
2026/02/18 09:49 1/10 Bit::Vector

Bit::Vector

1. CLASS METHODS

Version
 $version = Bit::Vector->Version();

Word_Bits
 $bits = Bit::Vector->Word_Bits(); # bits in a machine word

Long_Bits
 $bits = Bit::Vector->Long_Bits(); # bits in an unsigned long

new
 $vector = Bit::Vector->new($bits); # bit vector constructor

 @veclist = Bit::Vector->new($bits,$count);

new_Hex
 $vector = Bit::Vector->new_Hex($bits,$string);

new_Bin
 $vector = Bit::Vector->new_Bin($bits,$string);

new_Dec
 $vector = Bit::Vector->new_Dec($bits,$string);

new_Enum
 $vector = Bit::Vector->new_Enum($bits,$string);

Concat_List
 $vector = Bit::Vector->Concat_List(@vectors);

2. OBJECT METHODS

new
 $vec2 = $vec1->new($bits); # alternative call of constructor

 @veclist = $vec->new($bits,$count);

Shadow
 $vec2 = $vec1->Shadow(); # new vector, same size but empty

Clone
 $vec2 = $vec1->Clone(); # new vector, exact duplicate

2026/02/18 09:49 2/10 Bit::Vector

Concat
 $vector = $vec1->Concat($vec2);

Concat_List
 $vector = $vec1->Concat_List($vec2,$vec3,...);

Size
 $bits = $vector->Size();

Resize
 $vector->Resize($bits);
 $vector->Resize($vector->Size()+5);
 $vector->Resize($vector->Size()-5);

Copy
 $vec2->Copy($vec1);

Empty
 $vector->Empty();

Fill
 $vector->Fill();

Flip
 $vector->Flip();

Primes
 $vector->Primes(); # Sieve of Erathostenes

Reverse
 $vec2->Reverse($vec1);

Interval_Empty
 $vector->Interval_Empty($min,$max);

Interval_Fill
 $vector->Interval_Fill($min,$max);

Interval_Flip
 $vector->Interval_Flip($min,$max);

Interval_Reverse
 $vector->Interval_Reverse($min,$max);

Interval_Scan_inc
 if (($min,$max) = $vector->Interval_Scan_inc($start))

Interval_Scan_dec
 if (($min,$max) = $vector->Interval_Scan_dec($start))

Interval_Copy

2026/02/18 09:49 3/10 Bit::Vector

 $vec2->Interval_Copy($vec1,$offset2,$offset1,$length);

Interval_Substitute
 $vec2->Interval_Substitute($vec1,$off2,$len2,$off1,$len1);

is_empty
 if ($vector->is_empty())

is_full
 if ($vector->is_full())

equal
 if ($vec1->equal($vec2))

Lexicompare (unsigned)
 if ($vec1->Lexicompare($vec2) == 0)
 if ($vec1->Lexicompare($vec2) != 0)
 if ($vec1->Lexicompare($vec2) < 0)
 if ($vec1->Lexicompare($vec2) <= 0)
 if ($vec1->Lexicompare($vec2) > 0)
 if ($vec1->Lexicompare($vec2) >= 0)

Compare (signed)
 if ($vec1->Compare($vec2) == 0)
 if ($vec1->Compare($vec2) != 0)
 if ($vec1->Compare($vec2) < 0)
 if ($vec1->Compare($vec2) <= 0)
 if ($vec1->Compare($vec2) > 0)
 if ($vec1->Compare($vec2) >= 0)

to_Hex
 $string = $vector->to_Hex();

from_Hex
 $vector->from_Hex($string);

to_Bin
 $string = $vector->to_Bin();

from_Bin
 $vector->from_Bin($string);

to_Dec
 $string = $vector->to_Dec();

from_Dec
 $vector->from_Dec($string);

to_Enum
 $string = $vector->to_Enum(); # e.g. "2,3,5-7,11,13-19"

2026/02/18 09:49 4/10 Bit::Vector

from_Enum
 $vector->from_Enum($string);

Bit_Off
 $vector->Bit_Off($index);

