
2026/02/02 08:10 1/3 1. 正则表达式

1. 正则表达式

参考book: The Linux Command Line

这里主要是指POSIX Basic Vs. Extended Regular Expressions，不是指perl用的那一套正则表达式。

POSIX basic 正则表达式一般叫做BRE， -- grep使用的。

POSIX Basic Vs. Extended Regular Expressions叫做ERE， -- egrep使用的, grep -E也是一样。

1.1 BRE

ERE和BRE都支持以下符号：

^ $. [] *

上面这几个符号默认当特殊功能符号，如果需要匹配这些符号，需要在前面加\转义。

1.1.1 正常匹配

$ echo "haha [i889" | grep "\[i" # 使用\[来匹配[符号
haha [i889
$ echo "haha [i889^" | grep "\^" # 匹配^字符
haha [i889^

$ echo "haha [i889" | grep "\[i8*" # 匹配到两个8
haha [i889

$ echo "hahai" | grep "\(ha\)i" # 使用括号的时候需要在前面加一个\，
hahai

$ echo "hahai" | grep "\(ha\)\+i" # 使用+的时候也要在前面加一个\
hahai

$ echo "(hahai" | grep "(ha"
(hahai

ERE和BRE不支持\d类似表达数字的用法，一般建议直接使用[0-9]的方式实现匹配数字，用[a-
zA-Z]匹配字母

匹配数字
$ echo "hahai89" | grep "hai[0-9]"
hahai89

2026/02/02 08:10 2/3 1. 正则表达式

$ echo "hahai89" | grep "hai[0-9]\+"
hahai89
$ echo "haha i889" | grep "8*"
haha i889

匹配字符
$ echo "haha i89" | grep "[a-zA-Z]\+ i89"
haha i89

匹配边界，使用\<和\>
$ echo "haha i89" | grep "\<i89\>"
haha i89

1.1.2 匹配非

$ echo "haha [i8899" | grep "[^89]" # 匹配除8和9之外的所有字符
haha [i8899

像这种情况下，匹配到的是haha [i， 当前行还是被匹配到的。如果不想匹配带89的行，需要在grep
的参数加上-v选项。

1.1.3 grep选中不匹配的行

grep -v选项的解释

 -v, --invert-match
 Invert the sense of matching, to select non-matching lines.
(-v is specified by POSIX.)

$ echo "haha [i8899" | grep -v "89" # echo中带有89, grep使用了-v参数，所以该
行不会被匹配到。

1.2 ERE增强

ERE支持BRE的所有规则，另外ERE比BRE多添加了对以下符号的支持：

() { } ? + |

注意:ERE多的这几个符号默认是当做特殊功能字符，如要其要被当前普通字符被匹配，需要在其前面加\
进行转义。

$ echo "haha [i889" | grep -E "(88)" # 匹配88, ()只起限定范围的使用
haha [i889

2026/02/02 08:10 3/3 1. 正则表达式

$ echo "haha [i889" | grep -E "89\>" # 匹配边界
haha [i889
$ echo "haha [i889" | grep -E "8+" # 匹配到两个8
haha [i889

$ echo "haha [i8899" | grep -E "88|99" # 匹配88或者99
haha [i8899

$ echo "haha) [i889" | grep -E "haha\)" # 匹配)符号
haha) [i889

{n} Match the preceding element if it occurs exactly n times.
{n,m} Match the preceding element if it occurs at least n times, but no
more than m times.
{n,} Match the preceding element if it occurs n or more times.
{,m} Match the preceding element if it occurs no more than m times.

1.3 sed命令

sed 's/regexp/replacement/' distros.txt

regexp expand方式的匹配，可以理解为ERE
sed -r 's/(regexp)/new_\1' distros.txt

和上面效果一样，是普通的regexp, 可以理解为BRE
sed 's/\(regexp\)/new_\1/' distros.txt

-i， 将替换后的结果写回原文件中
sed -i 's/\(regexp\)/new_\1/' distros.txt

	1. 正则表达式
	1.1 BRE
	1.1.1 正常匹配
	1.1.2 匹配非
	1.1.3 grep选中不匹配的行

	1.2 ERE增强
	1.3 sed命令

