2026/02/18 06:38 1/34

tclDoo0Oo

tclD OO O

tcl_synopsys

tcl_tessent
gon
e tcl86 _doc
e JOOOO
tc-tkD OO0 000 .pdf
tcl_and_the_tk toolkit_john_k. ousterhout_.pdf
1.00tclO O

O0tcd0OtcdlshOOoDOoOooooOd
info patchlevel

00O tcl:

yum install -y tcl-devel.x86 64 tcl.x86 64

2. regexpl 0000

goo

regexp optionalSwitches patterns searchString fullMatch subMatchl ...

subMatchn

-nocase: O OOonOO

21000000 n

O0O00OtDOO0O00D00OO0OO http://vmcc.vicp.net:9090/tcl86_doc/re_syntax.htm
tcld O O O REQO O [IBRE,ERE,ARE[JT O O O O O ARE[]

e BREO basic REsjO0 OvimOgrepO OO O OOO0OODO
e ERE extended REs[] O egrep0 0 0 OO0
e AREDDERED O D OODOOODperlO00DODODOODOODOD

http://vmcc.vicp.net:9090/wiki/doku.php?id=%E8%AF%AD%E6%B3%95:tcl_synopsys
http://vmcc.vicp.net:9090/wiki/doku.php?id=%E8%AF%AD%E6%B3%95:tcl_tessent
http://vmcc.vicp.net:9090/tcl86_doc/index.htm
http://vmcc.vicp.net:9090/wiki/doku.php?id=linux:%E6%AD%A3%E5%88%99%E8%A1%A8%E8%BE%BE%E5%BC%8F
http://vmcc.vicp.net:9090/tcl86_doc/re_syntax.htm

2026/02/18 06:38 2/34

tclDoo0Oo

#L<]O[[>]]0\<0\>00000,0000wordd 0
4000000000 [<]1[[>]]I0C00BREDD \<\>

a 123

#WOODAREO DO --000000O0O0OOOO
regexp 1<:]11123[[:>: $a
puts "matched"

#OOBREO OO --00(?2b)00000ODOMOOBREO O
regexp b)23\>} $a
puts "matched"

#HUODOEREO DO --00 (7e)0000O00OOEREOO
regexp e)23[[:>: $a
puts "matched"

220000

name "day day up"

regexp -nocase {day: $name
puts "matched"”

regexp -nocase "day" $name
puts "matched2"

regexp -nocase "cat" $name
puts "matched3"

puts "not matched3"

googod

matched
matched?2
not matched3

a "cdb"
cdb
regexp c: $%a puts "haha"
a "adb"
adb

2026/02/18 06:38 3/34 tcl0 000

regexp {c; $a puts "haha"
haha

2300™000

e 0000000000000, [, jJO00000000000O0OOn
e JO000O0ODOODOODOOUDDODOUODOLOOODOODONODOOLN OO DOODO
gobogobbooobooobobooobbuoooobooooboboo

a 1\
\
a II\\\[II
\
a Ilafll
af
b "af <= 3"
af <=

regexp "af " $b
regexp "$a " $b
regexp "af\s" $b
regexp “$a\s" $b
regexp "af\\s" $b
regexp {$a\s; $b
regexp {(\s: $b
regexp "$a\\s<=" $b

regexp "$a\\s*<=" $b

24000000

Oo00obOooooboog oo

a "hello you"
hello you
regexp {hello|you} $a puts "hit"
hit

2026/02/18 06:38 4/34 tcl0 000

regexp {hello|xou} $a puts "hit"
hit

regexp {hellof|xou; $a puts "hit"

regexp {hellof|you; $a puts "hit"
hit

2.5 submatch[] 0 00O

name "day day up"

regexp -nocase {(day) (day up $name ml m2 m3 m4
puts "ml = $ml, m2 = $m2, m3 = $m3, m4 = $m4"

regexp -nocase | (\w+) (\w+) (\w+ $name ml m2 m3 m4
puts "ml = $ml, m2 = $m2, m3 = $m3, m4 = $m4"

googad
ml = day day up, m2 = day, m3 = day, m4 = up
ml = day day up, m2 = day, m3 = day, m4 = up

e nn

gobooobbooobbooooboooboboooono

oo uuguo

O0000|000o0o|on

* *? 0000000000000 00o0oO0O00qO
+ +7?

? ??

{m} {m}?

{m} |{m,}?

