
2026/02/18 13:59 1/22 1. mbist

1. mbist

1.1 memory bist

mbist测试由mbist fsm控制， mbist controller/MBISTPG_FSM/STATE表示mbist fsm状态，RUNTEST_EN表
示正在跑mbist测试。

mbist结果： MBISTPG_DONE = 1表示mbist测试结束。此时如果MBISTPG_GO为1，表示mbist测试PASS，
否则为FAIL。

这里面的step是什么意思
一个step里多个memory inst
和分开的step，每个step一个memory inst，有什么区别？
step的意思是先测试完一个step, 再测试下一个step。
默认工具出来的配置是所有memory一起测，即在同一个step内。

 MemoryBist {
 ijtag_host_interface : Sib(mbist);
 Controller(c1) {
 clock_domain_label : dco_clk;
 Step {
 MemoryInterface(m1) {
 instance_name : DATA_MEM_1;
 }
 }
 Step {
 MemoryInterface(m2) {
 instance_name : PROG_MEM_2;
 }
 }
 }
 }

1.2 pipeline

mbist controller pipeline: AdvancedOptions/pipeline_controller_outputs : on”

memory interface pipeline: Step/bist_data_in_pipelining and Step/bist_data_out_pipelining to on

Figure 1. Standard Flow Pipeline Stage Locations (Comparators in MemoryBIST Controller)

2026/02/18 13:59 2/22 1. mbist

Figure 2. Standard Flow Pipeline Stage Locations (Local Comparators)

Figure 3. Shared Bus Flow Pipeline Stage Locations

2026/02/18 13:59 3/22 1. mbist

1.3 MCP

图中MCP_BOUNDING_EN为1时，SCAN_EN=0时，BIST_INPUT_SELECT值不变
BIST_INPUT_SELECT register上SCAN chain, SCAN shift可控制其值，决定SCAN_en为0时测试funtion ->
memory还是mbist -> memory数据通路。

2026/02/18 13:59 4/22 1. mbist

1.4 no bypass

scan_bypass_logic: none; 设置没有memory input 到memory output的bypass通路,这一般用于memory
macro里面自带有scan测试通路的情况。

DftSpecification(module_name,id) {
 MemoryBist {
 Controller(id) {
 Step { // repeatable
 algorithm : algo_name ; // *DefSpec
 operation_set : opset_name ;
 // default: from_library
 comparator_location : shared_in_controller |
 per_interface ; // *DefSpec
 bist_data_in_pipelining : on | off | int ; // *DefSpec
 bist_data_out_pipelining : on | off | per_port ; // *DefSpec
 MemoryInterface(id) { // repeatable
 generate_external_repair_logic : on | off ;
 instance_name : inst_name ;
 memory_library_name : mem_lib_name ;
 repair_analysis_present : auto | off ; // *DefSpec
 repair_group_name : none | group_name ;
 scan_bypass_logic : async_mux | none | sync_mux |
 from_library ; // *DefSpec
 local_comparators_per_go_id : int | all ; // 1 *DefSpec
 rom_content_file : file_path;
 output_enable_control : always_on | system ;
 observation_xor_size : auto | off ;
 data_bits_per_bypass_signal : 1..MaxPosInt | all ;// 1 *DefSpec
 }
 ReusedMemoryInterface(id) { // repeatable *DefSpec
 instance_name : inst_name ;
 reused_interface_id : [ctrl_id:]mem_interface_id ;
 repair_group_name : none | group_name ;
 }
 }
 }
 }
}

1.5 function debug

tessent支持Functional Debug Memory Access功能，意思是添加自定义算法，可通过mbist接口读
写memory数据。

一般对debug有用的是读数据功能，因为是使用mbist接口来操作，使用上会有以下限制：

memory接口需要一直有时钟

2026/02/18 13:59 5/22 1. mbist

如果是想业务过程中读取的话，会影响正常业务功能

相关文章

有文章说通过SCAN chain的方式将memory的控制接口串在一起，然后通过控制这个scan chain来读
写memory，
而且这条chain是单独的一条chain,其chain clock也是单独的
需要和其它的scan chain单独区分开，否则在其它scan chain dump时，memory可能会被误操作，这样就
失去debug的意义了。

