2026/02/18 06:38 1/9 ARM DAP

ARM DAP

ARM DAPO O DP[Jdebug port[JO0 AP (access port)[]
DPO O O O O DPO JTAGO DP
APO O O AHB-AP, AXI-AP, APB-AP, JTAG-AP, mem-apO

0 O 0O O JAXI-APJAHB-APJAPB-APO O O MEM-APO O O O O 0O O O O O memory system.

Systemn
access to Debug APB

System APB
AHB interconnect [~Debug APE
dbgen spiden access At

F 3

E ¥ Y

—dapsel0—| AHB Access Port
-« > (AHB-AP)
dapclk
—dapsell—| APB Access Port _
-+ > (APB-AP) -
i &
Selrlal T pdbgswen—'
— :Il'lrj — . . | papsus dapclk deviceen—iy+—
JTAG Serial Wire JTAG | erconnect
Debug Port (SWJ-DP) JTAG Access Port (JTAG-AP)
swelktck * —dapsel2 Slave JTAG - JTAG scan chains—
-1 g interface |e=pp| serializer
dapclk
dapclk
—dapsel3 »
. DAPBUS exported interface—tjm

—dapseld—| AX] Access Port
- > (AXI-AP)

- Ll

|t System AX| BCCESS m——

k- F

dapclk

dbgen spiden

Figure 4-1 Structure of the CoreSight SoC-400 DAP components

1. JTAG DP IR command

2026/02/18 06:38

2/9 ARM DAP

Table 3-209 JTAG-DP register summary

4-bit IR instruction

8-bit IR instruction JTAG-DP

DR scan

valuea valueb register width Description

0b1000 @b11111000 ABORT 35 JTAG-DP Abort Register, ABORT.

2b1010 9b11111010 DPACC 35 JTAG DP/AP Access Registers, DPACC/APACC.
eb1011 0b11111011 APACC 35

0b1110 ®b11111110 IDCODE 32 JTAG Device ID Code Register, IDCODE.
@b1111 @b11111111 BYPASS 1 JTAG Bypass Register, BYPASS.

a. cxdapswjdp implemented with parameter IRLENS8=0.

b. cxdapswjdp implemented with parameter IRLEN8=1.

2. DPACC & APACC TDR

[0 O DPACC TDRO O O DP register,0 O APACC TDRO O [0 AP register

goodgdgo

TDR length 35bit, O bitD O O OO

TDID000000ODOOO

e bit[34:3]0 32bit0 0 O O

e bit[2:1]0 DPO AP O 0 A[3:2]
e bit[0] DO O (IO OOO)

Do O0O0DOOOooonoO

e bit[34:3]032bit0 00000

e bit[2:0]0 O O O O ACK, 0b010 - OK/FAULT, 0b001 - WAIT

The operation of the DPACC and APACC registers is shown in the following figure:

DBGTDI —»

34 . 32 0
ReadResult[31:0] ACKJ[2:0]
Data[34:3] Data[2:1] — DBGTDO
1 L— Data[0]
DATAIN[31:0] A[3:2] |RnW

2026/02/18 06:38

3/9

ARM DAP

=
W m
= e = g
= = = =
2 2 58 8
=] g = 9 B
& %r
______________________________ S S N S —
DPACC :
0—p| Diataf31:0] |ng3.2|| Rnw I BYPASS !
i
1 IDCODE Debug TAP | |
o - State Machina i
» wcooepro |f—9 (DEGTAPSM) | |
i
ABORT i
i
. 5 ABORT register{31:0] |N3-21| R |—1| ;
[=] - L= =] () :
2z EE APACC !
— g vy, P !
o = - Diataf31:0] |.-1{.3.z|| RnW |— ; =
Q = [ol E
= — Y i
x nlFE|c -
o =N =] 1
= Flw|l@d = 1 2
& o |E(2] &8 Fushad \ E
= g oWl COmMpane |
= 2o = 1
L] a5 “'@ el [:
2lEl2l2|3 :
w0 -— [=] [ia] 1
HEEIHE ’
4 = %2 Tranaaction i
e H = caunter !
= |
4 :
i
SELECTAPEANKSEL [7:4] |
SELECT.APSEL |
(324 !
L _<
APSEL | - - | . | " | "
dE{DdEF‘_ AP Accass Diata[31:0] AlTA] [AL3:2]| RnW
‘l L R Sohecns Datwtd rmading and witing
I— AJ3Z] Slocts @ rogishor within e hank)
AT-4] solocts e regisier Bank <L
o
L P =<
; y ¥ l L A
Y
=5 = o U (=T - S - =] =] - [=T
=2 =) =2 = ™ ™ ™ - [T . LA L
po b b b = = = bt =L b e po
= = = = = [o]] L] = = =)
) ~|l=|=l&
£ F|w @~ ele|le|2
i |o|-|a|=| |2]2|2|E I 5
D o|lo ol ol e SEEEE wlEele|lx & o
E S| EEIE2E] Sle|~|n|= Sle|~|«x| & 2
= o I I el I I Il I e I
=y L= L= = (=]
s 512|352 5|2|12|8|8 HEEEE
mlel el] & m m <L
k- L] L m m — | — — -— 0 w | w ‘S
= o | oo | oo m e | o a a — — —
;| ||| E = | x| x| s
m@ 2| E8|E| & IR
m|o|o| S
AP AF AP
c —
debug
rEsOUrCes

