSP of WSP2 or WSP3 >, "&

 "(((Gate_WSP == BRDCST{WSP1}) || (Gate_WSP == BRDCST{WSP3})) "&
 " && (Sel_WSP == WSP{WSP2})) "&
 "ERROR < Sel_WSP of WSP2 invalid with Gate_WSP of WSP1 or WSP3 >, "&

 "(((Gate_WSP == BRDCST{WSP1}) || (Gate_WSP == BRDCST{WSP2})) "&
 " && (Sel_WSP == WSP{WSP3})) "&
 "ERROR < Sel_WSP of WSP3 invalid with Gate_WSP of WSP1 or WSP2 > "&
 ")";

end REG_1500_ASSM;

These constraint statements document the conflicting combinations of values in the selection fields that need to be
coordinated.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

417
Copyright © 2013 IEEE. All rights reserved.

D.2.2 Wrapper serial port example

The BSDL for this example is in D.2.1. This example shows PDL for the two types of IEEE 1500 WSP blocks, plus
code using the multiple WSPs.

Reg_1500.pdl

First is the PDL provided with the package for the IEEE 1500 WSPs and core shown in Figure D-2.

Supplied by MyCorp for REG_1500 version 1.0

iPDLLevel 0 -version STD_1149_1_2013
iProcGroup REG_1500

check that bypass register can be scanned
iProc check_bypass { } {
 iWrite WIR WS_BYPASS ;# Use WS_BYPASS and not WP_ALL
 iRead WBY 0 ;# = WDR.WBY, only one WBY in package
 iApply
 }

Set up mode and execute BIST in 1 scan operation
iProc start_bist { mode } {
 # CSR is documented to be a capture and shift register only.
 # GO has capture, shift, and update.
 iWrite CSR $mode ;# = WDR.Wusr.CSR, only one CSR in package
 iWrite GO Enable ;# = WDR.Wusr.GO, only one GO in package
 iApply
 iRunLoop 100000
 }

Check BIST results
iProc check_bist { instance mode } {
 iRead CSR PASS ;# = WDR.Wusr.CSR, only one CSR in package
 iApply -nofail
 ifFalse
 iSetFail "$instance REG_1500 BIST test with mode = $mode failed\n"
 ifEnd
 }

<EOF>

Reg_1500S.pdl

Supplied by MyCorp for 1500S version 1.0
iPDLLevel 0 -version STD_1149_1_2013
iProcGroup REG_1500S ;
check that bypass register can be scanned
iProc check_bypass { } {
 iRead WBY 0
 }

Reg_1500_Assm.pdl

The PDL supplied for the multiple selectable and gated WSPs shown in Figure D-3. This uses the PDL for the
REG_1500 above.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

418
Copyright © 2013 IEEE. All rights reserved.

When the Gate_WSP field is set to a value that enables broadcast, the Sel_WSP is still set by the iApply command
to the WSP containing the register field being addressed.

Supplied by MyCorp for 1500_ASSM version 1.0

iSource REG_1500.pdl
iSource REG_1500S.pdl
iPDLLevel 0 -version STD_1149_1_2013
iProcGroup REG_1500_ASSM ;

check that the REG_1500S bypass register can be scanned
iProc check_bypass { } {
 iRead WBY 0 ;# = WDR.WBY, unambiguous
 }

iProcGroup REG_1500_ASSM ;

check that bypass registers can be scanned
iProc check_bypass { } {
 iCall WSP_1500S.check_bypass
 # scan occurs in each of the 3 lines after this
 iCall WSP(1).WSP_1500.check_bypass
 iCall WSP(2).WSP_1500.check_bypass
 iCall WSP(3).WSP_1500.check_bypass
 }

start and check BIST for each WSP_1500

iProc bist_test { } {

 # Enable broadcast to save wait time.
 # Two modes of broadcast exist: ALLWSP and 1AND2,
 # specify the mode explicitly to avoid ambiguity.
 # WSP(1) is implicitly seleted for scan out by being named.
 iWrite WSP(1).WSP_common.Gate_WSP ALLWSP
 iApply ;# Select parallel scan mode, WSP(1) in scan path.

