2026/02/18 10:08 1/33

tclDoo0Oo

tclD OO O

tcl_synopsys

tcl_tessent
gon
e tcl86 _doc
e JOOOO
tc-tkD OO0 000 .pdf
tcl_and_the_tk toolkit_john_k. ousterhout_.pdf
1.00tclO O

O0tcd0OtcdlshOOoDOoOooooOd
info patchlevel

00O tcl:

yum install -y tcl-devel.x86 64 tcl.x86 64

2. regexpl 0000

goo

regexp optionalSwitches patterns searchString fullMatch subMatchl ...

subMatchn

-nocase: O OOonOO

21000000 n

O0O00OtDOO0O00D00OO0OO http://vmcc.vicp.net:9090/tcl86_doc/re_syntax.htm
tcld O O O REQO O [IBRE,ERE,ARE[JT O O O O O ARE[]

e BREO basic REsjO0 OvimOgrepO OO O OOO0OODO
e ERE extended REs[] O egrep0 0 0 OO0
e AREDDERED O D OODOOODperlO00DODODOODOODOD

http://vmcc.vicp.net:9090/wiki/doku.php?id=%E8%AF%AD%E6%B3%95:tcl_synopsys
http://vmcc.vicp.net:9090/wiki/doku.php?id=%E8%AF%AD%E6%B3%95:tcl_tessent
http://vmcc.vicp.net:9090/tcl86_doc/index.htm
http://vmcc.vicp.net:9090/wiki/doku.php?id=linux:%E6%AD%A3%E5%88%99%E8%A1%A8%E8%BE%BE%E5%BC%8F
http://vmcc.vicp.net:9090/tcl86_doc/re_syntax.htm

2026/02/18 10:08 2/33

tclDoo0Oo

#L<]O[[>]]0\<0\>00000,0000wordd 0
4000000000 [<]1[[>]]I0C00BREDD \<\>

a 123

#WOODAREO DO --000000O0O0OOOO
regexp 1<:]11123[[:>: $a
puts "matched"

#OOBREO OO --00(?2b)00000ODOMOOBREO O
regexp b)23\>} $a
puts "matched"

#HUODOEREO DO --00 (7e)0000O00OOEREOO
regexp e)23[[:>: $a
puts "matched"

220000

name "day day up"

regexp -nocase {day: $name
puts "matched"”

regexp -nocase "day" $name
puts "matched2"

regexp -nocase "cat" $name
puts "matched3"

puts "not matched3"

googod

matched
matched?2
not matched3

a "cdb"
cdb
regexp c: $%a puts "haha"
a "adb"
adb

2026/02/18 10:08 3/33 tcl0 000

regexp {c; $a puts "haha"
haha

2300™000

e 0000000000000, [, jJO00000000000O0OOn
e JO000O0ODOODOODOOUDDODOUODOLOOODOODONODOOLN OO DOODO
gobogobbooobooobobooobbuoooobooooboboo

a 1\
\
a II\\\[II
\
a Ilafll
af
b "af <= 3"
af <=

regexp "af " $b
regexp "$a " $b
regexp "af\s" $b
regexp “$a\s" $b
regexp "af\\s" $b
regexp {$a\s; $b
regexp {(\s: $b
regexp "$a\\s<=" $b

regexp "$a\\s*<=" $b

24000000

Oo00obOooooboog oo

a "hello you"
hello you
regexp {hello|you} $a puts "hit"
hit

2026/02/18 10:08 4/33 tcl0 000

regexp {hello|xou} $a puts "hit"
hit

regexp {hellof|xou; $a puts "hit"

regexp {hellof|you; $a puts "hit"
hit

2.5 submatch[] 0 00O

name "day day up"

regexp -nocase {(day) (day up $name ml m2 m3 m4
puts "ml = $ml, m2 = $m2, m3 = $m3, m4 = $m4"

regexp -nocase | (\w+) (\w+) (\w+ $name ml m2 m3 m4
puts "ml = $ml, m2 = $m2, m3 = $m3, m4 = $m4"

googad
ml = day day up, m2 = day, m3 = day, m4 = up
ml = day day up, m2 = day, m3 = day, m4 = up

e nn

gobooobbooobbooooboooboboooono

oo uuguo

O0000|000o0o|on

* *? 0000000000000 00o0oO0O00qO
+ +7?