{m,n} [{m,n}?

2.7regsub0 000000

000 regsub ?switches? exp string subSpec ?varName?

O switchesO
-aIIDDDDDDDDDDDDDVimDDDgDDD
-nocase[[0 0000000000

#00OabcOODOhello, OOOOOOOOOODOOOOC

2026/02/18 06:38

5/34

tclDoo0Oo

regsub {\w+} "abc def" "hello"

echo $c
"hello def"

#0 O abclO hello

regsub {\w+} "abc def" "hello"

hello def

C

d [regsub {\w+} "abc def" "hello"

hello def
echo $d
"hello def"

2800 00gogooboon

c "da\[O\I\[2\]1"
da

c [regsub -all {\ $c 1\
dalO\][2\

c [regsub -all |\ $c {\\
da\ O\]\ [2\

b "da\[O\]I\[2\] = 38"
da =

Ostring

290 0\00

c "da\[O\]\[2\]"

da

regsub -all [\]} $c \\
dalO\[2\

regsub -all {\} $c {\
dalO\1[2\

regsub -all {\/} $c {\a
dalO\al2\a

regsub -all {\[} $c {\\
da\0 |\

regsub -all {\[} $c {\
da\ 0]\

regexp $c $b #OO0O0OO$cOODOODOOOSHOODODOO $cOO0DOODODODOO

2026/02/18 06:38 6/34 tcl0 000

regsub -all {\[} $c {\a
da\a0]\a2

2100 0\1\2

% set a "abc.ef"

abc.ef

% regsub {(.*c)} $a {\1}

abc.ef

% set ret [regsub {(.*c).*} $a {\1}]
abc

3. number

integer value: 335 (decimal), 00517 (octal), 0x14f (hexadecimal), 0b101001111 (binary).

4. string

4.1 string length(0 O

len [string length "abc"

echo $len
4.2 string compare

string compare ?-nocase? ?-length length? stringl string2

O0000oo0O0OoO0O 00-1,00stringl < string2[] O O 10 O stringl > string2[]
string compare "abc" "abc"
string compare "abc" "abcO"

string compare -nocase "abc" "ABc"

4.3 string cat

Concatenate the given strings just like placing them directly next to each other and return the
resulting compound string. If no strings are present, the result is an empty string.

2026/02/18 06:38 7/34

tclDoo0Oo

string cat “stringl string2...

new str [string cat "hello " "world"

puts $new str
#0 O hello world

4.4 string replace

string replace string first last ‘newstring

string replace "0x55,hello"
#0 0, hello

string replace "0x55,hello" "Ox33"
#0 0x550 0 0 0x33

Removes a range of consecutive characters from string, If newstring is specified, then it is placed in

the removed character range.

4.5 string range

string range string first last
string range "hello, world"

#0 0 hell

Returns a range of consecutive characters from string

4.6 string repeat

string repeat string count
string repeat "0"

Returns string repeated count number of times.

4.7 string 00000

agoo

string toupper string ?first? ?last?

2026/02/18 06:38 8/34 tcl0 000

goo

string tolower string ?first? ?last?

5.0

https://www.bilibili.com/read/cv16148884/

gobobooodootoooboooodooobooobooooooobooobooooonond
OTcl/TkO

Ooooo"ooo"OoO"woo"ODooooooodgrclcoooooooo
gogobooobobooobobobooobbooobooobobooobboooboon

yes, no
true, false
on, off
oo 1,0

a "true"
true
$a} {puts haha
haha
string is boolean "true"

#0000 0O00Ostringd 000000 OO0DOODOODOO
$a=="true" puts haha
haha

#HUOODODODODooooooooooooo
#O0o0ooo"g"

string is boolean "t"

string is boolean "tr"

string is boolean "tru"

string is boolean "ye"

#000Qpgf, fa, fal, fals, n ooQooO"O"

#0 0000 o UDODOUOODODOOOonOoffOOOOO
string is boolean o
>> 0

#00ofl0OOCOUO"DDOOOUOoffOOOO

6.0 000

61000000

format "%b"

https://www.bilibili.com/read/cv16148884/

2026/02/18 06:38 9/34 tcl0 000

format "%b" 0x3

format "%b" 0x30

620016000

format "%x" 0x30

format "%x"

le

format "Ox%x"
Ox1le
6.300 010000

format "%d" 0x30

format "%d"