Bit_On
 $vector->Bit_On($index);

bit_flip
 $bit = $vector->bit_flip($index);

bit_test
contains
 $bit = $vector->bit_test($index);
 $bit = $vector->contains($index);
 if ($vector->bit_test($index))
 if ($vector->contains($index))

Bit_Copy
 $vector->Bit_Copy($index,$bit);

LSB (least significant bit)
 $vector->LSB($bit);

MSB (most significant bit)
 $vector->MSB($bit);

lsb (least significant bit)
 $bit = $vector->lsb();

msb (most significant bit)
 $bit = $vector->msb();

rotate_left
 $carry = $vector->rotate_left();

rotate_right
 $carry = $vector->rotate_right();

shift_left
 $carry = $vector->shift_left($carry);

shift_right
 $carry = $vector->shift_right($carry);

Move_Left
 $vector->Move_Left($bits); # shift left "$bits" positions

Move_Right
 $vector->Move_Right($bits); # shift right "$bits" positions

2026/02/18 09:49 5/10 Bit::Vector

Insert
 $vector->Insert($offset,$bits);

Delete
 $vector->Delete($offset,$bits);

increment
 $carry = $vector->increment();

decrement
 $carry = $vector->decrement();

inc
 $overflow = $vec2->inc($vec1);

dec
 $overflow = $vec2->dec($vec1);

add
 $carry = $vec3->add($vec1,$vec2,$carry);
 ($carry,$overflow) = $vec3->add($vec1,$vec2,$carry);

subtract
 $carry = $vec3->subtract($vec1,$vec2,$carry);
 ($carry,$overflow) = $vec3->subtract($vec1,$vec2,$carry);

Neg
Negate
 $vec2->Neg($vec1);
 $vec2->Negate($vec1);

Abs
Absolute
 $vec2->Abs($vec1);
 $vec2->Absolute($vec1);

Sign
 if ($vector->Sign() == 0)
 if ($vector->Sign() != 0)
 if ($vector->Sign() < 0)
 if ($vector->Sign() <= 0)
 if ($vector->Sign() > 0)
 if ($vector->Sign() >= 0)

Multiply
 $vec3->Multiply($vec1,$vec2);

Divide
 $quot->Divide($vec1,$vec2,$rest);

GCD (Greatest Common Divisor)

2026/02/18 09:49 6/10 Bit::Vector

 $vecgcd->GCD($veca,$vecb);
 $vecgcd->GCD($vecx,$vecy,$veca,$vecb);

Power
 $vec3->Power($vec1,$vec2);

Block_Store
 $vector->Block_Store($buffer);

Block_Read
 $buffer = $vector->Block_Read();

Word_Size
 $size = $vector->Word_Size(); # number of words in "$vector"

Word_Store
 $vector->Word_Store($offset,$word);

Word_Read
 $word = $vector->Word_Read($offset);

Word_List_Store
 $vector->Word_List_Store(@words);

Word_List_Read
 @words = $vector->Word_List_Read();

Word_Insert
 $vector->Word_Insert($offset,$count);

Word_Delete
 $vector->Word_Delete($offset,$count);

Chunk_Store
 $vector->Chunk_Store($chunksize,$offset,$chunk);

Chunk_Read
 $chunk = $vector->Chunk_Read($chunksize,$offset);

Chunk_List_Store
 $vector->Chunk_List_Store($chunksize,@chunks);

Chunk_List_Read
 @chunks = $vector->Chunk_List_Read($chunksize);

Index_List_Remove
 $vector->Index_List_Remove(@indices);

Index_List_Store
 $vector->Index_List_Store(@indices);

2026/02/18 09:49 7/10 Bit::Vector

Index_List_Read
 @indices = $vector->Index_List_Read();

Or
Union
 $vec3->Or($vec1,$vec2);
 $set3->Union($set1,$set2);

And
Intersection
 $vec3->And($vec1,$vec2);
 $set3->Intersection($set1,$set2);

AndNot
Difference
 $vec3->AndNot($vec1,$vec2);
 $set3->Difference($set1,$set2);

