2026/02/18 06:22 1/10 petalinux

petalinux

1. create project

source /xilinx/settings.sh

petalinux-create -t project --template zyng -n xxx_name
petalinux-config --get-hw-description .

2. create modules

O0000linux0D OO0

petalinux-create -t modules -n xxx _module --enable

3. create app

O000linuxOOODOapp0 0000
petalinux-create -t apps -n xxx_app --enable

00 0O O recipes-apps/xxx_appd 0 0 0 O files/xxx_app.c0 000000 Ohelloworld! DO 00O

4. build

petalinux-build -c rootfs
petalinux-build -c xxx _module
petalinux-build -c xxx_app -x do_install

petalinux-build

5.appl 00 0&OO

petalinux-build -c xxx_app -x do _compile #0000 0appd000,000000appdd
Ooooooon
1s build/tmp/work/cortexa9hf-neon-xilinx-linux-gnueabi/myapp3 -r@/myapp3

#000000000OscpOdOOcopyd zynqO O OO0 OOchmod 777 ./myapp3[] O0O0O

2026/02/18 06:22 2/10 petalinux

O ./myapp3
#000000000app0 000000 flash] O0O0scp0 000 0app0 000000

6. package to BOOT.BIN

petalinux-package --boot --fsbl zyngq fsbl.elf --u-boot --kernel --fpga
system.bit --force

--boot[] 00O OBOOT.BINOO

#--00 fsdbO O

--u-boot] DODOOu-boot OO ODOODOu-boot.elf

--kernel O OpetalinuxO OO OO0O0O image.ub

--fpga[] OOFPGA bitsO OO
#0O00OO0OO0OO0OO--kernelOOOOBOOT.BINODO O OO OBOOT.BINODO O image.ubl O copy
OsSpOO00SpO 0000000000000 D00000000O0flashOOOOODOOOODOOOOO

7.00000000000==GPIOO OO PetalinuxC 0O

https://blog.csdn.net/u013029731/article/details/85042431/

8.0 Uappll OO

0 0O uglld4, Ch.7: Customizing the Rootfs

00O O https://blog.csdn.net/qq_37775990/article/details/126951572

gooood
O000000OuGe1144(0

0100 Omyapp-initO O

cd <plnx-proj-proot
petalinux-create -t apps --template install -n myapp-init --enable

020 0 Omyapp-init.bbOO OO
ogoooooood

project-spec/meta-user/recipes-apps/myapp-init/myapp-init.bb
goooooog

#

This file is the myapp-init recipe.

#

SUMMARY = "Simple myapp-init application"
SECTION = "PETALINUX/apps"

LICENSE = "MIT"

LIC_FILES CHKSUM ="file://${COMMON_LICENSE_DIR}/

https://blog.csdn.net/u013029731/article/details/85042431/
https://blog.csdn.net/qq_37775990/article/details/126951572

2026/02/18 06:22 3/10 petalinux

MIT;md5=0835ade698e0bcf8506ecda2f7b4f302"
SRC URI = "file://myapp-init \
S = "${WORKDIR}"
FILESEXTRAPATHS prepend := "${THISDIR}/files:"
inherit update-rc.d
INITSCRIPT NAME = "myapp-init"
INITSCRIPT PARAMS = "start 99 S ."
do install
install -d ${D}${sysconfdir}/init.d
install -m 0755 ${S}/myapp-init ${D}${sysconfdir}/init.d/myapp-init

FILES ${PN} += "${sysconfdir}/*"
0300 0myapp-init0O0 0000
ogoooooooad

project-spec/meta-user/recipes-apps
myapp-init/files/myapp-init

O000000000xilinx-axidma.ko moduleD OO0 00O OXxXX_app
#!/bin/sh

cd /lib/modules/5.4.0-xilinx-v2020.1/extra
insmod xxx_module.ko

cd /usr/bin
. /XXX_app

#HOODOODLOOOOooL&UOODODOOOLOOOoLOOOoooobooobbooobooooo
wUldooooodooo oo oooooa

OO0D000petalinux-buildO OO OCOO0OO0O0OOODOOODOOOOOOOO
000000 log example:

Hello PetalLinux World, startup test....
blink: loading out-of-tree module taints kernel.

Hello module world.