64000000000

t3.tcl
i $i incr i
hex str [format "%04b" $i
puts -nonewline "hex str = $hex str"
puts -nonewline " bit\[3:0\] ="
] $j == incr j -
idx -$j
bit str [string range $hex str $idx $idx
puts -nonewline " $bit str"
puts nu
googog
hex str = 0000 bit[3:0] = 06 0 0 O
hex str = 0001 bit[3:0] = 0 0 0 1
hex str = 0010 bit[3:0] = 06 06 1 0O
hex str = 0011 bit[3:0] = 06 0 1 1

http://vmcc.vicp.net:9090/wiki/doku.php?do=export_code&id=%E8%AF%AD%E6%B3%95:tcl%E8%AF%AD%E6%B3%95%E9%80%9F%E6%9F%A5&codeblock=28

2026/02/18 06:38

10/34

tclDoo0Oo

hex str

hex str =
hex str =
hex str =
hex str =
hex str =
hex str =
hex str =
hex str =
hex str =
hex str =

hex str

= 0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
= 1111

bit[3:
bit[3:

bit[3

bit[3:
bit[3:
bit[3:

bit[3

bit[3:
bit[3:

bit[3
bit[3

bit[3:

0] =
0] =
:0] =
0] =
0] =
0] =
:0] =
0] =
0] =
:0] =
:0] =
0] =

N = =N o N ool o)
H N NP OO0 RKEKMEMK
P P OO RFRPROOKFFEFEF OO

6.5 com_number set_bits get_bits

h2b {h

$h

- O Q O T 9

ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret

0000
0001
0010
0011
0100
0101
0110
0111

0000

PO R ORFRORFROKF OO

set ret [format "%04b" "Ox$h"]

hex2bin
hex value

$ret

hex value
regsub -nocase

0x} $hex value

len [string length $hex value
bins "0Ob"

i
tmp

$bins

$i<$len

incr i

string range $hex value $i $i

#set bins [string cat $bins [format "%04b" "Ox$tmp"]]
tmp [h2b $tmp
bins "$bins$tmp"

2026/02/18 06:38 11/34 0000
bin2hex {bins
bins [regsub -nocase {0b} $bins
len [string length $bins
padding ""
$len=4] =

padding [string repeat "0" -$len4
bins "$padding$bins"
len [string length $bins
hexs "Ox"

i $i $len/ incr i
tmp [string range $bins +$i +$1i

#set hexs [string cat $hexs [format "%0x" "Ob$tmp"]]

tmp [format "%O0x" "Ob$tmp"
hexs "$hexs$tmp"

$hexs

expandbins {width bins
bins [regsub -nocase {0b} $bins
len [string length $bins
$len $width

string range $bins $len-$width
padding [string repeat "0" $width-$len
"$padding$bins"

get bins {width hex value msb lsb
bins |[hex2bin $hex value
bins [expandbins $width $bins
bins [string range $bins $width-$msb-

$bins
get bits {width hex value msb 1lsb

bins [get bins $width $hex value $msb $1lsb
bin2hex $bins

set bits {width hex value msb 1lsb new
bins |[hex2bin $hex value
bins |expandbins $width $bins

new bins [get bins $msb-$1lsb+1] $new

$len-

$width-$1lsb-

$msb-$1sb

replace bins [string replace $bins $width-$msb-

$width-$1lsb- $new bins
bin2hex $replace bins

2026/02/18 06:38 12/34

tclDoo0Oo

get bits "Ox33"
0x3

get bits "Ox33"
0x3

get bits "0x33"
0x33

7. list

7100 list

list a
#or
list b [list

7.21list0 0

len [llength $list a

7.3 list index [

item0@ [lindex $list a
a
lindex $a
lindex $a
lindex $a end
lindex $a end-

lindex $a end-

7.4 list sortC O

list a sorted [lsort $list a

2026/02/18 06:38 13/34

tclDoo0Oo

a a0 bO b2 b3 blO b20 b22 b30
a0 b0 b2 b3 blO b20 b22 b30
lsort $a
a0 b0 blO b2 b20 b22 b3 b30
lsort -dictionary $a
a0 b0 b2 b3 blO b20 b22 b30