? ??

{m} {m}?

{m} |{m,}?

{m,n} [{m,n}?

2.7regsub0 000000

000 regsub ?switches? exp string subSpec ?varName?

O switchesO
-aIIDDDDDDDDDDDDDVimDDDgDDD
-nocase[[0 0000000000

#00OabcOODOhello, OOOOOOOOOODOOOOC

2026/02/18 10:08

5/33

tclDoo0Oo

regsub {\w+} "abc def" "hello"

echo $c
"hello def"

#0 O abclO hello

regsub {\w+} "abc def" "hello"

hello def

C

d [regsub {\w+} "abc def" "hello"

hello def
echo $d
"hello def"

2800 00gogooboon

c "da\[O\I\[2\]1"
da

c [regsub -all {\ $c 1\
dalO\][2\

c [regsub -all |\ $c {\\
da\ O\]\ [2\

b "da\[O\]I\[2\] = 38"
da =

Ostring

290 0\00

c "da\[O\]\[2\]"

da

regsub -all [\]} $c \\
dalO\[2\

regsub -all {\} $c {\
dalO\1[2\

regsub -all {\/} $c {\a
dalO\al2\a

regsub -all {\[} $c {\\
da\0 |\

regsub -all {\[} $c {\
da\ 0]\

regexp $c $b #OO0O0OO$cOODOODOOOSHOODODOO $cOO0DOODODODOO

2026/02/18 10:08 6/33 tcl0 000

regsub -all {\[} $c {\a
da\a0]\a2

2100 0\1\2

% set a "abc.ef"

abc.ef

% regsub {(.*c)} $a {\1}

abc.ef

% set ret [regsub {(.*c).*} $a {\1}]
abc

3. number

integer value: 335 (decimal), 00517 (octal), 0x14f (hexadecimal), 0b101001111 (binary).

4. string

4.1 string length(0 O

len [string length "abc"

echo $len
4.2 string compare

string compare ?-nocase? ?-length length? stringl string2

O0000oo0O0OoO0O 00-1,00stringl < string2[] O O 10 O stringl > string2[]
string compare "abc" "abc"
string compare "abc" "abcO"

string compare -nocase "abc" "ABc"

4.3 string cat

Concatenate the given strings just like placing them directly next to each other and return the
resulting compound string. If no strings are present, the result is an empty string.

2026/02/18 10:08 7/33

tclDoo0Oo

string cat “stringl string2...

new str [string cat "hello " "world"

puts $new str
#0 O hello world

4.4 string replace

string replace string first last ‘newstring

string replace "0x55,hello"
#0 0, hello

string replace "0x55,hello" "Ox33"
#0 0x550 0 0 0x33

Removes a range of consecutive characters from string, If newstring is specified, then it is placed in

the removed character range.

4.5 string range

string range string first last
string range "hello, world"

#0 0 hell

Returns a range of consecutive characters from string

4.6 string repeat

string repeat string count
string repeat "0"

Returns string repeated count number of times.

4.7 string 00000

agoo

string toupper string ?first? ?last?

2026/02/18 10:08 8/33 tcl0 000

goo

string tolower string ?first? ?last?

5.0

https://www.bilibili.com/read/cv16148884/

gobobooodootoooboooodooobooobooooooobooobooooonond
OTcl/TkO

Ooooo"ooo"OoO"woo"ODooooooodgrclcoooooooo
gogobooobobooobobobooobbooobooobobooobboooboon

yes, no
true, false
on, off
oo 1,0

a "true"
true
$a} {puts haha
haha
string is boolean "true"

#0000 0O00Ostringd 000000 OO0DOODOODOO
$a=="true" puts haha
haha

#HUOODODODODooooooooooooo
#O0o0ooo"g"

string is boolean "t"

string is boolean "tr"

string is boolean "tru"

string is boolean "ye"

#000Qpgf, fa, fal, fals, n ooQooO"O"