Module parameters were (Oxdeadbeef) and "default"
blink init: Registers mapped to mmio = 0xf09d0000
Registeration is a success the major device number is
If you want to talk to the device driver,
create a device file by following command.

mknod /dev/blink Dev c

The device file name is important, because
the ioctl program assumes that's the file you'll use
o B e i

Blink LED Application device open(c7e4c6c0O

2026/02/18 06:22 4/10 petalinux

A e s e e e R e e,
start LED sparkle...

app led on
KERNEL PRINT : set blink ctrl

app led off
KERNEL PRINT : reset blink ctrl

app led on
KERNEL PRINT : set blink ctrl

app led off
KERNEL PRINT : reset blink ctrl

device release(ef1d9370,c7e4c6cO
A e e e e e e e e
INIT: Entering runlevel: 5ation
Configuring network interfaces... IPv6: ADDRCONF(NETDEV UP): eth@: link is
not ready
udhcpc (v1.24.1) started
Sending discover...
Sending discover...
macb e000b000.ethernet eth0®: link up Full
IPv6: ADDRCONF (NETDEV CHANGE): eth0: link becomes ready
Sending discover...
Sending 192.168.0.166. ..
Lease of 192.168.0.166 obtained, lease
etc/udhcpc.d/50default: Adding DNS 192.168.0.1
done.
Starting Dropbear SSH server: Generating key, this may take a while...
Public key portion is:
ssh-rsa
AAAAB3NzaClyc2EAAAADAQABAAABAQCh7 /mYSvw3pyvtOK//+5A2N2sIGUo07ZXjChqDaBD/iV8M
DrvQiGiyyXmxkUlcrgKVeWzP
NQOQ41i58cvtTIIImeEQI3rMOWD7V+0/HCDRr8TlyIbKOSOKHCcHpglKwm54e0levpmX2tt4cdXfx
dnaRhcONjPMJq4cAutFu@y085QGwsVQl
OFJYrdmt4Rc5TOBZdF3LtuXaVOF7mJ7aavI7vpsmellIvzAOkGMSXH+HqY2wG4Ak6DO7WdH78AaQ
sI86vDLA1WLaPP40CMjiLjeFKIuAbnhl
d+HuJtwvj5fx4GZcRyQ5VrwVE7anQmAu40lw,/09dwQQTAJOLX1u6Ui0V
root@petalinux boot from flash
Fingerprint: md5 :94:fc:ff:bl:94:85:d7:fa:19:26:a9:a4:92:df:7f
dropbear.
hwclock: can't open '/dev/misc/rtc': No such file or directory
Starting syslogd/klogd: done
Starting tcf-agent: OK

PetaLinux 2018.3 petalinux boot from flash /dev/ttyPSO

petalinux_boot from flash login: random: crng init done

2026/02/18 06:22 5/10

petalinux

PetaLinux 2018.3 petalinux boot from flash /dev/ttyPSO

petalinux boot from flash login:

O0O000O0lgOO00O0OOOOO0OIPOOO0O0ODOOOO0ODOOOOOODOOOOODOOOODODOD

oon
9.zynqU 0O 0O0O0OO0OOOappddO

OzynqfpgaO OO OO

root@petalinux_boot from flash:/lib/modules/4.14.0-xilinx-v2018.3/extra# pwd

/lib/modules/4.14.0-xilinx-v2018.3/extra

root@petalinux _boot from flash:/lib/modules/4.14.0-xilinx-v2018.3/extra# ls

blink.ko
modprobe blink.ko # 0000
mknod /dev/blink Dev ¢ 245 0 # O dev, O0OOOOOmodprobed 0O OOONO

1ls /dev/blink Dev # O0O0Odev
blinkapp # O0appO O

10. linux 0 [0 module

insmod blink.ko
#0000000OmoduleD 0000000 lsmoded O

1smod #0 00000 Omodule

rmmod blink.ko #OOOOOOmodule, 00000000 DOOOmodule.

11. moduleD 0 OO OO

1110000 0 device module 0 [0 0 [

000000000000 00000000000000000000DO copy_to_user &
copy _from user0 00O 00O

#include <linux/uaccess.h> // copy to user copy from user

#include <asm/uaccess.h> /* for get user and put user */ //
raw_copy to user, raw_copy from user

2026/02/18 06:22 6/10 petalinux

/*

* This function is called whenever a process which has already opened the
* device file attempts to read from it.
*/

static ssize t device read struct file *file, /* see include/linux/fs.h
*/

char __user * buffer, /* buffer to be filled
with data */

size t length, /* length of the buffer */
loff t * offset

int ret

char k buffer[20 0}; // kernel core buffer
memcpy (k_buffer, "core to user msg02", length

ret = copy to user(buffer, k buffer, length

return SUCCESS

/*

* This function is called when somebody tries to
* write into our device file.