7.5 list lappend(O

O0O0OpushODO OO

lappend listName value

7.6 lassign

split {a:
a
lassign [split {a: : ml m2
puts $ml
a
puts $m2

7.7 list 0 O

C
lappend c $a

lappend c $b

echo $c
"{1 2} {3 4}"

item $c puts "----- . i $item {puts $i

concat $a $b $c

llength [concat $a $b $c

2026/02/18 06:38 14/34 tcl0 000

#00Olrange0 0000 first OlastOO0D00O000OO0O0OO0O0OO0ODODOOOOODODOOODOOOO
i [lrange $c puts $i

a [lrange $c

lindex $a # a0 0OODOO0OODOO “1 2”0 a00O0O0O listOO

7.8 list concat

concat a b {cde
abcde

uvw
concat $a $b
uvw
concat a b $b
abuvw

791list0 000000

O0OOpop0 000

listName [lrange $listName 1 end

7.10 linsert O O

goo

linsert list index 7“element element

This command produces a new Llist from list by inserting all of the element arguments just
before the index'th element of list.

OO0 O0O0insertCO0O0OD0OOSOOOOO

oldList {the fox jumps over the dog
midList [linsert $oldList 1 quick
newList [linsert $midList end-1 lazy
The old lists still exist though. ..
newerList [linsert [linsert $oldList end-1 quick lazy

2026/02/18 06:38 15/34

tclDoo0Oo

7.11 Ireplace

Ireplace — Replace elements in a list with new elements
Ireplace list first last 7element element ...?

Replacing an element of a list with another:

lreplace 'a b cde foo
a foo c d e

Replacing two elements of a list with three:

lreplace ‘a b cde three more elements
a three more elements d e

Deleting the last element from a list in a variable:
var {abcde
abcde

var [lreplace $var end end
abcd

7.12 Irange

Irange — Return one or more adjacent elements from a list
Irange list first last
EXAMPLES

Selecting the first two elements:

lrange (a b c d e
ab

Selecting the last three elements:

lrange (a b c d e} end-2 end
cde

Selecting everything except the first and last element:

lrange (a b c d e end-
b cd

2026/02/18 06:38 16/34 tcl0 000

7.13 split string to list

split — Split a string into a proper Tcl list
a "hello world"
hello world
split $a
hello world
1length [split $a

item [split $a
puts $item

hello
world

71400

O00000000000000returnlist0O 000 0D000O0O0OD0ODOO0OOOODODOglobald list
O0000000000DoO0lstooO

8. arrayl [

g10noog

000 set ArrayName(Index) value
ar
ar
ar

puts $ar

puts $ar
puts $ar

8.2 array set

O00O0O0Oarray, 00000000 OOname-valueD OO OO0

array c{alb2c3d
echo $c(a

echo $c(b

echo $cl(c

2026/02/18 06:38 17/34

tclDoo0Oo

echo $c(d

8.3 array size

array size c

8.4 array name

UO00O0Oarrayd D000 dxxnamedd OO

array names arrayName ‘mode pattern

Returns a list containing the names of all of the elements
match pattern.

Mode may be one of -exact, -glob, or -regexp. -glob is

array c{alb2c3d
echo $c(a

echo $c(b

echo $cl(c

echo $c(d
clal
c(bl

array name c -regexp a

a al
array name

b bl
array name c -exact a

(@)

-regexp b

array name c -exact al
al
array name c -exact b

b
array name c -exact bl
bl
array name c -exact a2 # a20000
array name c -exact a2| == "" echo "not exist"
"not exist"

array name c -exact al] == "al" echo "exist"

the array that

2026/02/18 06:38 18/34 tcl0 000

exist

array name c a
a

array name c al
al

array name c a
a al

8.5 arrayl [

i $i array size ar incr i
puts "ar $i : $ar($i)"

8.6 array [[0 [index

TD(a a

TD(a,b) a,b
a,b
array size TD

id [array startsearch TD

s-1-TD

array nextelement TD $id
a

array nextelement TD $id
a,b

array nextelement TD $id

array donesearch TD $id

87000000 list

tcl00000000OOperl1..1000100000000000000000Oproc0OCOOOO

range {start end
list
i $start $i <= $end incr i
lappend list $i

$list

2026/02/18 06:38 19/34 tcl0 000

numbers |[range #0010 10000
9. dictO O
0o
dict dictname key value
or
dict create keyl valuel key2 value2 .. keyn valuen
9.10 O dict

#00000DICT

mdict [dict create
dict keys $mdict

#00dict, 000

dict ages zhangsan [0 agesd [0 zhangsan
dict ages lisi Oagesd O lisi
#or
weigths [dict create "a" “b" "c" "d"