串scan chain时：

把memory 接口的cell 单独串chain
比如可以考虑给memory加一圈wrapper cell,这些wrapper cell可单独串一条chain,需要加个MUX控
制
而且在dump的时候这个wrapper chain时候应该也是不能动
然后在dump的时候将其从整个chain上bypass掉，这样可保证memory接口信号不变。

以上只是臆想，未经过验证。

1.6 BIRA Repair Status

参
考：http://vmcc.vicp.net:9090/tessent_v2023.1_doc/htmldocs/mgchelp.htm#context=tshell_mbist_user&id=203&tag=id3ea04440-17f9-477f-abc9-d5768e2d593c

BIRA_en==0, 跑mbist是得到memory bist GO 读写测试结果，pass=1(没错)， pass=0(有错)

BIRA_en==1，然后再跑mbist，得到repair status[1:0]，以及的repair 信息 其中CheckRepairNeed将repair
status[1:0]分成高低bit输出到go
GO = CheckRepairNeed ? ~repair_status[0] : ~repair_status[1]；

图示如下：

http://vmcc.vicp.net:9090/tessent_v2023.1_doc/htmldocs/mgchelp.htm#context=tshell_mbist_user&id=203&tag=id3ea04440-17f9-477f-abc9-d5768e2d593c

2026/02/18 13:59 6/22 1. mbist

repair_status[1:0]定义如下：

Bit1 Bit0 Repair Status
00 No Repair Required
01 Repair Required
1x Not Repairable

1.7 repair share

为了节省repair chain的长度，从而降低fuse空间占用。将同类型memory repair信息进行共享。
使用限制：

memory repair必须是并行接口
要share repair的memory必须是相同repair type， Row/word-only, Column/IO-only
只会使用一个repair segment, 如果memory有多个spare element的，多余的部分不会使用
memory spare size必须一样
repair group与spec一致
physical address mapping要兼容， segment size要兼容

2026/02/18 13:59 7/22 1. mbist

1.7.1 tcl

set_defaults_value DftSpecification/MemoryBist/RepairOptions/repair_sharing
on;
set_memory_instance_options [get_memory_instances] -repair_sharing on

1.7.2 spec

DftSpecification(top,rtl) {
 MemoryBist {
 ijtag_host_interface : Sib(mbist);
 Controller(c1) {
 clock_domain_label : clka;
 Step {
 comparator_location : shared_in_controller; # // comparator必须要
在mbist controller里面
 MemoryInterface(m2) {
 instance_name : core_inst1/blockA_clka_i1/mem4;
 repair_group_name : bira_g1;
 }
 MemoryInterface(m3) {
 instance_name : core_inst1/blockA_clka_i1/mem5;

2026/02/18 13:59 8/22 1. mbist

 repair_group_name : bira_g2;
 }
 MemoryInterface(m4) {
 instance_name : core_inst2/blockA_clka_i1/mem5;
 repair_group_name : bira_g1;
 }
 }
 }
 }
}

生成出来的order file样式

BisrSegmentOrderSpecification {
 PowerDomainGroup(-) {
 // bisr_si --> {OrderedElement ...} --> bisr_so
 OrderedElements {
 mem_m3; // RepairGroup:c1_RG2 BISRLength:18 -- RG2有两块memory共
享18bit的repair信息。
 mem_m5; // RepairGroup:c1_RG2
 mem_m1; // RepairGroup:c1_RG1 BISRLength:18
 mem_m2; // RepairGroup:c1_RG1
 mem_m4; // RepairGroup:c1_RG1
 }
 }
}

1.8 mbist test clock

对于多PORT memory(比如RF2)测试，选port的最高CLK freq来测试，即使某个memory port在function业
务时工作在较低频率。

因为这是走mbist <=> memory之间的path, 只是这段path用高频，实际业务跑低频也没有关系，不会产
生影响。

一般来说memory compiler生成出来的memory每个port的操作频率都是一样，所以memory本身应该也能
够承受高频的测试。

1.9 mbist memory分组

方法一:

根据memory hier name 关键字将memory分成多个组
set_memory_instance_options [get_memory_instances -filter "name=~*ab*"] -
partitioning_group ab
set_memory_instance_options [get_memory_instances -filter "name=~*cd*"] -
partitioning_group cd

2026/02/18 13:59 9/22 1. mbist

方法二:

根据def信息来进行memory bist controller分组。
read_def xxx.def
set_memory_instance_option -physical_cluster_size_ratio 30

这个有点不太好用，不能精确控制分组。

方法三:

手动修改spec，进行手动分组。

2. mbisr

2.1 repair mode

opcode[2:0] Run
Mode Description ==

3'b000 Functional
Power-Up

Extracts the
repair data
from the
eFuse and
loads it inside
the BISR
chains. This
mode also
calculates
the BISR
chain length
during the
chain loading
process.