*/

static ssize t device write(struct file *“file

const char user * buffer
size t length
loff t * offset

// user function
int ret

char k_buffer[20 0}; // kernel core buffer
ret = copy from user(k buffer, buffer, length

printk("kernel::: blink write: %s\n", k buffer
// end

return SUCCESS

11.2 gpiod [0 ledd O

googd

http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html

2026/02/18 06:22 7/10 petalinux

#include <linux/init.h> //000Omodule init
#include <linux/module.h> //000000000O00O00OOOMODULE LICENSED O OO
#include <linux/fs.h> //file operationsO0 00 0OO00O0OOOOO

#include <linux/device.h> //class[lJdeviceO OO ODOODOO
#include <linux/kernel.h> //printkO 00O

#include <linux/uaccess.h> //copy from userd 00O
#include <asm/io.h> //ioremapC OO

#include <linux/ioport.h>
#include <linux/of.h>
#include <linux/delay.h>

/000000

static int major num;
/0000000

#define DEVICE NAME "leds"

//O00class[]deviced OO

#define CLASS NAME "mygpio"

static struct class® gpio class;
static struct device® gpio device;

#define LEDS BASE ADDR (0x41200000) //GPIOO Base addrjO0 00O
static unsigned *leds;

static int leds drv _open(struct inode *Inode, struct file *File)

{
*leds = 0Ox0;
return 0;

static ssize t leds drv_read(struct file *file, char _ user *buf, size t
count, loff t “ppos)
{

return 0;

}

static ssize t leds drv write(struct file *file, const char _ user “buf,
size t count, loff t *ppos)

{
unsigned int ret = 0;
unsigned int tmp_val;
ret = copy from user(&tmp val, buf, count);

“leds = tmp_val & Oxf;

return ret;

2026/02/18 06:22 8/10 petalinux
/0000000000000 0O0DO00000O0O0
static struct file operations dev_ fops
.owner = THIS MODULE
.open = leds drv open
.read = leds drv read
.write = leds drv write
/I 00 0LinuxO O
static int init leds drv_init(void
int ret
leds = ioremap(LEDS BASE ADDR, 0x100
/0o0ooog
major_num register chrdev(0,DEVICE NAME, tdev fops
//00o0o0on
gpio class = class create(THIS MODULE, CLASS NAME
IS ERR(gpio class
unregister chrdev(major num, DEVICE NAME
printk (KERN ALERT "Failed to register device class\n"
PTR ERR(gpio class
/0000
gpio device = device create(gpio class, NULL, MKDEV(major num NULL

DEVICE NAME
IS ERR(gpio device
class destroy(gpio class
unregister chrdev(major num, DEVICE NAME
printk (KERN ALERT "Failed to create the device\n"
PTR ERR(gpio device

printk (KERN_INFO "LED GPIO init: device created correctly\n"

//00Linux0O 0O
static void _ exit leds drv_exit(void

iounmap(leds

2026/02/18 06:22

9/10

petalinux

/000000, 0000000

device destroy(gpio class, MKDEV(major num
class destroy(gpio class

unregister chrdev(major num,DEVICE NAME

/000000
printk("LED GPIO exit success!\n"

/[00000LinuxDOO0O0O
module init(leds drv_init
/[O0000LinuxO000O0ODO
module exit(leds drv_exit

MODULE LICENSE("GPL"

O0OO0appd OO

#include
#include
#include
#include
#include

int main

<stdio.h>
<sys/ioctl.h>
<sys/types.h>
<sys/stat.h>
<fcntl.h>

int argc, char** argv

int fd

fd = open("/dev/leds", 0O RDWR

fd <0

printf("fd = %d open fialed!\n"

unsigned int leds 0

1
write(fd leds, 4
leds

leds Oxf
sleep(l

close(fd

/00000

fd

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/02/18 06:22 10/10 petalinux

	petalinux
	1. create project
	2. create modules
	3. create app
	4. build
	5. app单独编译&调试
	6. package to BOOT.BIN
	7. 一个简单的驱动开发例程——GPIO流水灯（Petalinux部分）
	8. 实现app开机启动
	9. zynq设备上运行指定驱动的app程序
	10. linux 加载module
	11. module驱动代码实例
	11.1 一个简单的device module 驱动代码
	11.2 gpio驱动led举例

