2026/02/18 08:25 1/8 vC_apps_npi

vC_apps_nhpi

1. npi_find_signal_regex

O0000000000vimOOOOOOOOperiDOOO OO \(abc\|cde\)$0000O0OabcO
Ocde0OODOO

tcloo00O
npi find signal regex { root scope sig regex sig hdl list
Oroot scopel DU UOUDDUOOODOOODODOOODDOOO

O00000000Nd \w\sOOOOOOOOOoOOoOoOooOoOI[a-z] [6-9]000000

oo. * +0000d
2. npi_find _inst_regex

npi find inst regex root scope inst regex inst hdl list

Parameters

root scope

Specify the hierarchical name of a root scope. This procedure will search
the target

handle from the scope. The top module will be used it is empty.

inst regex

Specify the instance regular expression naming rule. Any instances should be
collected their names (not full names) match the specified naming rule.
inst hdl list

Specify the output list name. Collect all resultant handles into this list.

Return Value
Return the total number of matched instances. If none is found,

3. npi_nl_handle by name

npi nl handle by name -name <name -type <type

Parameters

-name <name

name> is a string containing the full hierarchical name of an object.
-type <type> (optional

type> is a string representing the type of object which to obtain the
handle. If



2026/02/18 08:25 2/8 vC_apps_npi

-type is not specified, value will be npiNlUndefined.
Return Value
A string representing the handle to an object.

gobogoboodbbport, DOODODODOOOOportd 0O

hdl [npi nl handle by name -name "“top.a.datain" -type npiNlPort
dir [ npi nl get str -property npiNlDirection -object $hdl

4. npi_trace_driver2

npi trace driver2 { sigHierName resListName { needPassThrough

npi trace driver2 { sigHierName resListName { needPassThrough
boundaryHdlList trcOptionsList “ o
#000000O000O00O000O000

sigHierName
Specify the hierarchical name of the target signal.

resListName
000000 1list, listOOOO0O0D0O00000000001list] sigHdlListOOOOO0O
OdriverD000O000OCOO0DOODOlistOoDOO
Specify the name of the list where the driver statement and signal handles
will be collected.
The structure of the list is as follows:
resultList ::= { {srcHdl scopeHdl isPassThrough numSigUse useHdl
sigHdlList}* }
srcHdl : The tracing source handle of this use handle.
scopeHdl: The scope handle of this use handle. -- OO load/driverd-v/-
yO lib cell, scoped OO 1lib cellO full path, DOODODOOODOO0OOODOOOOOOOO
O instO fullname
isPassThrough: Indicate this use handle is whether or not passed
through. --- 1, 0D0O0O0O0DDOOO0OO0O=000
numSigUse: Indicate how many times of source handle be traced in this
use handle.
If this value is 0, it means this useHdl is traced by other
statement (statement structure based trace).
useHdl: Target use handle. The definition of use handle, refer to Use
and Vh Use. --- J000DO0O0DOO00OoODoDOoO0oOoOoOstringOO0OO
sigHdlList: The driver signal handles of this use handle. -- 0O
O load/driver0 lib cell, OOO0O0O0O0Olib cellDOOOODODOOOOOWib cellODODOOO
Oooooooofull path

needPassThrough

A Boolean value specifying whether or not to pass through the port of
module and map element of vh component.

0: the boundary of npiModule or npiVhComponent object will not be passed



2026/02/18 08:25 3/8 vC_apps_npi

through when traversing the model

1: the boundary of npiModule or npiVhComponent object will be will not be
passed through when traversing the model

default value: 1

410000

dump res list resList targetFileHdl
size | llength $resList
io $1 < $size incr 1
dlStruct [lindex $resList $i
puts $targetFileHdl " $i source: [ npi util get hdl info [lindex
$dlStruct 0] 1"
puts $targetFileHdl
$dlStruct 1] ]"
puts $targetFileHdl " isPassThrought: [lindex $dlStruct 2] "
puts $targetFileHdl " numSigUse: [lindex $d1Struct 3] "
puts $targetFileHdl " useHdl: [ npi util get hdl info [lindex
$dlStruct 4] 1"
sigList [lindex $d1Struct 5
sigSize [1llength $siglList
10 $1 < $sigSize incr 1
puts $targetFileHdl " [ npi util get hdl info [lindex $siglList

scope: [ npi util get hdl info [lindex

$t] 1"

resList

sigHdl [ npi handle by name -name {top.f[2:3 -scope ""
::npil L1l::npi trace driver by hdl2 $sigHdl "resList"
dump res list $resList stdout

npi util get hdl info0 0000000000000 000O0O0O0O0O0OO{0O:00%
5. npi_L1::npi_ut_get hdl _info