O0000000D0ddict

mydict
a
numl
num2
b
num3
num4
a dict get $mydict a

numl [dict get $a numl
num2 [dict get $a num2
b dict get $mydict b
num3 [dict get $b num3
num4 [dict get $b num4

2026/02/18 06:38 20/34 tcl0 000

9.2 dict unset 0 [0 O 0 key

dict unset dictionaryVariable key ‘“key ...
dict unset ages lisi; #[1[]lisi

This operation (the companion to dict set) takes the name of a variable containing a dictionary value
and places an updated dictionary value in that variable that does not contain a mapping for the given
key. Where multiple keys are present, this describes a path through nested dictionaries to the
mapping to remove. At least one key must be specified, but the last key on the key-path need not
exist. All other components on the path must exist. The updated dictionary value is returned.

9.3 dict size[1 [
dict size $weigths
9.4 dict for

dict key value! $dic
puts "$key--$value"

9.5 dict get value

dict get $weigths a

key value} [dict get $weigths
puts "$key--$value"

value [dict get $weigths "aa"

9.6 dict keys

dict keys $weigths

9.7 dictd O

item |[dict keys $weigths
value [dict get $weigths $item
puts $value

2026/02/18 06:38

21/34

tclDoo0Oo

9.8 dict exists

dict exists $weigths a

9.9 dict keys sort(1 [

lsort [dict keys $weigths

9.10 dict merge[] [0 O copy

dict merge ‘dictionaryValue ...

dict a [dict merge $dict b

dict a [dict merge $dict b $dict c

Return a dictionary that contains the contents of each of the dictionaryValue arguments. Where two
(or more) dictionaries contain a mapping for the same key, the resulting dictionary maps that key to
the value according to the last dictionary on the command line containing a mapping for that key.

9.11 dict O list

a
b

mdict [dict create

dict mdict key 0 $a
key 0

dict mdict key 1 $b
key 0 key 1

key [dict keys $mdict

"$key . $i"
key 0 .
key 0 .
key 1 .
key 1 .

100000 &loopd OO

10.1 if elseif else

i

dict get $mdict $key

puts

2026/02/18 06:38 22/34 tcl0 000

$x

puts "“x>0"
$x00

puts "x==0"

puts "other"

isTrue

info exists ::env(SOME ENV_ VAR
string is true -strict ¢::env(SOME_ENV VAR

a "word"
b "base"

regexp (wo; $a regexp |ba} $b
puts "haha"

10.2 while

$i-=
putS n $i|l
incr i -

$i>=
puts "$i"
incr i -

$i ==

#continue

10.3 for

b n n
loop times
i $loop times $i>= incr i -
lappend b $i

2026/02/18 06:38 23/34 tcl0 000

10.4 foreach

list b
i $list b
putS 1 $i|l

10.5 switch

$X

incr tl
incr t2

o 0 T 9

incr t3

U0 a0000bb'0'donooooobbuooobood

switchODOOOOOOOOOODOswitchODOODODOOOOODODOOOODOOOO0OOOOOOOODOoOO
OswitchOOOOOprocOOOOOOODOOOOODO

1l.proc OO OO0

111000

XXX_var 0x3
helloworld
XXX_var
puts "Hello, World!"
puts "xxx_var = $xxx_var"

helloWorld

procO0O0O0O0O0Oglobal xxx varO OO procO0OOOO$xxx _var
112000

add {a b
$a+$b

puts [add

2026/02/18 06:38 24/34

tclDoo0Oo

113000000

add {a {b 100
$a+$b

puts [add 10 30
puts [add 10

140000404

0 0 1L, 0 O procO0 000 listO O
calc _sum {numbers

sum 0
number $numbers
sum $sum + $number
$sum

puts [calc sum {70 80 50 60

260
calc _sum 70 80

wrong # args: should be "calc sum numbers"
calc sum 70

70

#HHRHAHAAD D20 0 0 O args0 0, argsU00000O0O0OOOOO0O

calc sum2 {args

sum 0
number $args
sum $sum + $number
$sum

calc sum2 2
2
calc sum2 2 3
5
calc sum2 2 3 6
11
calc sum2 {70 80
missing operator at @
expression "0 + 70 @ 80"