DBGTAP
scan chains
gl gl 2
] £ &
) [=' -
[=
[
]
v]
DP Access ':i
:
o
hd
OF e
r'y
1
1
|
|
|
|
|
|
|
|
|
v
AP Access
Y
AP
3
debug
MES0Urces

Figure A1-2 Structure of the DAP, showing DPv0 JTAG-DP accesses to a generic AP

OO0OAPACCODOUODOODAPODOODOOOAPODOAPODOODOODOOAPODOODOODODOO

OODAPOODOOOOODOOOTDRODOOOIROOOOOAPACCOOODOUODOODOOAPODOODOO
O0000O00IRODOODPACCOODDODOODOODOAPOODO

O 0ODP.RDBUFFO APOD D OO OO

2026/02/18 06:38

4/9

ARM DAP

The purpose and behavior of RDBUFF is DATA LINK DEFINED:

JTAG-DP The Read Buffer is architecturally defined to provide a DP read operation that does not
have any side effects. This definition allows a debugger to insert a DP read of RDBUFF
at the end of a sequence of operations, to return the final AP Read Result and ACK
values.

3. DP register summary

Table B3-5 JTAG-DP Register access summary.

Address
. A3 SELECT.DPBANKSEL
Register Access (A%)
DPv0 DPv1 DPv2
CTRL/STAT RW Ox4, - Ox4, 0x0 0x4, dx@
DLCR RW - Ox4, Bx1 x4, Bx1
DLPIDR RO - - x4, 0x3
DPIDR RO - 0x0, x 0x0, x
EVENTSTAT RO - - 0x4, Bx4
RDBUFF RO oxC, - OxC, x 0xC, x
SELECT WOb 0x8, - 0x8, X 0x8, x
TARGETID RO - - x4, Bx2
a. Bits [1:0] of the address are always 0b@0.
b. RW for DPv0
SELECT:
The SELECT bit assignments are:
31 24 23 8 7 0
Reserved
APSEL RESO
N)
APBANKSEL—————I

DPBANKSEL

2026/02/18 06:38

5/9 ARM DAP

4. AP register summary

4.1 AHB-AP register summary

e AP0 OO [7:4]0 00 DP.SELECTO O O O [7:4]
e AP0 0O [3:2]0 0 OAPACC TDRO O O A[3:2]0 0

3.16.2 AHB-AP register summary|

Table 3-205 shows the AHB-AP register sumimary.

Table 3-205 AHB-AP register summary

Offset Type Reset value Name
0x00 KW Bx40000002 AHB-AP Contrel/Status Word register; CSW, 0x00 on page 3-179, CSW.
DxD4 W Bx00000000 AHB-AP Transfer Address Register; TAR, 0x04 on page 3-181, TAR.
Dx08 - - Reserved, SBZ.
0x8C RW - AHB-AP Data Read/Write register, DRW, 0x0C on page 3-181, DRW.
Bx10 W - AHB-AP Banked Data registers, BD0-BDO03, 0x10-0x1C on page 3-181.
Bx14 W -
Bx18 RW -
Bx1C W -
Table 3-205 AHB-AP register summary (continued)
Offset Type Reset value Name
Ox20-8xF7 - - Reserved, SBZ.
OxF8 RO IMPLEMENTATION DEFINED ~ AHB-AP Debug Base Address register, ROMBASE, 0xF§ on page 3-182.
BxFC RO Bx 64770001 AHB-AP Identification Register, IDR, 0xFC on page 3-182, IDR.