 # writing in broadcast mode, all WSPs are getting BIST mode and start
 iCall WSP(1).WSP_1500.start_bist MODE0

 # turn off broadcast, WSP(1) is currently set for scan-out
 iWrite WSP(1).WSP_common.Gate_WSP WSP1
 iApply

 # check BIST status of each, pass in instance name for error message
 iCall WSP(1).WSP_1500.check_bist WSP(1) MODE0
 iCall WSP(2).WSP_1500.check_bist WSP(2) MODE0
 iCall WSP(3).WSP_1500.check_bist WSP(3) MODE0

 # turn broadcast back on
 iWrite WSP(1).WSP_common.Gate_WSP ALLWSP
 iApply

 # all WSPs are getting BIST mode and start
 iCall WSP(1).WSP_1500.start_bist MODE1

 # turn off broadcast; WSP(1) is currently set for scan-out
 iWrite WSP(1).WSP_common.Gate_WSP WSP1

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

419
Copyright © 2013 IEEE. All rights reserved.

 iApply

 # check BIST status of each, pass in instance name for error message
 iCall WSP(1).WSP_1500.check_bist WSP(1) MODE1
 iCall WSP(2).WSP_1500.check_bist WSP(2) MODE1
 iCall WSP(3).WSP_1500.check_bist WSP(3) MODE1

}

iPDLLevel 1 -version STD_1149_1_2013

iProc 1500_interconnect { } {

 # Connections exist 1:1 between WSP(3:1) and WSP_1500S

 iWrite WSP(1).WSP_common.Gate_WSP ALLWSP
 iApply

 # The WBR access is ambiguous, there are
 # two paths for accessing the WBR, WS_EXTEST and WS_INTEST
 # all four WSPs get WS_EXTEST in the WIR
 iWrite WSP(1).WSP_1500.WIR WS_EXTEST ;# Broadcast mode
 iWrite WSP_1500S.WIR WS_EXTEST
 iApply ;# 4 WSPs in WS_EXTEST mode

 iWrite WSP(1).WSP_1500.WDR.WBR 0 ;# Transmit all 0
 iApply
 iRead WSP_1500S.WDR.WBR 0 ;# Receive all 0
 iWrite WSP(1).WSP_1500.WDR.WBR(0) 0b1 ;# Broadcast single 1
 iApply

 set i 1
 while {$i < 8} {
 iRead WSP_1500S.WDR.WBR 0 ;# Expect background of all 0
 set pos [expr {$i - 1}]
 iRead WSP_1500S.WDR.WBR($pos) 1 ;# Expect 1 from WSP(1)
 set pos [expr {$pos +8}]
 iRead WSP_1500S.WDR.WBR($pos) 1 ;# Expect 1 from WSP(2)
 set pos [expr {$pos +8}]
 iRead WSP_1500S.WDR.WBR($pos) 1 ;# Expect 1 from WSP(3)
 iWrite WSP(1).WSP_1500.WDR.WBR 0 ;# Set write background
 iWrite WSP(1).WSP_1500.WDR.WBR($i) 0b1 ;# Write Walking 1
 iApply
 set i [expr {$i + 1}]
 }
 # read last driven values
 iRead WSP_1500S.WDR.WBR 0 ;# Expect background of all 0
 set pos [expr {$i - 1}]
 iRead WSP_1500S.WDR.WBR($pos) 1 ;# Expect 1 from WSP(1)
 set pos [expr {$pos +8}]
 iRead WSP_1500S.WDR.WBR($pos) 1 ;# Expect 1 from WSP(2)
 set pos [expr {$pos +8}]
 iRead WSP_1500S.WDR.WBR($pos) 1 ;# Expect 1 from WSP(3)
 iApply

}

<EOF>

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

420
Copyright © 2013 IEEE. All rights reserved.

Annex E

(informative)

Example iApply execution flow

The following pseudo-code illustrates the execution flow of the PDL iApply command. This does not show any of
the processing necessary to verify the syntax and semantics of the command words or other housekeeping. It is
strictly informative, and any apparent discrepancy between this pseudo-code and the rules of C.3.7.2 must be
resolved in favor of the rules.

This pseudo-code assumes that when iRead and iWrite (or iScan) commands update the write and expect data,
then each field that has been updated is known. It also assumes that a mapping is maintained from a TDR to the
currently preferred instruction for scanning that TDR, called the iSetInstruction table, below.

NOTE 1—previous TDR, instruction, and iApply arguments are initialized to the appropriate values (null for iApply arguments)
after a reset and before the first iApply command. Rule references are all from C.3.7.2.