12.0 0

2026/02/18 06:38 25/34 tcl0 000

121000000

gopa
r g

oo
a goad

r+ [00O0O0ooogn
w+ [J000O0gooogooobouuoboooonoooooood
o+ [U00b0O0doobooobboobobboodbbboooboba

122000

fp [open "input.txt" w
puts $fp "testO"
puts $fp "testl"
close $fp

123000

12310 0readd O

read — Read fromachannelJ 0000000000

000 read channelld numChars
fp [open "input.txt" r
file data [read $fp

puts "readout: $file data"
close $fp

1232009get0 00O

gets — Read a line froma channelJ 00O 00O O

00 0Ogets channelld ?varName?
fp [open "input.txt" r
gets $fp datal == 0
puts "readout2: $data"

close $fp

1240000

2026/02/18 06:38 26/34 tcl0 000

124100000

file executable name

Returns 1 if file name is executable by the current user, 0 otherwise. On Windows, which does not
have an executable attribute, the command treats all directories and any files with extensions exe,
com, cmd or bat as executable.

12420000

file exists name

Returns 1 if file name exists and the current user has search privileges for the directories leading to it,
0 otherwise.

124300000

file isdirectory name

Returns 1 if file name is a directory, 0 otherwise.

12440000000

file isfile name

Returns 1 if file name is a regular file, 0 otherwise.

125000000

25100 000000000

glob — Return names of files that match patterns

abs path [glob ./out/linux */*/

5200000000000

file normalize name

Returns a unigue normalized path representation for the file-system object (file, directory, link, etc),
whose string value can be used as a unique identifier for it. A normalized path is an absolute path
which has all “../” and “./” removed. Also it is one which is in the “standard” format for the native
platform. On Unix, this means the segments leading up to the path must be free of symbolic
links/aliases (but the very last path component may be a symbolic link), and on Windows it also

2026/02/18 06:38 27/34 tcl0 000

means we want the long form with that form's case-dependence (which gives us a unique, case-
dependent path). The one exception concerning the last link in the path is necessary, because Tcl or
the user may wish to operate on the actual symbolic link itself (for example file delete, file rename,
file copy are defined to operate on symbolic links, not on the things that they point to).

abs path |[file normalize ../../

13.000
rand data0 int rand 10000
rand datal int rand()*10000
rand data2 int rand 10000
rand data3 int rand 10000
rand data4 int rand 10000

14.0000shelld O

exec uname -a
exec mkdir dir a/subdir b -p

15. infoO O

info script] # 0000000000000

info procs ’pattern
If pattern is not specified, returns a list of all the names of Tcl
command procedures in the current namespace.
If pattern is specified, only those procedure names in the current
namespace matching pattern are returned.
#0 0000000 proct

n100ooooon

unset a
info exists a $a == 1 echo "haha"
al
1
info exists a $a == 1 echo "haha"
haha
a0
0

info exists a $a == 1 echo "haha"

2026/02/18 06:38 28/34 tcl0 000

16.00 O

clock microseconds gooooo
clock seconds ooooo

timel |[clock microseconds
puts "timel = $timel"

time2 [clock microseconds
puts "timel = $time2"

delta time $time2 - $timel
puts "delta time = $delta time"

#0000 0O
clock format [clock seconds| -format Y%m%d-%H: %M

17. tcl command alias(] [

tcl000000000aliesD 0000000 OechoOputsD 00000000 ODOOtclOOOechod
O00000Oallas0 000000

interp alias echo puts; #0 00 tcl putsODO0O0O0Oalias OO0 O0OOecho

other alias exapmles
interp alias getIndex lsearch {alpha beta gamma delta

idx |[getIndex delta

18. json

oo
https://core.tcl-lang.org/tcllib/doc/tcllib-1-18/embedded/www/tcllib/files/modules/json/json.html#1

https://core.tcl-lang.org/tcllib/doc/trunk/embedded/md/toc.md

18.1 json2tcl

json:json2dict0 D00 OO OO

package require json

https://core.tcl-lang.org/tcllib/doc/tcllib-1-18/embedded/www/tcllib/files/modules/json/json.html#1
https://core.tcl-lang.org/tcllib/doc/trunk/embedded/md/toc.md

2026/02/18 06:38 29/34 t0 000
jsonStr | \
"photos": "page": 1, "pages": "726", "perpage": 3, "total": "7257",
"photo":

“id": "6974156079", "owner":

"server": "7197", "farm": 8, "title":

"isfamily": 0 },
"id": "6822988100", "owner":

