
2026/02/18 06:38 1/9 ARM DAP

ARM DAP

ARM DAP分为DP（debug port）和AP (access port)，

DP一般和串口DP或JTAG口DP

AP一般有AHB-AP, AXI-AP, APB-AP, JTAG-AP, mem-ap等

一般来讲，AXI-AP、AHB-AP、APB-AP是执行MEM-AP结构，访问对应总线的memory system.

1. JTAG DP IR command

2026/02/18 06:38 2/9 ARM DAP

2. DPACC & APACC TDR

通过DPACC TDR去访问DP register,通过APACC TDR去访问AP register
其定义如下：

TDR length为35bit, 低bit数据先传。

TDI输入数据格式定义如下：

bit[34:3]传32bit写数据，
bit[2:1]传DP或AP的地址A[3:2]
bit[0] 表示读(1)或者写操作(0)

TDO输出数据格式定义如下：

bit[34:3]传32bit读结果数据，
bit[2:0]表示读响应ACK, 0b010 - OK/FAULT, 0b001 - WAIT

2026/02/18 06:38 3/9 ARM DAP

在操作APACC时，会发起对应的AP操作，一般分为AP写和AP读操作，以下是AP读需要注意的地方。

如果是AP读的话，需要再读一次TDR，但是如果IR还是指定为APACC的话，就会再触发一次AP操作，所以
此时可以临时用IR切换为DPACC，这样读结果不会重新AP操作。

通过DP.RDBUFF将AP读数据取出。

2026/02/18 06:38 4/9 ARM DAP

3. DP register summary

SELECT:

2026/02/18 06:38 5/9 ARM DAP

4. AP register summary

4.1 AHB-AP register summary

AP的地址[7:4]来自于 DP.SELECT寄存器的[7:4]
AP的地址[3:2]来自于APACC TDR里面的A[3:2]地址

5. verilog example code

AHB-AP只能生成32bit的ahb地址， AXI-AP可以生成64bit的axi地址。

具体的APSEL可根据实际的dap与ap间的连接关系确定

当然也可以进行APSEL扫描，然后去读AP的0xFC地址，通过读出的Identification Register值来确认AP类型
或AP是否存在。

module dap(/*autoarg*/
);

task tck_cycle;
 input t_tms;

2026/02/18 06:38 6/9 ARM DAP

 input t_tdi;
 begin
 #1ns;
 // sample tdo
 sample_tdo = tdo;
 force tck_r = 1'b1;
 #20ns;
 force tms_r = t_tms;
 force tdi_r = t_tdi;
 force tck_r = 1'b0;
 #19ns;
 end
endtask

task tms5;
 begin
 repeat(5) tck_cycle(1'b1,1'b0);
 end
 tck_cycle(1'b0, 1'b0); // rti
endtask

task shift_ir;
 input [7:0] len;
 input [255:0] data;
 integer i=0;
 begin
 tck_cycle(1'b1, 1'b0);
 tck_cycle(1'b1, 1'b0);
 tck_cycle(1'b0, 1'b0);
 tck_cycle(1'b0, 1'b0);

 shift_ret = 0;
 i=0;
 repeat(len-1) begin
 tck_cycle(1'b0, data[i]);
 shift_ret[i] = sample_tdo; i = i+1;
 end
 tck_cycle(1'b1, data[i]);
 shift_ret[i] = sample_tdo; i = i+1;
 tck_cycle(1'b1, 1'b0);
 tck_cycle(1'b0, 1'b0); // rti
 tck_cycle(1'b0, 1'b0); // rti

 end
endtask
task shift_dr;
 input [7:0] len;
 input [255:0] data;
 integer i=0;
 begin
 tck_cycle(1'b1, 1'b0);

2026/02/18 06:38 7/9 ARM DAP

 tck_cycle(1'b0, 1'b0);
 tck_cycle(1'b0, 1'b0);

 shift_ret = 0;
 i=0;
 repeat(len-1) begin
 tck_cycle(1'b0, data[i]);
 shift_ret[i] = sample_tdo; i = i+1;
 end
 tck_cycle(1'b1, data[i]);
 shift_ret[i] = sample_tdo; i = i+1;
 tck_cycle(1'b1, 1'b0);
 tck_cycle(1'b0, 1'b0); // rti
 tck_cycle(1'b0, 1'b0); // rti