PROCEDURE iApply

(Clear the local fail flag) (Rule d1)
IF (there are no iRead/iWrite/iScan commands since last iApply)
THEN
 CALL Scan-DR (using accumulated write and default expect data) (Rule c)
ELSE
 IF (there is NOT a single TDR containing all fields to be scanned)
 THEN
 ERROR: multiple TDRs selected. (Rule e);
 EXIT
 END IF
END IF
(Determine current TDR from fields to be scanned)
IF (all fields to be scanned are currently included/selected)
THEN
 CALL Scan-DR (using accumulated write and expect data) (Rule d)
ELSE
 FOR (each mutually exclusive segment -- at least once) (Rule a) (See NOTE)
 WHILE (segment(s) are not yet selected)
 IF (all segment(s) not yet selected are controlled (domain, selection)
 in the same TDR)
 THEN

 CALL Scan-DR (using domain and selection values) (Rule a)
 IF (excludable segment)

 THEN
 UNTIL (all SEGSEL are “ready-to-scan”)

 CALL Scan-DR (read “ready-to-scan” bits)
 END UNTIL

 END IF
 ELSE

 Save current TDR name (Rule b)
 FOR (each TDR containing selection fields controlling a segment

 to be scanned)
 (Set current TDR name to TDR containing segment control(s))
 CALL Scan-DR (using domain and selection values,
 expect only defaults)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

421
Copyright © 2013 IEEE. All rights reserved.

 IF (excludable segment)
 THEN
 UNTIL (all SEGSEL are “ready-to-scan”)
 CALL Scan-DR (read “ready-to-scan” bits)
 END UNTIL
 END IF
 END FOR
 (Restore current TDR name to saved TDR name)
 END IF
 END WHILE
 CALL Scan-DR (using accumulated write and expect data)
 END FOR
END IF
(Reset write data for any PULSE0 or PULSE1 cells to '0') (Rule i)
(Reset Expect data to register defaults) [Rule c) of C.3.7.1]
(Copy current TDR and instruction names, and iApply arguments to

previous TDR and instruction names, and iApply arguments)
END PROCEDURE

--

PROCEDURE Scan-DR

(Determine current instruction from current TDR using iSetInstruction

Table) (Rule p)
IF (current instruction is different than previous instruction)
THEN
 IF (previous -shiftPause is set)
 THEN
 ERROR: changing instructions not allowed in paused shift (Rule m)
 EXIT
 END IF
 IF (current -skipRTI is set)
 THEN
 (Perform IR scan using current instruction to select TDR (Rule p);

 do not pass through the Run-Test/Idle TAP controller state (Rule h))
 ELSE
 (Perform IR scan using current instruction to select TDR (Rule p))
 END IF
 (Copy current TDR and instruction names to previous TDR and

 instruction names)
END IF
(Evaluate all constraints that apply to the current TDR and take

appropriate action) (Rule f)
IF (previous -shiftPause is set)
THEN
 (Go from Pause-DR to Exit2-DR to Shift-DR) (Rule l)
ELSE
 IF (current -skipRTI is set)
 THEN
 (Do not pass through the Run-Test/Idle TAP controller state en route

to the Shift-DR state) (Rule h)
 ELSE
 (Go to the Shift-DR state)
 END IF
END IF
BEGIN (single operation)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1149.1-2013
IEEE Standard for Test Access Port and Boundary-Scan Architecture

422
Copyright © 2013 IEEE. All rights reserved.

(Perform DR scan, writing accumulated write data and comparing expect data,
setting both fail flags as required) (Rule d2, d3, d4)

 IF (PDL1)
 THEN
 (Capture returned scan data and fail data) (Rule d5)
 END IF
END BEGIN
IF (current -shiftPause is set)
THEN
 (Go from Shift-DR to Exit1-DR to Pause-DR) (Rule k)
ELSE
 IF (current -skipRTI is set)
 THEN
 (Do not pass through the Run-Test/Idle TAP controller state en route

to the ending state) (Rule h)
 ELSE
 (Go to ending state)
 END IF
END IF
END PROCEDURE

NOTE 2—This description does not attempt to deal with the ambiguity in results that can occur when there are multiple mutually
exclusive but also mutually dependent segments to be written and/or read by a single iApply command. In this situation, the
captured values may change depending on the order of writing and reading the segments, which is arbitrary by rule. To use this
pseudo-code as shown, the user would have to code the PDL to eliminate the order dependency. Alternatively, a tool provider
could enhance this pseudo-code to eliminate the order dependency by repeating the selection and scan sequence twice. The first
scan sequence would write the previous data (without the iWrite updates) and read the data with the new iRead values (and
storing the captured values in PDL-1); and the second scan sequence would write the new iWrite values and discard the captured
values. This ensures that all register segments are read (and the captured values stored) before any segments are written with new
data, and it provides exactly the same results as if all the mutually exclusive and dependent segments had instead been serially
connected in a single TDR and scanned once, but at the cost of twice as many scans where mutually exclusive selectable
segments are involved. A third possibility is for a tool provider to issue a warning upon detecting when multiple mutually
exclusive segments are read and written by a single iApply command.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 18,2014 at 05:29:00 UTC from IEEE Xplore. Restrictions apply.