#0 0000 o UDODOUOODODOOOonOoffOOOOO
string is boolean o
>> 0

#00ofl0OOCOUO"DDOOOUOoffOOOO

6.0 000

61000000

format "%b"

https://www.bilibili.com/read/cv16148884/

2026/02/18 10:08

9/33

tclDoo0Oo

format "%b" 0x3

format "%b" 0x30

620016000

format "%x" 0x30
format "%x"
le

format "Ox%x"
Ox1le

630010000

format "%d" 0x30

format "%d"

6.4 com_number set_bits get_bits

h2b {h
$h

- O Q O T 9

set ret [format "%04b" "Ox$h"]

$ret

ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret

0000
0001
0010
0011
0100
0101
0110
0111

0000

2026/02/18 10:08 10/33

tclDoo0Oo

hex2bin {hex value

hex value [regsub -nocase {0x} $hex value

len [string length $hex value

bins "0b"
i $i<$len incr i
tmp [string range $hex value $i $i

#set bins [string cat $bins [format "%04b" "Ox$tmp"]]
tmp [h2b $tmp
bins "$bins$tmp"

$bins

bin2hex {bins
bins [regsub -nocase {0b} $bins
len [string length $bins
padding ""
$len%4 =
padding [string repeat "0" -$len4

bins "$padding$bins"
len [string length $bins
hexs "Ox"
i $i $len/ incr i
tmp [string range $bins +$i +$1
#set hexs [string cat $hexs [format "%0x" "Ob$tmp"]]
tmp [format "%0x" "Ob$tmp"
hexs "$hexs$tmp"

$hexs

expandbins {width bins
bins [regsub -nocase {0b} $bins
len [string length $bins
$len > $width

string range $bins $len-$width $len-
padding [string repeat "0" $width-$len
"$padding$bins"

get bins {width hex value msb 1lsb
bins |[hex2bin $hex value
bins |expandbins $width $bins

bins [string range $bins $width-$msb- $width-$1lsb-

$bins

get bits {width hex value msb lsb

2026/02/18 10:08 11/33 tcl0 000

bins [get bins $width $hex value $msb $1lsb
bin2hex $bins

set bits {width hex value msb 1sb new
bins |[hex2bin $hex value
bins |expandbins $width $bins
new bins [get bins $msb-$1sb+ $new $msb-$1sb
replace bins [string replace $bins $width-$msb-

$width-$1lsb- $new bins
bin2hex $replace bins

get bits "Ox33"
0x3

get bits "Ox33"
0x3

get bits "Ox33"
0x33

7. list

7.10 0 list

list a
#or
list b [list

7.21listO0 0

len |[llength $list a

7.3 list index0 [

itemd [lindex $list a
a
lindex $a

lindex $a

2026/02/18 10:08 12/33

tclDoo0Oo

lindex $a end
lindex $a end-

lindex $a end-

7.4 list sort(] [

list a sorted [lsort $list a

a {a@ b0 b2 b3 blO b20 b22 b30
a0 bO b2 b3 blO b20 b22 b30
lsort $a
a0 b0 blO b2 b20 b22 b3 b30
lsort -dictionary $%a
a0 b0 b2 b3 bld b20 b22 b30

7.5 list lappend O

O00O0pushOD O OO

lappend listName value

7.6 lassign

split {a:
a
lassign [split {a: : ml m2
puts $ml
a
puts $m2

7.7 listO O

C
lappend c $a

lappend c $b

2026/02/18 10:08 13/33 tcl0 000

echo $c
"{1 2} {3 4}"

item $c puts "----- . i $item {puts $i

concat $a $b $c

llength [concat $a $b $c

#00 lrange0 0000 first Olast0 0000000000000 OODOODOOOOODOODOOO
i [lrange $c puts $i

a [lrange $c

lindex $a

7.8 list concat

concat a b {cde
abcde

uvw
concat $a $b
uvw
concat a b $b
abuvw

79list0 000000

O00OO0pop0 000

listName [lrange $listName 1 end

7.10 linsert 0 O

goo

2026/02/18 10:08 14/33 tcl0 000

linsert list index 7“element element

This command produces a new Llist from list by inserting all of the element arguments just
before the index'th element of list.