"server": "7183", "farm": 8, "title":

"isfamily": 0 },

"id": "6822909640", "owner":
"server": "7063", "farm": 8, "title":
"isfamily": 0O

, "stat": "ok"

dl [json::json2dict $jsonStr
puts "dl is :"
puts $d1

key value} [dict get $d1
is [string is list $value
puts "$key -- $is -- "
$key == "photos"

"74957296", "secret":
"Kenya", "ispublic":

"52857411", "secret":

"Gedi", "ispublic":

"52857411", "secret":
"Local", "ispublic":

keyl valuel} [dict get $value

puts " $keyl -- $valuel”

$keyl == "photo"

value2 $valuel
pu'ts " ==========$Va1ue2"

key3 value3

"005d743f82",
1, "isfriend": 0,

"56630c18e8",
1, "isfriend": 0O,

"f4e392ea36",
1, "isfriend": 0,

dict get $value2

puts " ========= $key3 -- $value3"

#puts "$key--$value"

18.2 tcl2json

oo go
https://rosettacode.org/wiki/Rosetta_Code

https://rosettacode.org/wiki/J]SON#Tcl

package require Tcl 8.6

https://rosettacode.org/wiki/Rosetta_Code
https://rosettacode.org/wiki/JSON#Tcl

2026/02/18 06:38 30/34 tcl0 000

package require json::write

tcl2json value
Guess the type of the value; deep *UNSUPPORTED* magic!

regexp {("“value is a (. with a refcount} \
::tcl::unsupported: :representation $value| -> type
$type
string

json::write string $value

dict
json::write object
dict map {k v} $value {tcl2json $v

list
json::write array lmap v $value {tcl2json $v

int - double
$value

booleanString
$value "true" : "false"

Some other type; do some guessing. ..
$value eq "null"
Tcl has *no* null value at all; empty strings are semantically
different and absent variables aren't values. So cheat!

$value
string is integer -strict $value
$value
string is double -strict $value
$value
string is boolean -strict $value
$value "true" : "false"

json::write string $value

d [dict create blue [list 1 2| ocean water book {a b c d
puts [tcl2json $d

dict ages zhangsan 30

2026/02/18 06:38 31/34 tcl0 000

dict ages lili 28

dict addr shu "guanzhou"
dict addr lv "suzhou"

dict addr cc list ccl cc2

#set addr [list xx0 xx1]

dict ages misc $addr
puts [tcl2json $ages

gobogobooobobooon

{
"blue" : ["1","2"],
"ocean" : "water",
"book" : "a b c d"
}
{
"zhangsan" : 30,
"litit . 28,
"misc" e
"shu" : "guanzhou",
"lv" : "suzhou",
"cc" : ["ccl","cc2"]
}
}

18.3 printtcl

Oo0Do0o000OtlDODODDOoOOoO0oDoDDOdict&listDO000O0json000000000O00DO([tcl2json

package require json

jsonStr | \
“photos": "page": 1, "pages": "726", "perpage": 3, "total": "7257",
"photo":
"id": "6974156079", "owner": "74957296", "secret": "005d743f82",
"server": "7197", "farm": 8, "title": "Kenya", "ispublic": 1, "isfriend": 0O,

"isfamily": 0 7,

"id": "6822988100", "owner": "52857411", "secret": "56630c18e8",
"server": "7183", "farm": 8, "title": "Gedi", "ispublic": 1, "isfriend": 0O,
"isfamily": 0 },

"id": "6822909640", "owner": "52857411", "secret": "f4e392ea36",
"server": "7063", "farm": 8, "title": "Local", "ispublic": 1, "isfriend": 0O,
"isfamily": 0O

, "stat": "ok"

dl [json::json2dict $jsonStr
puts "“dl is :"

2026/02/18 06:38 32/34

tclDoo0Oo

puts $d1

prin

goo

dl 1

printtcl {value {prefix ""
Guess the type of the value; deep *UNSUPPORTED* magic!

regexp {("“value is a (. with a refcount} \
::tcl::unsupported: :representation $value| -> type
$type
dict

dict map {k v} $value
puts "$prefix\key:$k"
printtcl $v "$prefix "

list
lmap v $value
puts "$prefix\list item:\["
printtcl $v "$prefix "
puts "$prefix\list item:\]"

puts "$prefix$value”

ttcl $d1

Sh

photos {page 1 pages 726 perpage 3 total 7257 photo {{id 6974156079 owner

74957296 secret 005d743f82 server 7197 farm 8 title Kenya ispublic 1
isfriend 0 isfamily 0} {id 6822988100 owner 52857411 secret 56630c18e8
server 7183 farm 8 title Gedi ispublic 1 isfriend 0 isfamily 0} {id