Xor
ExclusiveOr
 $vec3->Xor($vec1,$vec2);
 $set3->ExclusiveOr($set1,$set2);

Not
Complement
 $vec2->Not($vec1);
 $set2->Complement($set1);

subset
 if ($set1->subset($set2)) # true if $set1 is subset of $set2

Norm
 $norm = $set->Norm();
 $norm = $set->Norm2();
 $norm = $set->Norm3();

Min
 $min = $set->Min();

Max
 $max = $set->Max();

Multiplication
 $matrix3->Multiplication($rows3,$cols3,
 $matrix1,$rows1,$cols1,
 $matrix2,$rows2,$cols2);

Product
 $matrix3->Product($rows3,$cols3,
 $matrix1,$rows1,$cols1,
 $matrix2,$rows2,$cols2);

2026/02/18 09:49 8/10 Bit::Vector

Closure
 $matrix->Closure($rows,$cols);

Transpose
 $matrix2->Transpose($rows2,$cols2,$matrix1,$rows1,$cols1);

3. 使用举例

代码：

#!/usr/bin/perl

use Bit::Vector;

from hex
$vec = Bit::Vector->new_Hex(32,"cc");
$hex_str = $vec->to_Hex();
print "hex_str = $hex_str\n";
$bin_str = $vec->to_Bin();
print "bin_str = $bin_str\n";

from bin
print "\n";
$vec = Bit::Vector->new_Bin(32, "11100011");
$hex_str = $vec->to_Hex();
print "hex_str = $hex_str\n";
$bin_str = $vec->to_Bin();
print "bin_str = $bin_str\n";

##############
print "\n";
$vec = Bit::Vector->new(32);
$vec->Bit_Copy(0,1);
$vec->Bit_Copy(4,1);
$vec->Bit_Copy(5,1);
$hex_str = $vec->to_Hex();
print "hex_str = $hex_str\n";
$bin_str = $vec->to_Bin();
print "bin_str = $bin_str\n";

运行结果：

hex_str = 000000CC
bin_str = 00000000000000000000000011001100

http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html

2026/02/18 09:49 9/10 Bit::Vector

hex_str = 000000E3
bin_str = 00000000000000000000000011100011

hex_str = 00000031
bin_str = 00000000000000000000000000110001

需要注意在new_Hex()时，不能输入0x的样式，只能输入纯16进制部分字符串。

3.1 获取指定bit value

contains 与 bit_test功能相同

$bin8 = "";
foreach $i (0..7) {
 #$bit_value = $vector->contains($i);
 $bit_value = $vector->bit_test($i);
 $bin8 = "$bit_value" . $bin8
}
print "bin8 = $bin8\n";
$vector8 = Bit::Vector->new_Bin(8,$bin8);
$hex_str8 = $vector8->to_Hex();
print "hex_str8 = $hex_str8\n";

注：不支持一次性获取多个bit， 比如想获取 bit 7:0的值，那么需要分别获取bit7 ~ bit0的值，然后再拼凑
到一起。作进制转换，创建一个8bit宽的bit vector, 先from_Bin然后再to_Hex，即获取到bit 7:0的hex值。

3.2 给指定bit赋值

$vector->Bit_Copy(0,1);1.
$vector->Bit_Copy(1,1);2.
$vector->Bit_Copy(8,1);3.
$hex_str = $vector->to_Hex();4.
print "$hex_str\n";5.

3.3 整个bit vector 取反

执行后整个bit vector序列全部取反

$vector->Flip();1.
$hex_str = $vector->to_Hex();2.
print "$hex_str\n";3.

http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html

2026/02/18 09:49 10/10 Bit::Vector

3.4 指定bit取反

bit vector 指定bit取反，并且返回该bit取反后的值。

$bit = $vector->bit_flip(0);1.
print "bit = $bit\n";2.
$hex_str = $vector->to_Hex();3.
print "$hex_str\n";4.

http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html

	Bit::Vector
	1. CLASS METHODS
	2. OBJECT METHODS
	3. 使用举例
	3.1 获取指定bit value
	3.2 给指定bit赋值
	3.3 整个bit vector 取反
	3.4 指定bit取反