3'b001
BISR Chain
Length
Calculation

Performs an
asynchronous
reset of the
BISR chains,
followed by a
serial loading
of 0s and
calculation of
the BISR
chain length.

3'b010
Self Fuse
Box
Program

Compresses
the content
of the BISR
chains and
programs it
into the
eFuse. A BISR
chain rotation
is performed
during this
process.

2026/02/18 13:59 10/22 1. mbist

opcode[2:0] Run
Mode Description ==

3'b100 Verify
Fuse Box

Performs a
BISR chain
rotation and
compares the
content
against the
compressed
data inside
the eFuse.
The BISR
controller GO
output is high
if the content
matches,
otherwise GO
stays low.

3'b101
Rotate
BISR chain
(No
capture)

Rotates the
content of
the BISR
chain. Use
this mode to
transfer the
BISR chain
content into
internal
repair
registers of
memories
with serial
repair
interfaces.

MSEL=1, 将memory BISR chain内容转一圈，移入到BISR chain中，然后可
用于jtag读取

3'b110

Capture
BIRA into
BISR
without
chain
rotation

Performs a
capture of
the
redundancy
analysis
values into
the BISR
chain. This
mode is
typically used
after running
redundancy
analysis, and
before the
Self Fuse Box
Program
mode. This
mode is also
used when
performing
soft repair in
designs that
contain
memories
with parallel
repair
interfaces.

产生一个bisr clk， bisrSE=0, 将BIRA的值保存到BISR chain寄存器，然后可
用jtag读取

2026/02/18 13:59 11/22 1. mbist

opcode[2:0] Run
Mode Description ==

3'b111

Capture
BIRA into
BISR chain
with chain
rotation

Performs a
capture of
the
redundancy
analysis
values into
the BISR
chain,
followed by a
BISR chain
rotation. This
mode is also
used when
performing
soft repair in
designs that
contain
memories
with serial
repair
interfaces.

MSEL=0，将BIRA值加载到BISR chain，然后转一圈将BISR值移入到memory
中，实现repair

2.2 Incremental Repair

原生结构支持多少fuse信息烧写,每次烧写数据通过指针索引。
将max_fuse_box_programming_sessions配置为大于1的整数，就表示支持最大多少次数的fuse烧写。

DftSpecification {
 MemoryBisr {
 Controller {
 ...
 max_fuse_box_programming_sessions : <int> ;
 ...
 }
 }
}

2.3 fuse box组织结构

只支持单次fuse烧写的情况

2026/02/18 13:59 12/22 1. mbist

支持多次fuse烧写的情况

2.4 soft repair flow

2.4.1 原生结构

原生架构，只能所有memory一起进行soft repair，不能部分做soft repair。

上电自检

load fuse to bisr chain, 这个信息同时也进入memory，memory完成hard repair1.
do mbist, check mbist status, pass=1/02.

soft repair

将mbisr BISR chain清零（bisr_rst_n = 0, repair_mode[2:0] = 0）, 此步骤可删除，因为将清零后1.

2026/02/18 13:59 13/22 1. mbist

的BIRA加载到memory一样也实现BISR chain清零
将mbist controller BIRA清零（mbist controller test_start=0, test_init=0）2.
将清零后的BIRA加载到memory（repair_mode[2:0]=7, bisr_rst_n产生一个上升沿)3.
进入mbist BIRA, (mbist controller test_start=1, bira_en=1, test_init=1)4.
将新的BIRA加载到memory（repair_mode[2:0]=7, bisr_rst_n产生一个上升沿）5.

注：对于多pd group的场景，需要单独注意，即在使用bisr 加载bira到memory之前需要先做一个bisr复位
操作。
具体序列为： repair_mode[2:0]=0, bisr_rst_n=0, 不要产生bisr_rst_n的上升沿

重新自检

开始进行mbist测试（mbist controller test_start=1, test_init=0, bira_en=0）1.

