
2026/02/18 12:14 1/5 1. datapath

1. datapath

1.1 pipeline

有三种pipeline, 这三种pipe从端口上来看时序是一样的，最终效果都是用正沿打一拍。

Receiver1xPipeline

前一级是用正沿打出来的，这里先用负沿打一下是为了修hold。 比如前级reg的clk tree比较短，后级的clk
tree比较长，这样后级采样的时候hold容易出问题。

Pipeline

OutputPipeline

2026/02/18 12:14 2/5 1. datapath

RxPipeline

1.2 example 1

 DataPath(1) {
 output_bus_width : 2;
 Pipeline(2) {
 }
 ScanHost(1) {
 }
 Pipeline(1) {
 }
 }

graph LR ssn_busin-->pipe1 pipe1-->ssh ssh-->pipe2 pipe2-->ssn_busout

2026/02/18 12:14 3/5 1. datapath

1.3 example

 DataPath(1) {
 output_bus_width : 2;
 Pipeline(2) {
 }
 ScanHost(1) {
 }
 Multiplexer(1) {
 Connections {
 secondary_bus_data_in : ssn_s0_bus_data_in[1:0];
 }
 }
 Pipeline(1) {
 ExtraOutputPath {
 Connections {
 bus_clock_out : ssn_s0_bus_clock_out;
 bus_data_out : ssn_s0_bus_data_out[1:0];
 }
 }
 }
 }

graph LR ssn_busin-->pipe1 pipe1-->mux1 pipe1-->ssn_s0_bus_data_out; ssn_s0_bus_data_out -.->
ssn_s0 ssn_s0-->mux1 mux1-->ssh ssh-->pipe2 pipe2-->ssn_busout

1.4 example

 DataPath(1) {
 output_bus_width : 2;
 ScanHost(1) {
 }
 Multiplexer(2) {
 Connections {
 secondary_bus_data_in : ssn_s1_bus_data_in[1:0];
 }
 }
 Pipeline(2) {
 ExtraOutputPath {
 Connections {
 bus_clock_out : ssn_s1_bus_clock_out;
 bus_data_out : ssn_s1_bus_data_out[1:0];
 }
 }
 }
 Multiplexer(1) {
 Connections {
 secondary_bus_data_in : ssn_s0_bus_data_in[1:0];

2026/02/18 12:14 4/5 1. datapath

 }
 }
 Pipeline(1) {
 ExtraOutputPath {
 Connections {
 bus_clock_out : ssn_s0_bus_clock_out;
 bus_data_out : ssn_s0_bus_data_out[1:0];
 }
 }
 }
 }

graph LR ssn_busin-->pipe1 pipe1-->mux1 pipe1-->ssn_s0_bus_o; ssn_s0_bus_o -.->ssn_s0 ssn_s0-
->mux1 mux1-->pipe2 pipe2-->mux2 pipe2-->ssn_s1_bus_o; ssn_s1_bus_o -.->ssn_s1 ssn_s1-->mux2
mux2-->ssh ssh-->ssn_busout

1.5 example

 DataPath(1) {
 output_bus_width : 2;
 Pipeline(8) {
 }
 ScanHost(1) {
 OnChipCompareMode {
 }
 }
 Multiplexer(1) {
 Connections {
 secondary_bus_data_in : ssn_s0_bus_data_in[1:0];
 }
 Pipeline(22) {
 }
 }
 Pipeline(1) {
 ExtraOutputPath {
 Connections {
 bus_clock_out : ssn_s0_bus_clock_out;
 bus_data_out : ssn_s0_bus_data_out[1:0];
 }
 }
 }
 }

graph LR ssn_busin-->pipe1 pipe1-->mux1 pipe1-->ssn_s0_bus_o; ssn_s0_bus_o -.->ssn_s0 ssn_s0-
->pipe22 pipe22-->mux1 mux1-->ssh ssh-->pipe8 pipe8-->ssn_busout

2026/02/18 12:14 5/5 1. datapath

1.6 example

 DataPath(1) {
 output_bus_width : 2;
 Pipeline(8) {
 }
 ScanHost(1) {
 OnChipCompareMode {
 }
 }
 Multiplexer(1) {
 Connections {
 secondary_bus_data_in : ssn_s0_bus_data_in[1:0];
 }
 Pipeline(22) {
 }
 }
 Pipeline(1) {
 ExtraOutputPath {
 Connections {
 bus_clock_out : ssn_s0_bus_clock_out;
 bus_data_out : ssn_s0_bus_data_out[1:0];
 }
 Pipeline(11) {
 }
 }
 }
 }

graph LR ssn_busin-->pipe1 pipe1-->mux1 pipe1-->pipe11; pipe11-->ssn_s0_bus_o; ssn_s0_bus_o -
.->ssn_s0 ssn_s0-->pipe22 pipe22-->mux1 mux1-->ssh ssh-->pipe8 pipe8-->ssn_busout

	1. datapath
	1.1 pipeline
	1.2 example 1
	1.3 example
	1.4 example
	1.5 example
	1.6 example