	IEEE Std 1149.1-2013 Front Cover
	Notice to users
	Laws and regulations
	Copyrights
	Updating of IEEE documents
	Errata
	Patents

	Participants
	Introduction
	History of the development of this standard
	Changes introduced by this revision

	Contents
	Figures
	Tables

	Important Notice
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.2.1 Overview of the operation of this standard
	1.2.2 Use of this standard to test an assembled product
	1.2.3 What is a boundary scan?
	1.2.4 Use of this standard to achieve other test goals

	1.3 Document outline
	1.3.1 Specifications
	1.3.2 Descriptions

	1.4 Text conventions
	1.5 Logic diagram conventions

	2. Normative references
	3. Definitions, abbreviations, acronyms, and special terms
	3.1 Definitions
	3.2 Abbreviations and acronyms
	3.3 Special terms

	4. Test access port (TAP)
	4.1 Connections that form the TAP
	4.1.1 Specifications
	Rules

	4.1.2 Description

	4.2 Test clock input (TCK)
	4.2.1 Specifications
	Rules
	Recommendations
	Permissions

	4.2.2 Description

	4.3 Test mode select (TMS) input
	4.3.1 Specifications
	Rules
	Recommendations

	4.3.2 Description

	4.4 Test data input (TDI)
	4.4.1 Specifications
	Rules

	4.4.2 Description

	4.5 Test data output (TDO)
	4.5.1 Specifications
	Rules

	4.5.2 Description

	4.6 Test reset input (TRST*)
	4.6.1 Specifications
	Rules
	Recommendations

	4.6.2 Description

	4.7 Interconnection of components compatible with this standard
	4.7.1 Specifications
	Permissions

	4.7.2 Description

	4.8 Subordination of this standard within a higher level test strategy
	4.8.1 Specifications
	Rules
	Recommendations
	Permissions

	4.8.2 Description

	5. Test logic architecture
	5.1 Test logic design
	5.1.1 Specifications
	Rules
	Permissions

	5.1.2 Description

	5.2 Test logic realization
	5.2.1 Specifications
	Rules

	5.2.2 Description

	6. Test logic controllers
	6.1 TAP controller
	6.1.1 TAP controller state diagram
	6.1.1.1 Specifications
	Rules

	6.1.1.2 Description
	Test-Logic-Reset
	Run-Test/Idle
	Select-DR-Scan
	Select-IR-Scan
	Capture-DR
	Shift-DR
	Exit1-DR
	Pause-DR
	Exit2-DR
	Update-DR
	Capture-IR
	Shift-IR
	Exit1-IR
	Pause-IR
	Exit2-IR
	Update-IR
	General

	6.1.2 TAP controller operation
	6.1.2.1 Specifications
	Rules

	6.1.2.2 Description

	6.1.3 TAP controller initialization
	6.1.3.1 Specifications
	Rules

	6.1.3.2 Description

	6.2 Test mode persistence (TMP) controller
	6.2.1 TMP controller state diagram
	6.2.1.1 Specifications
	Rules
	Recommendations

	6.2.1.2 Description

	6.2.2 TMP controller operation
	6.2.2.1 Specifications
	Rules
	Permissions

	6.2.2.2 Description

	6.2.3 TMP controller initialization
	6.2.3.1 Specifications
	Rules

	6.2.3.2 Description

	7. Instruction register
	7.1 Design and construction of the instruction register
	7.1.1 Specifications
	Rules
	Recommendations
	Permissions

	7.1.2 Description

	7.2 Instruction register operation
	7.2.1 Specifications
	Rules

	7.2.2 Description

	8. Instructions
	8.1 Response of the test logic to instructions
	8.1.1 Specifications
	Rules
	Recommendations
	Permissions

	8.1.2 Description

	8.2 Public instructions
	8.2.1 Specifications
	Rules
	Recommendations
	Permissions

	8.2.2 Description

	8.3 Private instructions
	8.3.1 Specifications
	Rules
	Permissions

	8.3.2 Description

	8.4 BYPASS instruction
	8.4.1 Specifications
	Rules
	Permissions
	Recommendations

	8.4.2 Description

	8.5 Boundary-scan register instructions
	8.5.1 Overview of the operation of the boundary-scan register
	8.5.2 Specifications for boundary-scan register instructions