2.4.2 改进结构

注：此改进仅针对于memory repair 接口是串行接口，而不是并行接口。
并行接口的话，需要另外加逻辑, 因为memory reapir直接从bist_inst的ShiftReg上取数据，bisr chain移动
的时候这个值会变
所以在repair期间memory不能工作,除非加个类似锁存的功能，将Q值锁存住。

问题：

因为repair始终是需要capture BIRA，所以如果某些memory不重做BIRA的话，这个值从哪来？1.
或者不需要soft repair的memory可不可以不走capture BIRA这一步？2.

方案1： 修改点在mbist interface RA分析模块

mbist添加一个单独信息从BISR里面把fuse里面的BIRA信息load到本地BIRA register。1.
这些mbist pass的memory就可以不用再做BIRA分析了，以及再之后的mbist2.
但必须得有BIST_CLK，BIRA信息才能load到本地，这样看起来还不如重新跑下BIRA呢。3.

方案2：修改点在bisr_inst

bisr 模块加一个单独控制，不capture BIRA信息1.
这样不做soft repair的memory就不用去capture BIRA,只要保证不能发清BISR chain的序2.
列(bisr_rst=0， repair_mode[2:0] == 3'h0 / 3'h4)，就不会有问题。
但是在其它memory repair过程中，因为有bisr chain shift, shift 过程中memory不能进行正常读写。3.

方案3：

让送给memory的bist clk & bisr reset控制一下，不需要重新repair的memory连bisr_clk都没有，这1.
样repair信息一直保持原值，其它memory repair时也可以正常工作。
BISR chain register不需要做特殊控制，清零也没有关系，memory内部的repair信息是保持之前的值2.
不受影响。

所以可以考虑方案3, 已仿真确认方案3可行。

2.5 spec

2026/02/18 13:59 14/22 1. mbist

2.5.1 在BISR chain上添加pipeline

在每个Meory inst的BISR前插入一个pipeline

MemoryBisr {
 BisrElement(*) {
 Pipeline(before) {
 leaf_instance_name : %s_%m_bisr_pipeline_inst ;
 }
 }
 bisr_segment_order_file : filename ;
 AdvancedOptions {
 }
 Interface {
 }
 Controller {
 }
}

在ram0和ram2之前插入pipeline

MemoryBisr {
 BisrElement(ram_inst0) {
 Pipeline(before) {
 leaf_instance_name : %s_%m_bisr_pipeline_inst ;
 }
 }
 BisrElement(ram_inst2) {
 Pipeline(before) {
 leaf_instance_name : %s_%m_bisr_pipeline_inst ;
 }
 }
}

memory repair, 本质上就是把repair信息重新写入到memory中，memory内部完成col 或 row的替换。

2.6 推pattern

bisr相关的pattern完全是根据icl文件描述来进行的，

所以还是有可能通过手动修改ICL的方式，在顶层添加一个register pipe逻辑在repair chain上。

2.7 memory serial repair interface

2026/02/18 13:59 15/22 1. mbist

每一个有repair能力的memory，外部都有一条bisr chain, 与memory internal的repair chain相对应，它们
的bisr_si都是一样的，但最终输出可以选择从外部bisr chain或者memory内部的repair chain输出。

bisr rotate功能：

就是在整个bisr chain上，将bisr_so与bisr_si相连，shift一圈。主要目的是实现外部bisr chain的内容刷
到memory内部repair chain中。比如在rotate转圈的时候，BISR_SELECT选择external, 即相当于外部bisr
chain转了一圈，内容没有变，但转圈的同时memory内部的chain也被刷为跟外部bisr chain的内容一样。
这样就是repair信息导入到memory中了，下次做memory bist测试的时候，测试就能跑过。

在上面的shift转圈过程中，如果BISR_SELECT选择internal, 即memory内部chain在转圈后内容保持不变，
但外部bisr chain的内容刷为到memory 内部chain一样。