OO0 O0OO00inset0000O0O0O$O0O0O0O0O

oldList {the fox jumps over the dog
midList [linsert $oldList 1 quick
newList [linsert $midList end-1 lazy
The old lists still exist though...
newerList [linsert [linsert $oldList end-1 quick lazy

7.11 Ireplace

Ireplace — Replace elements in a list with new elements
Ireplace list first last ?element element ...?

Replacing an element of a list with another:

lreplace 'a b cde foo
a foo cde

Replacing two elements of a list with three:

lreplace a b cde three more elements
a three more elements d e

Deleting the last element from a list in a variable:

var {a b cde
abcde

var [lreplace $var end end
abcd

7.12 Irange

Irange — Return one or more adjacent elements from a list
Irange list first last
EXAMPLES

Selecting the first two elements:

lrange (a b c d e
ab

2026/02/18 10:08 15/33 tcl0 000

Selecting the last three elements:

lrange {a b c d e} end-2 end
cde

Selecting everything except the first and last element:

lrange (a b c d e end-
bcd

7.13 split string to list

split — Split a string into a proper Tcl list

a "hello world"
hello world
split $a
hello world
llength [split $a

item [split $a
puts $item

hello
world

71400

0000000000000 OOreturnlist0 000 00000000 DOOOOODODOQDOglobald list]
O0O000D00O00OOoooOolstood

8. array] [

gliuggg

000 set ArrayName(Index) value

ar
ar
ar

puts $ar
puts $ar
puts $ar

2026/02/18 10:08 16/33 tcl0 000

8.2 array set

O00O0O0Oarray, 000000000 OOname-valueD OO OO0

array c{alb2c3d
echo $c(a

echo $c(b
echo $cl(c

echo $c(d

8.3 array size

array size ¢

8.4 array name

ddUarrayd 00 dddxxnamed OO

array names arrayName ‘mode’ ‘pattern

Returns a list containing the names of all of the elements the array that
match pattern.

Mode may be one of -exact, -glob, or -regexp. -glob is

array c{alb2c3d
echo $c(a

echo $c(b
echo $cl(c
echo $c(d
clal
c(bl
array name c -regexp a
a al
array name c -regexp b

b bl
array name c -exact a

2026/02/18 10:08

17/33

tclDoo0Oo

array name c
al

array name c
b

array name c
bl

array name c

-exact al

-exact b

-exact bl

-exact a2 # a20000

array name c -exact a2| == ""

"not exist"

array name c -exact al] == "al"

exist

array name c
a

array name c
al

array name c
a al

8.5 arrayl [J

puts "ar $i

a

al

a

$i array size ar
$ar($i)"

8.6 array [[0 [index

TD(a a

TD(a,b) a
a,b
array size TD

id [array
s-1-TD

, b

startsearch TD

array nextelement TD $id

a

array nextelement TD $id

a,b

array nextelement TD $id

array donesea

rch TD $id

echo "not exist"

echo

incr i

"exist"

2026/02/18 10:08 18/33 tcl0 000

87000000 list

tclD0000000Oper1..1000100000000000000000O0proc00OOO0O

range {start end
list
i $start $1 <= $end} {incr i
lappend list $i
$list

numbers |[range #00 10 10000

9. dictl O

aog
dict dictname key value

or
dict create keyl valuel key2 value2 .. keyn valuen

9.10 O dict

#00000DICT

mdict [dict create
dict keys $mdict

#00dict, 000

dict ages zhangsan O agesO [0 zhangsan
dict ages lisi OagesO O lisi
#or
weigths [dict create "a" "b" “c" “d"

9.2 dict unset [0 00 0 O key

dict unset dictionaryVariable key ‘key ...

dict unset ages lisi; #[1[]lisi

This operation (the companion to dict set) takes the name of a variable containing a dictionary value
and places an updated dictionary value in that variable that does not contain a mapping for the given
key. Where multiple keys are present, this describes a path through nested dictionaries to the

2026/02/18 10:08 19/33 tcl0 000

mapping to remove. At least one key must be specified, but the last key on the key-path need not
exist. All other components on the path must exist. The updated dictionary value is returned.