::npi L1l::npi ut get hdl info { hdl { isComposeFullName 0

O00O0O0assign0 00000000 DOOCOOO0ODOOOO0OOODOOOODOOOOO

gdoboooobooootoboooboboooobooooboooboooooboooobooon
assign a = {b[2:0], 5'b0}; Ohd infoO0 000000 b[2:0], 'bOO DO OODO OO OO bit
goobooogoboodoobood



2026/02/18 08:25 4/8

vC_apps_npi

00000 00 dvc_apps_npi.pdf

example.v
top
wl, w2, w3
wl w2 w3
demo.tcl

source $env(NPIL1 PATH)/npi L1.tcl
debImport -sv example.v
hdlList
instHdl npi handle by name -name "“top" -scope ""
itr | npi iterate -type npiNet -refHandle $instHdl
subHd1 npi scan -iterator $itr = O
lappend hdlList $subHdl

# get the hdl information and print it

hdlInfo s:npi Ll:npi ut get hdl info $instHdl
puts "$hdlInfo"
# dump the handle information usin L1 API
::npil L1::npi ut dump hdl info $instHdl "stdout"
# dump and release the handles in the hdl vector
::npi L1::npi ut dump hdl vec info "hdlList" "stdout"
debExit

Result

npiModule, top, {example.v : 1}
npiModule, top, {example.v : 1}
npiNet, top.wl, {example.v : 2}
npiNet, top.w2, {example.v : 2}
npiNet, top.w3, {example.v : 2}

6. npi_mod_inst_get_instance

0000000000000 00000000D0O0OdcOO0Oget cells
npi mod inst get instance { hier inst name inst hdl list

Parameters

hier inst name

Specify the hierarchical name of the target module instance.
inst hdl list

Specify the reference to a list of type npiHandle. The iterated instance

handle will be



2026/02/18 08:25 5/8 vC_apps_npi

put into the list.

Return Value

The total number of instances found is returned. 0 if it fails to find the
corresponding

module instance.

Example:

example.v
module MOD
endmodule
module TOP
MOD inst
MOD inst2
endmodule
demo.tcl
source $env(NPIL1 PATH)/npi L1.tcl
debImport -sv example.v
hdlList
::npi L1::npi mod inst get instance “TOP” “hdlList”
::npi L1::npi sv ut dump hdl vec info “hdlList” “stdout”
debExit

Output:

npiModule, TOP.inst, {example.v : 5}

npiModule, TOP.inst2[3], {example.v : 6}
npiModule, TOP.inst2[2], {example.v : 6}
npiModule, TOP.inst2[1], {example.v : 6}
npiModule, TOP.inst2[0], {example.v : 6}

This code finds the module instance “TOP” in the loaded design, and collects the instance handles of
the instance into the vector “hdIList”.

7. npi_mod inst_get port

O000Onpi_mod_ inst get instance0 00000000000 OOportdO0O

npi mod inst get port { hier inst name port hdl list

8. Properties

8.1 npiCelllnstance

module properties, 0 0000000 0O-y(-vO 00O O "celldefine O ‘endcelldefine[] O O 0O moduled
OOOlbrary 00O OO0 OO O0ODO cell instance[]



2026/02/18 08:25 6/8 vC_apps_npi

0000000000000 000DOtracedriverd 000 OO celld passthrough pin0 0000000
00 00PassthroughO OO OOOOOdriverJd 0000 OpassthroughODOOODO00O00O --000
OO00OcelldinstanceD OO0 OOnet]driverlogdD00O0cellD 000000000 OcellpODOODO
OOdriver0000000D0OO0OODO

-00000000D0000000000tcdlcommandd 000000000

bool value [npi get -property npiCellInstance -object $hdl

8.2 vc_app connection

tcl command og

npi_nl_sig_2_mod_inst_conn
npi_nl_sig_2_mod_inst_conn_dump
npi_nl_sig_hdl_2 _mod_inst _conn
npi_nl_sig_hdl 2 mod_inst_conn_dump 0 O O stop at port/instport

Identify the connected module instances from a signal.
O0000O0OtraceUOtracel 000000 O0OoOonOon

npi_nl_sig_2_primitive_inst_conn
Identify the connected primitive instances from a signal.

npi_nl_sig_2 primitive_inst_conn_dump
PR e = oo UUUuU o
npi_nl_sig_hdl_2_primitive_inst_conn O00OmodD 00000000

npi_nl_sig_hdl_2_primitive_inst_conn_dump

npi_nl_sig_2_mod_inst_conn, nl OnetlistD0 O O get str,O0 0O Onpi nl get strO00O0O0O
Onpi get strO00

000 low_conn high_conn O O O O VC_APPS_NPI.pdf pagel444

2. npiHighConn will indicate the hierarchically higher (closer to the top module) port connection.
3. npiLowConn will indicate the lower (further from the top module) port connection.