2.8 BISR CE DISABLE

在memory repair分发过程中，会产生bisr ce disable信号出来，表示在此期间不能进行memory功能读写
操作。

这个信号只在有串行的memory repair接口存在时才会使用，
如果memory是并行的repair接口，则不需要这个BISR_MEM_DISABLE信号。

http://vmcc.vicp.net:9090/wiki/lib/exe/detail.php?id=edastudy%3Atessent%3Amemory_bist&media=edastudy:mentor:tessent:pasted:20230616-084220.png

2026/02/18 13:59 16/22 1. mbist

2.9 fuse value

BISR控制器会从fuse里读出repair数据，这里有两种场景：

fuse还没有烧
fuse已经烧写

对于fuse还未烧写的情况，需要确保从fuse里读出的数据必须为全0，这样BISR状态机可以很快是产生bisr
DONE信号，这样方便走后续BOOT流程
此时是不会有bisr clock送给memory, 只是在INIT_BISR的时候会产生一个cycle的bisr时钟给memory

对于fuse已烧写的情况，需要烧真实工具产生出来的fuse数据

2.9.1 多次memory bist repair测试结果积累

比如有的memory带2个repair列，第一次测试时可能只错第1列， 第2次测试的时候错第2列，那其实最终
应该是把错2列当时结果，来计算最终的repair value

方式：
测试第一次时，将fuse ram内容清空，写fuse。

测试第二次，运用第一次测试得出来的fuse进行上电分发，（fuse值不要烧到fuse）
测试，得结果后，先把fuse ram内容清空，写fuse.

此时最终的fuse值就得出来了。

清空很重要。一定要清空

fuse初始值 不造错 造L列错 造R列错 造L列R列错

全0 PASS, fuse值不变
PASS, fuse值带L列修
复

PASS, fuse值带R列修
复

PASS, fuse值带L列R列修
复

带L列修复 PASS, fuse值不变 PASS, fuse值不变
PASS, fuse值跟带L列R
列修复值一样

PASS, fuse值跟带L列R列
修复值一样

带R列修复 PASS, fuse值不变
PASS, fuse值跟带L列R
列修复值一样

PASS, fuse值不变
PASS, fuse值跟带L列R列
修复值一样

带L列R列修
复

PASS, fuse值不变 PASS, fuse值不变 PASS, fuse值不变 PASS, fuse值不变

2.10 fusebox interface

2.10.1 external fusebox

通过修改fusebox.v或者是它的tcd文件，可以让mbisr controller内部访问fusebox的地址进行适配，从而
不会限制在默认10bit地址。

这样就可以支持更大的fusebox地址段。

tcd格式

2026/02/18 13:59 17/22 1. mbist

Core(module_name) {
 FuseBoxInterface {

 Interface {
 // inputs
 bisr_en : port_name;
 clock : port_name;
 select : port_name;
 reset : port_name;
 access_en : port_name;
 write_en : port_name;
 address : port_name; // n-bit
 write_buffer_transfer : port_name;
 read_buffer_select : port_name;
 programming_voltage : port_name;

 write_duration_count : port_name; // n-bit

 logictest_en : port_name;

 // outputs
 done : port_name;
 read_data : port_name; // 1-bit
 read_buffer_output : port_name; // n-bit
 }
 }
}

dft spec
DftSpecification(module_name,id) {
 MemoryBisr {
 Controller {
 ExternalFuseBoxOptions {
 design_instance : inst_name ;
 multiplexing : on | off | auto ;
 ConnectionOverrides {
 // Inputs
 bisr_en : pin_name,... ;
 clock : pin_name ;
 select : pin_name ;
 reset : pin_name ;
 access_en : pin_name ;
 write_en : pin_name ;
 write_duration_count : pin_name ;
 read_buffer_select : pin_name ;
 write_buffer_transfer : pin_name ;
 address : pin_name ;
 // Outputs
 done : pin_name ;

2026/02/18 13:59 18/22 1. mbist

 read_data : pin_name ; // 1-bit
 read_buffer_output : pin_name ; // n-bit
 }
 }
 }
 }
}

2.10.2 internal fusebox

可根据tessent自动生成出来的文件，创建并读取xx_fusebox_interface.v文件
通过配置spec
MemoryBisr.Controller.fuse_box_interface_module : xx_fusebox_interface;
MemoryBisr.Controller.fuse_box_location:internal;

读xx_fusebox_interafce.tcd文件

这样bisr可以支持更大地址范围的fusebox

2.11 bisr_segment_order

这个文件会在check_design_rules的时候自动生成

或者是

set_dft_specification_requirements -bisr_segment_order_file command was used, in which case the
specified file is not generated but validated.

