2026/02/18 09:49 1/10

Bit::Vector

Bit::Vector

1. CLASS METHODS

Version
$version = Bit::Vector->Version();

Word Bits

$bits = Bit::Vector->Word Bits(); # bits in a machine word
Long Bits

$bits = Bit::Vector->Long Bits(); # bits in an unsigned long
new

$vector = Bit::Vector->new($bits); # bit vector constructor
@veclist = Bit::Vector->new($bits, $count);

new Hex
$vector

Bit::Vector->new Hex($bits,$string);

new Bin
$vector = Bit::Vector->new Bin($bits,$string);

new Dec
$vector = Bit::Vector->new Dec($bits,$string);

new_Enum
$vector = Bit::Vector->new Enum($bits,$string);

Concat List
$vector = Bit::Vector->Concat List(@vectors);

2. OBJECT METHODS

new
$vec2 = $vecl->new($bits); # alternative call of constructor
@veclist = $vec->new($bits, $count);
Shadow
$vec2 = $vecl->Shadow(); # new vector, same size but empty
Clone
$vec2 = $vecl->Clone(); # new vector, exact duplicate

2026/02/18 09:49 2/10

Bit::Vector

Concat
$vector

$vecl->Concat($vec?);

Concat List
$vector

$vecl->Concat List($vec2,$vec3,...);

Size
$bits = $vector->Size();

Resize
$vector->Resize($bits);
$vector->Resize($vector->Size()+5);
$vector->Resize($vector->Size()-5);

Copy
$vec2->Copy($vecl);

Empty
$vector->Empty();

Fill
$vector->Fill();

Flip
$vector->Flip();

Primes
$vector->Primes(); # Sieve of Erathostenes

Reverse
$vec2->Reverse($vecl);

Interval Empty
$vector->Interval Empty($min, $max);

Interval Fill
$vector->Interval Fill($min, $max);

Interval Flip
$vector->Interval Flip($min, $max);

Interval Reverse
$vector->Interval Reverse($min, $max);

Interval Scan inc
if (($min, $max)

Interval Scan dec
if (($min, $max)

Interval Copy

$vector->Interval Scan _inc($start))

$vector->Interval Scan dec($start))

2026/02/18 09:49 3/10 Bit::Vector

$vec2->Interval Copy($vecl,$offset2,$offsetl,$length);

Interval Substitute
$vec2->Interval Substitute($vecl,$off2,%$len2,$0ffl,$lenl);

is empty
if ($vector->is empty())

is full
if ($vector->is full())

equal
if ($vecl->equal($vec2))

Lexicompare (unsigned)
if ($vecl->Lexicompare($vec2) == 0)
if ($vecl->Lexicompare($vec2) != 0)
if ($vecl->Lexicompare($vec2) < 0)
if ($vecl->Lexicompare($vec2) <= 0)
if ($vecl->Lexicompare($vec2) > 0)
if ($vecl->Lexicompare($vec2) >= 0)

Compare (signed)
if ($vecl->Compare($vec2) ==
if ($vecl->Compare($vec2) !=
if ($vecl->Compare($vec2) <
if ($vecl->Compare($vec2) <=
if ($vecl->Compare($vec2) >
if ($vecl->Compare($vec2) >=

[cNoNoNoNoNO)

to Hex
$string = $vector->to Hex();

from Hex
$vector->from Hex($string);

to Bin
$string = $vector->to Bin();

from Bin
$vector->from Bin($string);

to Dec
$string = $vector->to Dec();

from Dec
$vector->from Dec($string);

to Enum
$string = $vector->to Enum(); # e.g. "2,3,5-7,11,13-19"

2026/02/18 09:49 4/10

Bit::Vector

from Enum
$vector->from Enum($string);

Bit Off
$vector->Bit Off($index);

Bit On
$vector->Bit On($index);

bit flip
$bit = $vector->bit flip($index);
bit test
contains
$bit = $vector->bit test($index);
$bit = $vector->contains($index);

if ($vector->bit test($index))
if ($vector->contains($index))

Bit Copy
$vector->Bit Copy($index, $bit);

LSB (least significant bit)
$vector->LSB($bit);

MSB (most significant bit)
$vector->MSB($bit);

lsb (least significant bit)
$bit = $vector->1lsh();

msb (most significant bit)
$bit = $vector->msb();

rotate left
$carry = $vector->rotate left();

rotate right
$carry = $vector->rotate right();

shift left
$carry = $vector->shift left($carry);

shift right
$carry = $vector->shift right($carry);

Move Left

$vector->Move Left($bits); # shift left "$bits" positions

Move Right

$vector->Move Right($bits); # shift right "$bits" positions

2026/02/18 09:49

5/10

Bit::Vector

Insert

$vector->Insert($offset,$bits);

Delete

$vector->Delete($offset,$bits);

incremen
$car

decremen
$car

inc
$ove

dec
$ove

add

$carry = $vec3->add($vecl, $vec2,$carry);
($carry, $overflow) = $vec3->add($vecl, $vec2, $carry);

subtract

$carry = $vec3->subtract($vecl, $vec2,$carry);
($carry, $overflow) = $vec3->subtract($vecl, $vec2,$carry);

Neg
Negate

t
ry

t
ry

rflow

rflow = $vec2->dec($vecl);

$vec2->Neg($vecl);
$vec2->Negate($vecl);

Abs
Absolute

$vec2->Abs($vecl);

$vec2->Absolute($vecl);

Sign

if ($vector->Sign()
if ($vector->Sign()
if ($vector->Sign(

if (
if (
if (

Multiply

$vec3->Multiply($vecl, $vec?);

Divide

$quot->Divide($vecl, $vec2, $rest);