6822909640 owner 52857411 secret f4e392ea36 server 7063 farm 8 title Local

ispu
key:
ke
ke
ke
ke

ke

blic 1 isfriend 0 isfamily 0}}} stat ok

photos

y:page

1

y:pages

726

y:perpage

3

y:total

7257

y:photo

list item: [
key:id

6974156079

2026/02/18 06:38 33/34 tcl0 000

key:owner
74957296
key:secret
005d743182
key:server
7197
key:farm
8
key:title
Kenya
key:ispublic
1
key:isfriend
0
key:isfamily
0
list item:]
list item: [
key:id
6822988100
key:owner
52857411
key:secret
56630c18e8
key:server
7183
key:farm
8
key:title
Gedi
key:ispublic
1
key:isfriend
0
key:isfamily
0
list item:]
list item: [
key:id
6822909640
key:owner
52857411
key:secret
f4e392ea36
key:server
7063
key:farm
8
key:title
Local
key:ispublic

2026/02/18 06:38 34/34 tcl0 000

1

key:isfriend
0

key:isfamily
0

list item:]
key:stat
ok

19. 0000

1. 00tclO0ODechoOOODDOOOODDOOputsD0DO000ODOOOO0ODOOOOOOODOOOODO
g

	tcl语法速查
	1. 查看tcl版本
	2. regexp正则表达式
	2.1 正则表达式规则
	2.2 基本用法
	2.3 {}与""的区别
	2.4 匹配多个条件
	2.5 submatch， 子匹配
	2.6 非贪婪匹配模式
	2.7 regsub正则表达式替换
	2.8 使用变量作为正则表达式
	2.9 使用\逃逸
	2.10 使用\1 \2

	3. number
	4. string
	4.1 string length长度
	4.2 string compare
	4.3 string cat
	4.4 string replace
	4.5 string range
	4.6 string repeat
	4.7 string 大小写转换

	5. 布尔值
	6. 进制转换
	6.1 转为二进制数
	6.2 转为16进制数
	6.3 转为10进制数
	6.4 产生递进的二进制数
	6.5 com_number set_bits get_bits

	7. list
	7.1 创建list
	7.2 list 长度
	7.3 list index索引
	7.4 list sort排序
	7.5 list lappend追加
	7.6 lassign
	7.7 list 嵌套
	7.8 list concat
	7.9 list 删除第一个元素
	7.10 linsert 插入
	7.11 lreplace
	7.12 lrange
	7.13 split string to list
	7.14 技巧

	8. array数组
	8.1 创建数组
	8.2 array set
	8.3 array size
	8.4 array name
	8.5 array迭代
	8.6 array 非数字index
	8.7 生成连续数字list

	9. dict字典
	9.1 创建dict
	9.2 dict unset 删除某个key
	9.3 dict size大小
	9.4 dict for
	9.5 dict get value
	9.6 dict keys
	9.7 dict迭代
	9.8 dict exists
	9.9 dict keys sort排序
	9.10 dict merge， 相当于copy
	9.11 dict 包 list

	10. 条件判断 & loop循环控制
	10.1 if elseif else
	10.2 while
	10.3 for
	10.4 foreach
	10.5 switch

	11. proc 过程函数控制
	11.1 无参数
	11.2 带参数
	11.3 参数带默认值
	11.4 可变个数参数

	12. 文件
	12.1 文件操作模式
	12.2 写文件
	12.3 读文件
	12.3.1 采用read方法
	12.3.2 采用get一行方法

	12.4 判断文件
	12.4.1 是否可执行
	12.4.2 是否存在
	12.4.3 是否是目录
	12.4.4 是否是普通文件

	12.5 文件路径展开
	12.5.1 带*号匹配展开为绝对路径
	12.5.2 相对路径替换为绝对路径

	13. 随机数
	14. 调用系统shell命令
	15. info命令
	15.1 判断变量是否存在

	16. 时间
	17. tcl command alias别名
	18. json
	18.1 json2tcl
	18.2 tcl2json
	18.3 printtcl

	19. 其它注意