	8.6 SAMPLE instruction
	8.6.1 Specifications
	Rules
	Recommendations
	Permissions

	8.6.2 Description

	8.7 PRELOAD instruction
	8.7.1 Specifications
	Rules
	Recommendations
	Permissions

	8.7.2 Description

	8.8 EXTEST instruction
	8.8.1 Specifications
	Rules
	Recommendations
	Permissions

	8.8.2 Description

	8.9 INTEST instruction
	8.9.1 Specifications
	Rules
	Recommendations
	Permissions

	8.9.2 Description

	8.10 RUNBIST instruction
	8.10.1 Specifications
	Rules
	Recommendations
	Permissions

	8.10.2 Description

	8.11 CLAMP instruction
	8.11.1 Specifications
	Rules
	Permissions

	8.11.2 Description

	8.12 Device identification register instructions
	8.13 IDCODE instruction
	8.13.1 Specifications
	Rules
	Permissions

	8.13.2 Description

	8.14 USERCODE instruction
	8.14.1 Specifications
	Rules
	Permissions

	8.14.2 Description

	8.15 ECIDCODE instruction
	8.15.1 Specifications
	Rules
	Recommendations
	Permissions

	8.15.2 Description

	8.16 HIGHZ instruction
	8.16.1 Specifications
	Rules
	Permissions

	8.16.2 Description

	8.17 Component initialization instructions and procedures
	8.17.1 Specifications
	Rules
	Permissions
	Recommendations

	8.17.2 Description

	8.18 INIT_SETUP and INIT_SETUP_CLAMP instructions
	8.18.1 Specifications
	Rules
	Permissions

	8.18.2 Description

	8.19 INIT_RUN instruction
	8.19.1 Specifications
	Rules
	Recommendations
	Permissions

	8.19.2 Description

	8.20 CLAMP_HOLD, CLAMP_RELEASE, and TMP_STATUS instructions
	8.20.1 Specifications
	Rules
	Permissions

	8.20.2 Description

	8.21 IC_RESET instruction
	8.21.1 Specifications
	Rules
	Recommendations
	Permissions

	8.21.2 Description

	9. Test data registers
	9.1 Provision of test data registers
	9.1.1 Specifications
	Rules
	Permissions
	Recommendations

	9.1.2 Description
	Bypass register
	Boundary-scan register
	9.1.2.1 Optional standard test data registers
	Device identification register
	Electronic chip identification register
	Initialization data register
	Initialization status register
	TMP status register
	Reset selection register

	9.1.2.2 Design-specific test data registers

	9.2 Design and construction of test data registers
	9.2.1 Specifications
	Rules
	Permissions
	Recommendations

	9.2.2 Description
	9.2.3 TAP-to-TDR interface
	9.2.4 Test data register cell design examples
	Gated-clock example TDR bit
	Ungated-clock example TDR bits

	9.3 Operation of test data registers
	9.3.1 Specifications
	Rules
	Permissions
	Recommendations

	9.3.2 Description

	9.4 Design and control of test data register segments
	9.4.1 Specifications
	Rules
	Permissions
	Recommendations

	9.4.2 Description
	Excludable segments
	Selectable segments

	10. Bypass register
	10.1 Design and operation of the bypass register
	10.1.1 Specifications
	Rules

	10.1.2 Description

	11. Boundary-scan register
	11.1 Introduction
	11.1.1 Approach
	11.1.2 Signal paths to the on-chip system logic
	11.1.3 Boundary-scan register cell

	11.2 Register design
	11.2.1 Specifications
	Rules
	Permissions

	11.2.2 Description

	11.3 Register operation
	11.3.1 Specifications
	Rules
	Permissions

	11.3.2 Description

	11.4 General rules regarding cell provision
	11.4.1 Specification
	Rules
	Permissions

	11.4.2 Description

	11.5 Provision and operation of cells at system logic inputs
	11.5.1 Specifications
	Rules
	Permissions

	11.5.2 Description

	11.6 Provision and operation of cells at system logic outputs
	11.6.1 Specifications
	Rules
	Recommendations
	Permissions

	11.6.2 Description

	11.7 Provision and operation of cells at bidirectional system logic pins
	11.7.1 Specifications
	Rules

	11.7.2 Description

	11.8 Redundant cells
	11.8.1 Specifications
	Rules
	Permissions
	Recommendations

	11.8.2 Description

	11.9 Special cases
	11.9.1 Specifications
	Permissions

	11.9.2 Description

	12. Device identification register
	12.1 Design and operation of the device identification register
	12.1.1 Specifications
	Rules