如果需要某些mem_init不做mbisr 或 mbist的时候，某设置需要在check_design_rules之前设置。

3. memory lib

http://vmcc.vicp.net:9090/tessent_v2023.1_doc/htmldocs/mgchelp.htm#context=ETAssembleReferen
ce&id=187&tag=ide3d3723f-7a5d-4677-a2cc-327ec2b0c7d7

3.1 memory lib

http://vmcc.vicp.net:9090/tessent_v2023.1_doc/htmldocs/mgchelp.htm#context=ETAssembleReference&id=187&tag=ide3d3723f-7a5d-4677-a2cc-327ec2b0c7d7
http://vmcc.vicp.net:9090/tessent_v2023.1_doc/htmldocs/mgchelp.htm#context=ETAssembleReference&id=187&tag=ide3d3723f-7a5d-4677-a2cc-327ec2b0c7d7

2026/02/18 13:59 19/22 1. mbist

RedundancyAnalysis {
 RowSegmentRange {
 SegmentAddress[0]: AddressPort(Address[10]);
 }
 RowSegment (Bank0){
 NumberOfSpareElements: 2;
 RowSegmentCountRange [1'b0:1'b0]; // Bank 0
 FuseSet {
 Fuse[3]: AddressPort(Address[9]);
 Fuse[2]: AddressPort(Address[8]);
 Fuse[1]: AddressPort(Address[7]);
 Fuse[0]: AddressPort(Address[0]);
 }
 }
 RowSegment (Bank1){
 NumberOfSpareElements: 2;
 RowSegmentCountRange [1'b1:1'b1]; // Bank 1
 FuseSet {
 Fuse[3]: AddressPort(Address[9]);
 Fuse[2]: AddressPort(Address[8]);
 Fuse[1]: AddressPort(Address[7]);

2026/02/18 13:59 20/22 1. mbist

 Fuse[0]: AddressPort(Address[0]);
 }
 }
 ColumnSegment (Bank0_Left){
 RowSegmentCountRange [1'b0:1'b0]; // Bank0
 ShiftedIORange: QO[7:0]; // Left
 FuseSet {
 FuseMap[3:0]{
 ShiftedIO(QO[0]): 4'b0001;
 ShiftedIO(QO[1]): 4'b0010;
 ShiftedIO(QO[2]): 4'b0011;
 ShiftedIO(QO[3]): 4'b0100;
 ShiftedIO(QO[4]): 4'b0101;
 ShiftedIO(QO[5]): 4'b0110;
 ShiftedIO(QO[6]): 4'b0111;
 ShiftedIO(QO[7]): 4'b1000;
 }
 }
 }
 ColumnSegment (Bank0_Right){
 RowSegmentCountRange [1'b0:1'b0]; // Bank 0
 ShiftedIORange: QO[15:8]; // Right
 FuseSet {
 FuseMap[3:0]{
 ShiftedIO(QO[8]): 4'b0001;
 ShiftedIO(QO[9]): 4'b0010;
 ShiftedIO(QO[10]): 4'b0011;
 ShiftedIO(QO[11]): 4'b0100;
 ShiftedIO(QO[12]): 4'b0101;
 ShiftedIO(QO[13]): 4'b0110;
 ShiftedIO(QO[14]): 4'b0111;
 ShiftedIO(QO[15]): 4'b1000;
 }
 }
 }
 ColumnSegment (Bank1_Left){
 RowSegmentCountRange [1'b1:1'b1]; // Bank 1
 ShiftedIORange: QO[7:0]; // Left
 FuseSet {
 FuseMap[3:0]{
 ShiftedIO(QO[0]): 4'b0001;
 ShiftedIO(QO[1]): 4'b0010;
 ShiftedIO(QO[2]): 4'b0011;
 ShiftedIO(QO[3]): 4'b0100;
 ShiftedIO(QO[4]): 4'b0101;
 ShiftedIO(QO[5]): 4'b0110;
 ShiftedIO(QO[6]): 4'b0111;
 ShiftedIO(QO[7]): 4'b1000;
 }
 }
 }