9.3 dict size] O

dict size $weigths

9.4 dict for

dict key value! $dic
puts "$key--$value"

9.5 dict get value

dict get $weigths a

key value} [dict get $weigths
puts "$key--$value”

value [dict get $weigths "aa"

9.6 dict keys

dict keys $weigths

9.7 dictO O

item [dict keys $weigths
value [dict get $weigths $item
puts $value

9.8 dict exists
dict exists $weigths a

9.9 dict keys sort(] [

2026/02/18 10:08

20/33 tcl0 000

lsort [dict keys $weigths

9.10 dict merge[] O 0 [copy

dict merge ’dictionaryValue ...

dict a [dict merge $dict b

dict a [dict merge $dict b $dict c

Return a dictionary that contains the contents of each of the dictionaryValue arguments. Where two
(or more) dictionaries contain a mapping for the same key, the resulting dictionary maps that key to
the value according to the last dictionary on the command line containing a mapping for that key.

9.11 dict O list

a
b
mdict |[dict create
dict mdict key 0 $a
key 0
dict mdict key 1 $b
key 0O key 1

key [dict keys $mdict
"$key . $1"
key 0 .
key 0 .
key 1 .
key 1 .

100000 &loopl 000

10.1 if elseif else

$X

puts "x>0"
$x00

puts "x==0"

puts "other"

isTrue

info exists ::env(SOME_ENV_VAR

dict get $mdict $key puts

2026/02/18 10:08 21/33 tcl0 000

string is true -strict ¢::env(SOME_ENV VAR

a "word"
b "base"

regexp {wo; $a regexp {ba} $b
puts "haha"

10.2 while

i

$i-=
puts "$i"
incr i -

i

$i-=
puts "$i"
incr i -

#continue

10.3 for

b n n
loop times
i $loop times $i>= incr i -
lappend b $i

10.4 foreach

list b
i $list b
puts " $i|l

10.5 switch

$X

2026/02/18 10:08

22/33

tclDoo0Oo

incr tl
incr t2
1*2
incr t3

o 0 T O

dabooooog'oboboooobboobobobobbn

switchOOOOOODOO0DOOOswitchDOOOODODOODOODODODO0ODODO00O0OO0DO000000

OswitchOOOODOprocO00O0OO0O00O0ODOOOOODO

11l. proc 0 OO0 OO

111000

XXX_var 0x3

helloworld
XXX_var
puts "Hello, World!"
puts "xxx _var = $xxx_var"

helloWorld

procO0O0O0O00Oglobal xxx varO OO procO00OO0O$xxx _var

112000

add {a b
$a+$b

puts [add 10 30

113000000

add {a {b 100
$a+$b

puts [add 10 30
puts [add 10

114000004

#0001, 0 0 procO0 00 0O listO O

2026/02/18 10:08 23/33 tcl0 000

proc calc_sum {numbers
set sum 0
foreach number $numbers
set sum expr $sum + $number

return $sum

puts [calc sum {70 80 50 60
260
calc_sum 70 80

wrong # args: should be "calc sum numbers"
calc _sum 70
70

AR D 200 0 0argsd 0, argsU 000000 OOOOO0O

proc calc _sum2 {args
set sum 0
foreach number $args
set sum expr $sum + $number

return $sum

calc sum2 2
2
calc_sum2 2 3
5
calc sum2 2 3 6
11
calc sum2 {70 80
missing operator at @
in expression "0 + 70 @ 80"

12.0 0

121000000

oooo
r oo
w |00
a |0O0O

r+ [D0O0O0Ooboogd
w+ DO000O0000OO0OOO0OO0o0bOO0ObOobDOoOobOobOoDOon
a+ [J000O00obogobboobobooobboooobooba

122000

set fp [open "input.txt" w

2026/02/18 10:08 24/33 tcl0 000

puts $fp "testO"
puts $fp "testl"”
close $fp

123000

12310 0readd O

read — Read fromachannel 0000000000

000 read channelld numChars
fp [open "input.txt" r
file data [read $fp

puts "readout: $file data"
close $fp

12320 0get0 000

gets — Read a line froma channel 000000

0 00Ogets channelld ?varName?
fp lopen "input.txt" r
gets $fp datal ==
puts "readout2: $data"”

close $fp

1240000

124100000

file executable name
Returns 1 if file name is executable by the current user, 0 otherwise. On Windows, which does not

have an executable attribute, the command treats all directories and any files with extensions exe,
com, cmd or bat as executable.