	12.1.2 Description

	12.2 Manufacturer identity code
	12.2.1 Specifications
	Rules
	Recommendations

	12.2.2 Description

	12.3 Part-number code
	12.3.1 Specifications
	Rules
	Recommendations
	Permissions

	12.3.2 Description

	12.4 Version code
	12.4.1 Specifications
	Rules
	Recommendations
	Permissions

	12.4.2 Description

	13. Electronic chip identification (ECID) register
	13.1 Design and operation of the ECID register
	13.1.1 Specifications
	Rules
	Permissions

	13.1.2 Description

	14. Initialization data register
	14.1 Design and operation of the initialization data register
	14.1.1 Specifications
	Rules
	Recommendations
	Permissions

	14.1.2 Description

	15. Initialization status register
	15.1 Design and operation of the initialization status register
	15.1.1 Specifications
	Rules
	Recommendations

	15.1.2 Description

	16. TMP status register
	16.1 Design and operation of the TMP status register
	16.1.1 Specifications
	Rules

	16.1.2 Description

	17. Reset selection register
	17.1 Design and operation of the reset selection register
	17.1.1 Specifications
	Rules
	Permissions

	17.1.2 Description

	18. Conformance and documentation requirements
	18.1 Claiming conformance to this standard
	18.1.1 Specifications
	Rules
	Recommendations
	Permissions

	18.1.2 Description

	18.2 Prime and second source components
	18.2.1 Specifications
	Rules

	18.2.2 Description

	18.3 Documentation requirements
	18.3.1 Specifications
	Rules

	18.3.2 Description

	Annex A (informative)Example implementation using level-sensitive design techniques
	Annex B (normative)Boundary Scan Description Language (BSDL)
	B.1 General information
	B.1.1 Document outline
	B.1.2 Conventions
	B.1.3 BSDL history

	B.2 Purpose of BSDL
	B.3 Scope of BSDL
	B.4 Relationship of BSDL to VHDL
	B.4.1 Specifications
	Rules
	Permissions

	B.5 Lexical elements of BSDL
	B.5.1 Character set
	B.5.1.1 Specifications
	Rules

	B.5.2 BSDL reserved words
	B.5.2.1 Specifications
	Rules

	B.5.3 VHDL reserved and predefined words
	B.5.3.1 Specifications
	Rules

	B.5.4 Identifiers
	B.5.4.1 Specifications
	Rules

	B.5.5 Numeric literals
	B.5.5.1 Specifications
	Rules

	B.5.5.2 Description

	B.5.6 Strings
	B.5.6.1 Specifications
	Rules

	B.5.6.2 Description

	B.5.7 Information tag
	B.5.7.1 Specifications
	Rules

	B.5.7.2 Description

	B.5.8 Comments
	B.5.8.1 Specifications
	Rules

	B.6 Syntax definition
	B.6.1 BNF conventions
	B.6.2 Commonly used syntactic elements
	B.6.2.1 Specifications
	Syntax
	Rules

	B.7 Components of a BSDL description
	B.7.1 Specifications
	Rules
	Permissions

	B.7.2 Description

	B.8 Entity description
	B.8.1 Overall syntax of the entity description
	B.8.1.1 Specifications
	Syntax
	Rules
	Recommendations

	B.8.2 Generic parameter statement
	B.8.2.1 Specifications
	Syntax
	Rules

	B.8.2.2 Description
	B.8.2.3 Examples

	B.8.3 Logical port description statement
	B.8.3.1 Specifications
	Syntax
	Rules
	Permissions

	B.8.3.2 Description
	B.8.3.3 Example

	B.8.4 Standard use statement
	B.8.4.1 Specifications
	Syntax
	Rules

	B.8.4.2 Description
	B.8.4.3 Examples
	B.8.4.4 Version control

	B.8.5 Use statement
	B.8.5.1 Specifications
	Syntax
	Rules

	B.8.5.2 Description
	B.8.5.3 Example

	B.8.6 Component conformance statement
	B.8.6.1 Specifications
	Syntax
	Rules

	B.8.6.2 Description
	B.8.6.3 Example

	B.8.7 Device package pin mappings
	B.8.7.1 Specifications
	Syntax
	Rules
	Permissions

	B.8.7.2 Examples
	B.8.7.3 Description

	B.8.8 Grouped port identification
	B.8.8.1 Specifications
	Syntax
	Rules

	B.8.8.2 Description
	B.8.8.3 Examples

	B.8.9 Scan port identification
	B.8.9.1 Specifications
	Syntax
	Rules

	B.8.9.2 Description
	Examples

	B.8.10 Compliance-enable description
	B.8.10.1 Specifications
	Syntax
	Rules
	Permissions