2026/02/18 13:59 21/22 1. mbist

 ColumnSegment (Bank1_Right){
 RowSegmentCountRange [1'b1:1'b1]; // Bank 1
 ShiftedIORange: QO[15:8]; // Right
 FuseSet {
 FuseMap[3:0]{
 ShiftedIO(QO[8]): 4'b0001;
 ShiftedIO(QO[9]): 4'b0010;
 ShiftedIO(QO[10]): 4'b0011;
 ShiftedIO(QO[11]): 4'b0100;
 ShiftedIO(QO[12]): 4'b0101;
 ShiftedIO(QO[13]): 4'b0110;
 ShiftedIO(QO[14]): 4'b0111;
 ShiftedIO(QO[15]): 4'b1000;
 }
 }
 }
}

4. 其它

4.1 memory不做bist, 不做bisr

不做bisr, 不上bisr chain
set_memory_instance_options memory_instances -
use_in_memory_bisr_dft_specification off

不做bist
set_memory_instance_options memory_instances -
use_in_memory_bist_dft_specification off

这些命令要在check_design_rules命令之前

4.2 get tcd_memory pin

http://vmcc.vicp.net:9090/tessent_v2023.1_doc/htmldocs/mgchelp.htm#context=tshell_ref&id=1595
&tag=idc5e2f6dc-0772-436d-8ebd-b63f42af3e2e

get_pins -of_instances [get_memory_instance] -filter {tcd_memory_function =~
select*}
get_attribute_value_list data_mem_1/CEN -name tcd_memory_function
高有效返回select, 低有效返回select_inv

获取BISR相关PIN
get_pins -of_instances [get_memory_instance] -filter {tcd_memory_function =~
bisr*}

http://vmcc.vicp.net:9090/tessent_v2023.1_doc/htmldocs/mgchelp.htm#context=tshell_ref&id=1595&tag=idc5e2f6dc-0772-436d-8ebd-b63f42af3e2e
http://vmcc.vicp.net:9090/tessent_v2023.1_doc/htmldocs/mgchelp.htm#context=tshell_ref&id=1595&tag=idc5e2f6dc-0772-436d-8ebd-b63f42af3e2e

2026/02/18 13:59 22/22 1. mbist

foreach_in_collection pin [get_pins xxx_mem/* -filter
"tcd_memory_function=~bisr*"] {
 set name [get_attribute_value_list $pin -name name]
 set att [get_attribute_value_list $pin -name tcd_memory_function]
 puts "name = $name, att = $att"
}
name = xxx_mem/RSCOUT, att = bisr_serial_data
name = xxx_mem/RSCIN, att = bisr_serial_data
name = xxx_mem/RSCEN, att = bisr_scan_enable
name = xxx_mem/RSCRST, att = bisr_reset_inv
name = xxx_mem/RSCLK, att = bisr_clock

如果port极性是ActiveLow，则会在funtion后面跟一个_inv,比如返回bisr_reset_inv
如果port极性是ActiveHigh,则不会在在function后跟_inv，比如返回bisr_reset

获取TCD相关PIN
get_pins -of_instances [get_memory_instance] -filter {tcd_memory_function !~
none}

	1. mbist
	1.1 memory bist
	1.2 pipeline
	1.3 MCP
	1.4 no bypass
	1.5 function debug
	1.6 BIRA Repair Status
	1.7 repair share
	1.7.1 tcl
	1.7.2 spec

	1.8 mbist test clock
	1.9 mbist memory分组

	2. mbisr
	2.1 repair mode
	2.2 Incremental Repair
	2.3 fuse box组织结构
	2.4 soft repair flow
	2.4.1 原生结构
	2.4.2 改进结构

	2.5 spec
	2.5.1 在BISR chain上添加pipeline

	2.6 推pattern
	2.7 memory serial repair interface
	2.8 BISR CE DISABLE
	2.9 fuse value
	2.9.1 多次memory bist repair测试结果积累

	2.10 fusebox interface
	2.10.1 external fusebox
	2.10.2 internal fusebox

	2.11 bisr_segment_order

	3. memory lib
	3.1 memory lib

	4. 其它
	4.1 memory不做bist, 不做bisr
	4.2 get tcd_memory pin