12420000

file exists name

Returns 1 if file name exists and the current user has search privileges for the directories leading to it,
0 otherwise.

2026/02/18 10:08

tclDoo0Oo

124300000

file isdirectory name

Returns 1 if file name is a directory, 0 otherwise.

12440000000

file isfile name

Returns 1 if file name is a regular file, 0 otherwise.

125000000

25100 000000000

glob — Return names of files that match patterns

abs path [glob ./out/linux */*/

12520 0000000000

file normalize name

Returns a unigue normalized path representation for the file-system object (file, directory, link, etc),
whose string value can be used as a unique identifier for it. A normalized path is an absolute path
which has all “../” and “./” removed. Also it is one which is in the “standard” format for the native

platform. On Unix, this means the segments leading up to the path must be free of symbolic

links/aliases (but the very last path component may be a symbolic link), and on Windows it also
means we want the long form with that form's case-dependence (which gives us a unique, case-
dependent path). The one exception concerning the last link in the path is necessary, because Tcl or
the user may wish to operate on the actual symbolic link itself (for example file delete, file rename,

file copy are defined to operate on symbolic links, not on the things that they point to).

abs path |[file normalize ..

13.000

rand data0
rand datal
rand data2
rand data3
rand data4

int
int
int
int
int

rand
rand
rand
rand
rand

2026/02/18 10:08 26/33 tcl0 000

14.000 0 shellO O

exec uname -a
exec mkdir dir_a/subdir b -p

15. info0 O

info script] #00000000000O00O0O

info procs ’pattern
If pattern is not specified, returns a list of all the names of Tcl
command procedures in the current namespace.
If pattern is specified, only those procedure names in the current
namespace matching pattern are returned.
#0 0000000 proc

wB1ggooooon

unset a
info exists a $a == 1 echo "haha"
al
1
info exists a $a == 1 echo "haha"
haha
a0
0
info exists a $a == 1 echo "haha"
16. [0 O
clock microseconds oooooo
clock seconds oooood

timel [clock microseconds
puts "timel = $timel"

time2 [clock microseconds
puts "timel = $time2"

delta time $time2 - $timel
puts "delta time = $delta time"

#0O0o0oodd

2026/02/18 10:08 27/33 tcl0 000

clock format [clock seconds| -format Y%md-%H: %M
20221122-10:28

17. tcl command alias[] []

tcl000000000allas00000000OechoOputs0 000000000 0OOtcOOOechod
O000O00alasO0OO0OO0O0O0O0

interp alias echo puts; #0000 tcl putsO0O0O0O0Oalias O000O0O0O0Oecho

other alias exapmles
interp alias getIndex lsearch {alpha beta gamma delta

idx [getIndex delta

18. json

ooog
https://core.tcl-lang.org/tcllib/doc/tcllib-1-18/embedded/www/tcllib/files/modules/json/json.html#1

https://core.tcl-lang.org/tcllib/doc/trunk/embedded/md/toc.md
18.1 json2tcl

json:json2dict0 D OO0 OO0 OO

package require json

jsonStr { \
"photos": "page": 1, "pages": "726", "perpage": 3, "total": "7257",
“photo":
"id": "6974156079", "owner": "74957296", "secret": "005d743f82",
"server": "7197", "farm": 8, "title": "Kenya", "ispublic": 1, "isfriend": 0O,
"isfamily": 0 },

"id": "6822988100", "owner": "52857411", "secret": "56630c18e8",
"server": "7183", "farm": 8, "title": "Gedi", "ispublic": 1, "isfriend": 0O,
"isfamily": 0 7},

"id": "6822909640", "owner": "52857411", "secret": "f4e392ea36",

"server": "7063", "farm": 8, "title": "Local", "ispublic": 1, "isfriend": 0O,
"isfamily": 0
) Ilstatll : Ilokll

dl [json::json2dict $jsonStr

https://core.tcl-lang.org/tcllib/doc/tcllib-1-18/embedded/www/tcllib/files/modules/json/json.html#1
https://core.tcl-lang.org/tcllib/doc/trunk/embedded/md/toc.md