	B.8.10.2 Description
	B.8.10.3 Examples

	B.8.11 Instruction register description
	B.8.11.1 Specifications
	Syntax
	Rules

	B.8.11.2 Description
	B.8.11.3 Examples

	B.8.12 Optional device register description
	B.8.12.1 Specifications
	Syntax
	Rules
	Recommendations
	Permissions

	B.8.12.2 Description
	B.8.12.3 Examples

	B.8.13 Register access description
	B.8.13.1 Specifications
	Syntax
	Rules

	B.8.13.2 Examples
	B.8.13.3 Description

	B.8.14 Boundary-scan register description
	B.8.14.1 Specifications
	Syntax
	Rules
	Permissions

	B.8.14.2 Examples
	Example 1
	Example 2

	B.8.14.3 Description
	B.8.14.3.1 <cell name> element
	B.8.14.3.2 <port ID or null> element
	B.8.14.3.3 <function> element
	B.8.14.3.4 <safe bit> element
	B.8.14.3.5 <ccell> element
	B.8.14.3.6 <disable value> element
	B.8.14.3.7 <disable result> element
	B.8.14.3.8 <input spec> element

	B.8.15 RUNBIST description
	B.8.15.1 Specifications
	Syntax
	Rules

	B.8.15.2 Examples

	B.8.16 INTEST description
	B.8.16.1 Specifications
	Syntax
	Rules

	B.8.16.2 Examples

	B.8.17 System clock requirements attribute
	B.8.17.1 Specifications
	Syntax
	Rules

	B.8.17.2 Description
	B.8.17.3 Examples

	B.8.18 Register mnemonics description
	B.8.18.1 Specifications
	Syntax
	Rules

	B.8.18.2 Description
	B.8.18.3 Examples
	Example 1
	Example 2
	Example 3

	B.8.19 Register fields description
	B.8.19.1 Specifications
	Syntax
	Rules

	B.8.19.2 Description
	B.8.19.3 Examples

	B.8.20 Register field assignment description
	B.8.20.1 Specifications
	Syntax
	Rules
	Recommendations

	B.8.20.2 Description

	B.8.21 Register assembly description
	B.8.21.1 Specifications
	Syntax
	Rules
	Permissions
	Recommendations

	B.8.21.2 Description
	Excludable register segments and domain control
	Selectable register segments

	B.8.21.3 Examples
	Initialization REGISTER_ASSEMBLY example
	Boundary-scan example
	Power-domain control example
	IEEE 1500 WSP Examples

	B.8.22 Register constraint description
	B.8.22.1 Specifications
	Syntax
	Rules

	B.8.22.2 Description
	B.8.22.3 Examples

	B.8.23 Register and power port association attributes
	B.8.23.1 Specifications
	Syntax
	Rules

	B.8.23.2 Description
	B.8.23.3 Examples

	B.8.24 User extensions to BSDL
	B.8.24.1 Specifications
	Syntax
	Rules
	Permissions

	B.8.24.2 Description
	B.8.24.3 Examples

	B.8.25 Design warning
	B.8.25.1 Specifications
	Syntax

	B.8.25.2 Description
	B.8.25.3 Examples

	B.9 Standard BSDL Package STD_1149_1_2013
	B.10 User-supplied BSDL packages
	B.10.1 Specifications
	Syntax
	Rules
	Recommendations

	B.10.2 Description
	B.10.3 Examples
	User-supplied package for boundary-register cells
	User-supplied package body for internal registers

	B.11 BSDL example applications
	B.11.1 Typical application of BSDL
	B.11.2 Boundary-scan register description
	B.11.2.1 Multiple cells per pin
	B.11.2.2 Internal boundary register cells
	B.11.2.3 Merged cells

	B.12 1990 version of BSDL
	B.12.1 1990 Standard VHDL Package STD_1149_1_1990
	B.12.2 Typical application of BSDL, 1990 version
	B.12.3 Obsolete syntax
	B.12.3.1 Syntax

	B.12.4 Miscellaneous points on 1990 version

	B.13 1994 version of BSDL
	B.13.1 Standard VHDL Package STD_1149_1_1994

	B.14 2001 version of BSDL
	B.14.1 Standard VHDL Package STD_1149_1_2001

	Annex C (normative)Procedural Description Language (PDL)
	C.1 General information
	C.1.1 Purpose
	C.1.2 Dependence on Tool Command Language (Tcl)
	C.1.3 Dependence on Boundary Scan Description Language (BSDL)