9.0 0

9.1 trace driver

1. #source $env(NPIL1 PATH)/npi L1.tcl

2.

3. prepare Netlist setting

4 schSetPreference -detailRTL on -detailMux on -recogFSM off -
expandGenBlock on -detaillLevel 101 -InferenceLibCell on

5

6

7 dump res list resList targetFileHdl

8. size | llength $resList

9 io $i < $size incr i

10 dlStruct [lindex $resList $i

11 puts $targetFileHdl " $i source: [ npi util get hdl info [lindex

$d1Struct 0]
12. "



2026/02/18 08:25 7/8 vC_apps_npi

13.

14,
15.
16.

17.
18.
19.
20.
21.

22.
23.
24.
25.
26.
27.
28.
29.

30.
31.
32.
33.
34.
35.
36.
37.
38.

39.
40.
41.

42.
43.
44,
45,
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.

puts $targetFileHdl " scope: [ npi util get hdl info [lindex
$dlStruct 1] 1"

puts $targetFileHdl " isPassThrought: [lindex $dlStruct 2] "

puts $targetFileHdl " numSigUse: [lindex $dlStruct 3] "

puts $targetFileHdl " useHdl: [ npi util get hdl info [lindex

$d1Struct 4]
E
sigList [lindex $dlStruct 5
sigSize [1llength $siglList
10 $1 < $sigSize incr 1
puts $targetFileHdl " [ npi util get hdl info [lindex
$sigList $1] 1"

hdl [lindex $dlStruct 4
tmp [npi get str -property npiType -object $hdl
puts $targetFileHdl "t:$tmp"
tmpStr [ npi util decompile t::decompile $hdl
puts $targetFileHdl "tmpStr:$tmpStr"; #000000000,00000000
DO0O00d, assign a2 = ((~al) & 'bl)

main { output log
prepare Netlist setting
LOG [open $output log "w"

puts $LOG

puts $LOG ""

#npi trace driver dump2 { sigHdl { fileHdl “” } { needPassThrough
1 } { boundaryHdlList {} } { trcOptionsList “1 @ 1 1” } }

::npi L1::npi trace driver dump2 "top.a2" $LOG

puts $LOG ""

puts $LOG ""

puts $LOG ""

resList

sigHd1l npi handle by name -name {top.a2} -scope
::npi L1l::npi trace driver by hdl2 $sigHdl "resList"
dump res list $resList $LOG

close $LOG



2026/02/18 08:25 8/8 vC_apps_npi

trace logd O O

npiNet, top.a2, {/home/user@l/try verdi/top.v : 53} /* results of trace
driver */
Need pass through
<1> source: a2, scope: top
<D> npiContAssign, assign a2 = ((~al) & 'bl),
{/home/user01/try verdi/top.v : 70}
npiConstant, 'bl, (null)
npiNet, top.al, {/home/user0l/try verdi/top.v : 52}

0 source: npiNet, top.a2, {/home/user0l/try verdi/top.v : 53}
scope: npiModule, top, {/home/user0l/try verdi/top.v : 20}
isPassThrought: 0
numSigUse: 1
useHdl: npiContAssign, assign a2 = ((~al) & 'bl),

{/home/user01/try verdi/top.v : 70}

npiConstant, 'bl, (null)

npiNet, top.al, {/home/user0l/try verdi/top.v : 52}
t:npiContAssign
tmpStr:assign a2 = ((~al) & 'bl)



	vc_apps_npi
	1. npi_find_signal_regex
	2. npi_find_inst_regex
	3. npi_nl_handle_by_name
	4. npi_trace_driver2
	4.1 使用举例

	5. npi_L1::npi_ut_get_hdl_info
	6. npi_mod_inst_get_instance
	7. npi_mod_inst_get_port
	8. Properties
	8.1 npiCellInstance
	8.2 vc_app connection

	9. 实例
	9.1 trace driver