2026/02/18 10:08 28/33

tclDoo0Oo

puts "dl is :"
puts $d1

key value} [dict get $d1
is [string is list $value
puts "$key -- $is -- "
$key == "photos"
keyl valuel} [dict get $value
puts " $keyl -- $valuel”

$keyl == "photo"
value2 $valuel
puts " ==========%valuel"
key3 value3 dict get $value2
puts " ========= $key3 -- $value3"

#puts "$key--$value"

18.2 tcl2json

gddddodooooouoouogguo
https://rosettacode.org/wiki/Rosetta_Code

https://rosettacode.org/wiki/J]SON#Tcl

package require Tcl
package require json::write

tcl2json value
Guess the type of the value; deep *UNSUPPORTED* magic!

regexp {(“value is a (. with a refcount} \
::tcl::unsupported: :representation $value] -> type
$type
string

json::write string $value

dict
json::write object
dict map {k v} $value {tcl2json $v

list
json::write array lmap v $value {tcl2json $v

https://rosettacode.org/wiki/Rosetta_Code
https://rosettacode.org/wiki/JSON#Tcl

2026/02/18 10:08 29/33 tcl0 000

int - double
$value

booleanString
$value "true" : "false"

Some other type; do some guessing. ..
$value eq "null"
Tcl has *no* null value at all; empty strings are semantically
different and absent variables aren't values. So cheat!

$value
string is integer -strict $value
$value
string is double -strict $value
$value
string is boolean -strict $value
$value "true" : "false"

json::write string $value

d [dict create blue [list 1 2| ocean water book {a b c d
puts [tcl2json $d

dict ages zhangsan 30

dict ages lili 28

dict addr shu "guanzhou"
dict addr v "suzhou"

dict addr cc [list ccl cc2

#set addr [list xx0 xx1]

dict ages misc $addr
puts [tcl2json $ages

gobogoboooboooaon

{
Ilb'Luell : ["1"’"2"],
"ocean" : "water",
"book" : "a b c d"

2026/02/18 10:08 30/33 tcl0 000

{

"zhangsan" : 30,

"litit : 28,

"misc" A
“shu" : "guanzhou",
"lv" : "suzhou",
"cc" : ["ccl","cc2"]

}

18.3 printtcl

O00D0000tlD0DODDOoO0oODoDoDODOdict&listDO000O0json00000000D0O0D0DO([tcl2json

package require json

jsonStr { \
“photos": "page": 1, "pages": "726", "perpage": 3, "total": "7257",
"photo":
"id": "6974156079", "owner": "74957296", "secret": "005d743f82",
"server": "7197", "farm": 8, "title": "Kenya", "ispublic": 1, "isfriend": 0O,

"isfamily": 0 },

"id": "6822988100", "owner": "52857411", "secret": "56630c18e8",
"server": "7183", "farm": 8, "title": "Gedi", "ispublic": 1, "isfriend": 0O,
"isfamily": 0 },

"id": "6822909640", "owner": "52857411", "secret": "f4e392ea36",
"server": "7063", "farm": 8, "title": "Local", "ispublic": 1, "isfriend": 0O,
"isfamily": 0

, "stat": "ok"

dl [json::json2dict $jsonStr
puts "dl is :"
puts $d1
printtcl {value {prefix ""
Guess the type of the value; deep *UNSUPPORTED* magic!

regexp {"“value is a (. with a refcount} \
::tcl::unsupported: :representation $value] -> type
$type
dict

dict map {k v} $value
puts "$prefix\key:$k"
printtcl $v "$prefix

list
lmap v $value
puts "$prefix\list item:\["

2026/02/18 10:08

31/33

tclDoo0Oo

printtcl $v "$prefix
puts "$prefix\list item:\]"

puts "$prefix$value"

printtcl $d1

goo

dl is :
photos {page 1 pages 726 perpage 3 total 7257 photo {{id 6974156079 owner