	C.2 PDL concepts and use model
	C.2.1 Use model introduction
	C.2.2 PDL levels
	C.2.2.1 Level-0 PDL
	C.2.2.2 Level-1 PDL

	C.2.3 PDL procedures
	C.2.4 Read and write with capture-shift-update sequence
	C.2.5 Register state definition
	C.2.6 Level-0 PDL commands
	C.2.7 Specification of names and values
	C.2.8 Retargeting
	C.2.9 Simple PDL Example
	U3.PDL
	MEMB.PDL
	Chip_A.PDL

	C.3 PDL Level 0 command reference
	C.3.1 Understanding a PDL “string”
	C.3.2 BNF conventions
	C.3.3 PDL lexical elements and common syntax
	C.3.3.1 Lexical element specifications
	General rules
	Numeric literal rules
	Identifier rules
	Text string rules

	C.3.3.2 Substitutions
	Rules

	C.3.3.3 Common syntax
	Syntax
	Rules
	Description

	C.3.3.4 PDL reserved words
	Rules
	Recommendations

	C.3.4 PDL File
	Syntax
	Rules
	Permissions

	C.3.5 Procedure definition commands
	C.3.5.1 iSource command
	Syntax
	Rules
	Example

	C.3.5.2 iPDLLevel command
	Syntax
	Rules
	Permissions
	Example

	C.3.5.3 iProcGroup command
	Syntax
	Rules
	Permissions
	Example

	C.3.5.4 iProc command
	Syntax
	Rules
	Predefined procedure names

	C.3.6 Test setup commands
	C.3.6.1 iPrefix command
	Syntax
	Rules
	Examples

	C.3.6.2 iSetInstruction command
	Syntax
	Rules
	Examples

	C.3.6.3 iClock and iClockOverride commands
	Syntax
	Rules
	Examples

	C.3.7 Test execution commands
	C.3.7.1 iRead and iWrite commands
	Syntax
	Rules
	Examples

	C.3.7.2 iApply command
	Syntax
	Rules
	Recommendations
	Examples

	C.3.7.3 iScan command
	Syntax
	Rules
	Examples

	C.3.8 Flow-control commands
	C.3.8.1 iCall command
	Syntax
	Rules
	Examples

	C.3.8.2 iRunLoop command
	Syntax
	Rules
	Recommendations
	Examples

	C.3.8.3 iLoop and iUntil commands
	Syntax
	Rules
	Example A
	Example B

	C.3.8.4 ifTrue, ifFalse and ifEnd commands
	Syntax
	Rules
	Example A
	Example B

	C.3.9 Optimization commands
	C.3.9.1 iMerge command
	Syntax
	Rules
	Example

	C.3.9.2 iTake and iRelease commands
	Syntax
	Rules
	Example

	C.3.10 Miscellaneous commands
	C.3.10.1 iNote command
	Syntax
	Recommendations
	Example A
	Example B

	C.3.10.2 iSetFail command
	Syntax
	Rules
	Recommendations
	Examples

	C.3.11 Low-level commands
	C.3.11.1 iTMSreset and iTRST commands
	Syntax
	Rules
	Recommendations
	Example

	C.3.11.2 iTMSidle command
	Syntax
	Rules
	Examples

	C.4 PDL Level 1 command reference
	C.4.1 Level-1 PDL operation
	C.4.2 iGet command
	Syntax
	Rules
	Example A
	Example B
	Example C
	Example D
	Example E
	Example F
	Example G

	C.4.3 iGetStatus command
	Syntax
	Rules
	Example

	C.5 Example BSDL and PDL for the use model
	C.5.1 BSDL Packages for IP
	MEMB
	SERDES

	C.5.2 BSDL files for components
	Chip_A
	Chip_B
	Chip_C

	C.5.3 PDL files supplied by IP supplier
	MEMB
	SERDES

	C.5.4 PDL files supplied by component supplier
	Chip_A
	Chip_B
	Chip_C

	C.5.5 PDL files coded by test engineer
	U1
	U2
	U3
	U4
	UUT

	Annex D (informative) Integrated examples of BSDL and PDL
	D.1 Initialization example structure and procedures
	D.1.1 Initialization example using register description attributes
	D.1.2 Example PDL for INIT example

	D.2 Multiple wrapper serial port structure and procedures
	D.2.1 Wrapper serial port structural description
	Single WSP
	Multiple selectable and gated WSP

	D.2.2 Wrapper serial port example
	Reg_1500.pdl
	Reg_1500S.pdl
	Reg_1500_Assm.pdl

	Annex E (informative)Example iApply execution flow