 $display("shift_dr ret = %h", shift_ret);
 end
endtask

task ahbap_write;
 input [7:0] ap_addr;
 input [31:0] ap_data;

 reg [7:0] ap_sel;

 begin

 // dpacc.sel ahb-ap
 shift_ir(4, 4'ha);
 #1000;
 //shift_dr(35, 35'h0); // 32b data, 2b A[3:2] (1:ctrl, 2:ap-sel, 3:read-
buffer), 1b RnW (0:write)
 ap_sel = 8'h0;
 shift_dr(35, {{ap_sel,16'h0, ap_addr[7:4],4'h0} , 2'h2, 1'b0}); //
ap_sel = select ahb-ap (31:24 ap_sel, 7:4 ap_banksel)
 #1000;

 // dpacc.ctrl
 shift_ir(4, 4'ha);
 #1000;
 //shift_dr(35, 35'h0); // 32b data, 2b A[3:2] (1:ctrl, 2:ap-sel, 3:read-
buffer), 1b RnW (0:write)
 shift_dr(35, {32'h10000000 , 2'h1, 1'b0}); // CTRL/STAT.CDBGPWRUPREQ
 #1000;

 // apacc.read-buffer
 shift_ir(4, 4'hb);
 #1000;
 //shift_dr(35, 35'h0); // 32b data, 2b A[3:2] (dp_addr), 1b RnW

2026/02/18 06:38 8/9 ARM DAP

(0:write)
 shift_dr(35, {ap_data, ap_addr[3:2], 1'b0}); // read-buffer
 #1000;
 end
endtask

task ahbap_read;
 input [7:0] ap_addr;
 input [31:0] ap_data;

 reg [7:0] ap_sel;

 begin

 // dpacc.sel ahb-ap
 shift_ir(4, 4'ha);
 #1000;
 //shift_dr(35, 35'h0); // 32b data, 2b A[3:2] (1:ctrl, 2:ap-sel, 3:read-
buffer), 1b RnW (0:write)
 ap_sel = 8'h0;
 shift_dr(35, {{ap_sel,16'h0, ap_addr[7:4],4'h0} , 2'h2, 1'b0}); //
ap_sel = select ahb-ap (31:24 ap_sel, 7:4 ap_banksel)
 #1000;

 // dpacc.ctrl
 shift_ir(4, 4'ha);
 #1000;
 //shift_dr(35, 35'h0); // 32b data, 2b A[3:2] (1:ctrl, 2:ap-sel, 3:read-
buffer), 1b RnW (0:write)
 shift_dr(35, {32'h10000000 , 2'h1, 1'b0}); // CTRL/STAT.CDBGPWRUPREQ
 #1000;

 // apacc.read-buffer
 shift_ir(4, 4'hb);
 #1000;
 //shift_dr(35, 35'h0); // 32b data, 2b A[3:2] (dp_addr), 1b RnW
(0:write)
 shift_dr(35, {ap_data, ap_addr[3:2], 1'b1}); // read-buffer
 #1000;

 // dpacc.reserved
 shift_ir(4, 4'ha);
 #1000;
 shift_dr(35, {32'h0 , 2'h0, 1'b0}); // for read ap buffer only, (ret
data is in [34:3])
 #1000;
 end
endtask

2026/02/18 06:38 9/9 ARM DAP

task ahb_write;
 input [31:0] ahb_addr;
 input [31:0] ahb_data;
 begin
 ahbap_write(8'h4, ahb_addr);
 ahbap_write(8'hc, ahb_data);
 end
endtask

task ahb_read;
 input [31:0] ahb_addr;
 reg [31:0] ahb_data;
 begin
 ahbap_write(8'h4, ahb_addr);
 ahbap_read(8'hc, 32'h0);
 ahb_data = shift_ret[34:3];
 $display("ahb_read ret = %8h", ahb_data);
 end
endtask

initial begin
 #10000;
 trstn_r = 1'b1;
 #1000;
 tms5;

 // // idcode
 // shift_ir(4, 4'he);
 // #1000;
 // shift_dr(32, 32'h0);
 // #1000;

 ahb_write(32'h0680, 32'h3344);
 ahb_read(32'h0680);

 ahb_write(32'h0684, 32'h5566);
 ahb_read(32'h0684);

end

endmodule

	ARM DAP
	1. JTAG DP IR command
	2. DPACC & APACC TDR
	3. DP register summary
	4. AP register summary
	4.1 AHB-AP register summary

	5. verilog example code