74957296 secret 005d743f82 server 7197 farm 8 title Kenya ispublic 1
isfriend 0 isfamily 0} {id 6822988100 owner 52857411 secret 56630c18e8
server 7183 farm 8 title Gedi ispublic 1 isfriend 0 isfamily 0} {id

6822909640 owner 52857411 secret f4e392ea36 server 7063 farm 8 title Local

ispublic 1 isfriend 0 isfamily 0}}} stat ok

key:photos

key:

1

key:

page

pages

726

key:

3

key:

perpage

total

7257

key:

photo

list item:[

key:id
6974156079
key:owner
74957296
key:secret
005d743182
key:server
7197
key:farm
8
key:title
Kenya
key:ispublic
1
key:isfriend
0
key:isfamily
0

list item:]

2026/02/18 10:08

32/33

tclDoo0Oo

list item:[
key:id
6822988100
key:owner
52857411
key:secret
56630c18e8
key:server
7183
key:farm
8
key:title
Gedi
key:ispublic
1
key:isfriend
0
key:isfamily
0
list item:]
list item: [
key:id
6822909640
key:owner
52857411
key:secret
f4e392ea36
key:server
7063
key:farm
8
key:title
Local
key:ispublic
1
key:isfriend
0
key:isfamily
0
list item:]
key:stat
ok

19. 0000

1. 00tclOOD0echoOOODOOOODOOOputsDODO0O0ODOOOOODOOOOOOODOOOODO

g

2026/02/18 10:08 33/33 tcl0 000

	tcl语法速查
	1. 查看tcl版本
	2. regexp正则表达式
	2.1 正则表达式规则
	2.2 基本用法
	2.3 {}与""的区别
	2.4 匹配多个条件
	2.5 submatch， 子匹配
	2.6 非贪婪匹配模式
	2.7 regsub正则表达式替换
	2.8 使用变量作为正则表达式
	2.9 使用\逃逸
	2.10 使用\1 \2

	3. number
	4. string
	4.1 string length长度
	4.2 string compare
	4.3 string cat
	4.4 string replace
	4.5 string range
	4.6 string repeat
	4.7 string 大小写转换

	5. 布尔值
	6. 进制转换
	6.1 转为二进制数
	6.2 转为16进制数
	6.3 转为10进制数
	6.4 com_number set_bits get_bits

	7. list
	7.1 创建list
	7.2 list 长度
	7.3 list index索引
	7.4 list sort排序
	7.5 list lappend追加
	7.6 lassign
	7.7 list 嵌套
	7.8 list concat
	7.9 list 删除第一个元素
	7.10 linsert 插入
	7.11 lreplace
	7.12 lrange
	7.13 split string to list
	7.14 技巧

	8. array数组
	8.1 创建数组
	8.2 array set
	8.3 array size
	8.4 array name
	8.5 array迭代
	8.6 array 非数字index
	8.7 生成连续数字list

	9. dict字典
	9.1 创建dict
	9.2 dict unset 删除某个key
	9.3 dict size大小
	9.4 dict for
	9.5 dict get value
	9.6 dict keys
	9.7 dict迭代
	9.8 dict exists
	9.9 dict keys sort排序
	9.10 dict merge， 相当于copy
	9.11 dict 包 list

	10. 条件判断 & loop循环控制
	10.1 if elseif else
	10.2 while
	10.3 for
	10.4 foreach
	10.5 switch

	11. proc 过程函数控制
	11.1 无参数
	11.2 带参数
	11.3 参数带默认值
	11.4 可变个数参数

	12. 文件
	12.1 文件操作模式
	12.2 写文件
	12.3 读文件
	12.3.1 采用read方法
	12.3.2 采用get一行方法

	12.4 判断文件
	12.4.1 是否可执行
	12.4.2 是否存在
	12.4.3 是否是目录
	12.4.4 是否是普通文件

	12.5 文件路径展开
	12.5.1 带*号匹配展开为绝对路径
	12.5.2 相对路径替换为绝对路径

	13. 随机数
	14. 调用系统shell命令
	15. info命令
	15.1 判断变量是否存在

	16. 时间
	17. tcl command alias别名
	18. json
	18.1 json2tcl
	18.2 tcl2json
	18.3 printtcl

	19. 其它注意