$vector->Sign
$vector->Sign
$vector->Sign

(
(
(

)
)
)
)

$vector->increment();

$vector->decrement();

$vec2->inc($vecl);

0)

= 0)

0)
0)
0)
0)

GCD (Greatest Common Divisor)

2026/02/18 09:49 6/10

Bit::Vector

$vecgcd->GCD($veca, $vecb);
$vecgcd->GCD($vecx, $vecy, $veca, $vecb);

Power
$vec3->Power($vecl, $vec?);

Block Store
$vector->Block Store($buffer);

Block Read
$buffer = $vector->Block Read();

Word Size
$size = $vector->Word Size(); # number of words in "$vector"

Word Store
$vector->Word Store($offset, $word);

Word Read
$word = $vector->Word Read($offset);

Word List Store
$vector->Word List Store(@words);

Word List Read
@words = $vector->Word List Read();

Word Insert
$vector->Word Insert($offset, $count);

Word Delete
$vector->Word Delete($offset, $count);

Chunk_Store
$vector->Chunk Store($chunksize,$offset, $chunk);

Chunk Read
$chunk = $vector->Chunk Read($chunksize,$offset);

Chunk List Store
$vector->Chunk List Store($chunksize,@chunks);

Chunk List Read
@chunks = $vector->Chunk List Read($chunksize);

Index List Remove
$vector->Index List Remove(@indices);

Index List Store
$vector->Index List Store(@indices);

2026/02/18 09:49 7/10

Bit::Vector

Index List Read
@indices = $vector->Index List Read();

Or

Union
$vec3->0r($vecl, $vec2);
$set3->Union($setl, $set?);

And

Intersection
$vec3->And($vecl, $vec?);
$set3->Intersection($setl, $set2);

AndNot

Difference
$vec3->AndNot($vecl, $vec2);
$set3->Difference($setl, $set2);

Xor

ExclusiveOr
$vec3->Xor($vecl, $vec?);
$set3->ExclusiveOr($setl, $set2);

Not

Complement
$vec2->Not($vecl);
$set2->Complement ($setl);

subset

if ($setl->subset($set2)) # true if $setl is subset of $set2

Norm
$norm $set->Norm();
$norm = $set->Norm2();
$norm $set->Norm3()

’

Min

$min $set->Min();

Max

$max $set->Max();
Multiplication
$matrix3->Multiplication($rows3,$cols3,
$matrixl, $rowsl, $colsl,
$matrix2,$rows2,$cols2);

Product
$matrix3->Product($rows3,$cols3,
$matrixl, $rowsl, $colsl,
$matrix2, $rows2,$cols2);

2026/02/18 09:49 8/10 Bit::Vector

Closure
$matrix->Closure($rows, $cols);

Transpose
$matrix2->Transpose($rows2,$cols2,$matrixl, $rowsl, $colsl);

CNERERERN

god
#!/usr/bin/perl
use Bit::Vector

from hex

$vec Bit::Vector->new Hex(32,"cc"
$hex str $vec->to Hex

print "hex str = $hex str\n"

$bin str = $vec->to Bin

print "bin str = $bin str\n"

from bin

print "\n"

$vec Bit::Vector->new Bin(32, "11100011"
$hex str = $vec->to Hex

print "hex str = $hex str\n"

$bin str = $vec->to Bin

print "bin str = $bin str\n"

B e e

print "\n"

$vec Bit: :Vector->new(32
$vec->Bit Copy(0,1

$vec->Bit Copy(4,1

$vec->Bit Copy(5,1

$hex str = $vec->to Hex
print "hex str = $hex str\n"
$bin str = $vec->to Bin
print "bin str = $bin str\n"

ooooo
hex str = 000000CC
bin str = 00000000000000000000000011001100

http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html

2026/02/18 09:49 9/10 Bit::Vector

hex str = 0000OOE3
bin str = 00000000000000000000000011100011
hex str = 00000031
bin str = 00000000000000000000000000110001

O000Onew Hex()ODOOOOOOKXXOOODOOODODOO1GO0OOODOOODO

3.10 0 0O 0O bit value

contains O bit_test0 00O

$bin8 o
$i (0..7
#$bit value = $vector->contains($1i),
$bit value = $vector->bit test($i
$bin8 "$bit value" $bin8

print "bin8 = $bin8\n"

$vector8 Bit::Vector->new Bin(8,$bin8
$hex str8 = $vector8->to Hex

print "hex str8 = $hex str8\n"

O00000000000btJO00D00D bit7.000000000000bLIt7~bitOODOODODOOO
000000000000 DOd8bitd O bit vector, O from _BinO O O to_Hex(JO O O O bit 7:00 hexO O

32000bit0 0O

. $vector-=Bit Copy (0,1

. $vector->Bit Copy(1,1

. $vector->Bit Copy (8,1

. $hex str = $vector->to Hex
print "$hex str\n"

O WN R

3.30 O bit vector 0 O

O0OO0ObitvectorD OO OOO

1. $vector->Flip
2. $hex str = $vector->to Hex
3. print "$hex str\n"

http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html

2026/02/18 09:49 10/10

Bit::Vector

3400 bit0 O

bitvector DD bit0O OO0 DODODO0ObtODDODOOO

H WN =

. $bit $vector-=bit flip(0

print "bit = $bit\n"

. $hex_str $vector->to Hex
. print "$hex str\n"

http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html

	Bit::Vector
	1. CLASS METHODS
	2. OBJECT METHODS
	3. 使用举例
	3.1 获取指定bit value
	3.2 给指定bit赋值
	3.3 整个bit vector 取反
	3.4 指定bit取反