5. verilog example code

AHB-APO O O O 32bit0 ahbO O [AXI-APO O O O 64bit0 axiD O O

OOOAPSELODOO0OODOdapOap0 00 0OODOO

O0O0O0O0OOOAPSELDDODOOODOAPOOXFCOO D OO OO O Identification Registerd 0O 0O O APO O

OAPOODOOO

dap(/*autoarg*/

tck cycle

t_tms

2026/02/18 06:38 6/9 ARM DAP

t tdi

1ns
// sample tdo
sample tdo = tdo
tck r = 1'bl
20ns
tms r = t tms
tdi r = t tdi
tck r = 1'b0
19ns

tms5
tck cycle(1'bl,1'b0

tck cycle(1'bO, 1'b0O); // rti

shift ir

i

tck cycle(1l'bl, 1'b0O
tck cycle(1l'bl, 1'b0O
tck _cycle(1'bO, 1'b0O
tck cycle(1'bO, 1'b0O

shift ret
i
len
tck cycle(1'b0, datali
shift ret|i sample tdo; 1 = 1

tck cycle(1l'bl, datali
shift ret[i sample tdo; i = 1
tck cycle(1'bl, 1'b0O
tck cycle(1'b0, 1'b0O); // rti
tck cycle(1'b0, 1'b0O); // rti

shift dr
len
data

i

tck cycle(1l'bl, 1'b0O

2026/02/18 06:38

7/9

ARM DAP

tck cycle(1'bO, 1'b0O);
tck cycle(1'b0, 1'b0O);

shift ret = 0;
i=0;
repeat(len-1) begin
tck cycle(1'b0, datalil);

shift ret[i] = sample tdo;

end
tck cycle(1'bl, datalil);

shift ret[i] = sample tdo;

tck cycle(1'bl, 1'b0):
tck cycle(1'b0, 1'b0O); // rti
tck cycle(1'b0, 1'b0O); // rti

$display("shift dr ret = %h",
end
endtask

task ahbap write;
input [7:0] ap_addr;
input 131:0] ap_data;

reg | 7:0] ap_sel;
begin
// dpacc.sel ahb-ap

shift ir(4, 4'ha);
#1000;

i= 1i+1;
i=i+1;
shift ret);

//shift dr(35, 35'h0); // 32b data, 2b A[3:2] (1l:ctrl, 2:ap-sel, 3:read-

buffer), 1b RnW (0O:write)
ap_sel = 8'h0;

shift dr(35, {{ap_sel,16'h0, ap addr[7:4],4'h0} , 2'h2, 1'b0O}); //
ap_sel = select ahb-ap (31:24 ap _sel, 7:4 ap banksel)

#1000;

// dpacc.ctrl
shift ir(4, 4'ha);
#1000;

//shift dr(35, 35'h0); // 32b data, 2b A[3:2] (1l:ctrl, 2:ap-sel, 3:read-

buffer), 1b RnW (O:write)

shift_dr(35, {32'h106000000 , 2'hl, 1'bO}); // CTRL/STAT.CDBGPWRUPREQ

#1000;

// apacc.read-buffer
shift ir(4, 4'hb);
#1000;

//shift dr(35, 35'h0); // 32b data, 2b A[3:2] (dp_addr), 1b RnW

2026/02/18 06:38 8/9 ARM DAP

(0:write)
shift dr(35, {ap data, ap addr[3:2], 1'b0}); // read-buffer
#1000;
end

endtask

task ahbap read;
input | 7:0] ap_addr;
input 131:0] ap_data;

reg [7:0] ap_sel;
begin

// dpacc.sel ahb-ap

shift ir(4, 4'ha);

#1000;

//shift dr(35, 35'h0); // 32b data, 2b A[3:2] (1:ctrl, 2:ap-sel, 3:read-
buffer), 1b RnW (O:write)

ap_sel = 8'h0;

shift dr(35, {{ap_sel,16'h0, ap addr[7:4]1,4'h0} , 2'h2, 1'b0}); //
ap sel = select ahb-ap (31:24 ap sel, 7:4 ap banksel)

#1000;

// dpacc.ctrl

shift ir(4, 4'ha);

#1000;

//shift dr(35, 35'h0); // 32b data, 2b A[3:2] (1:ctrl, 2:ap-sel, 3:read-
buffer), 1b RnW (O:write)

shift _dr(35, {32'h10000000 , 2'hl, 1'b0}); // CTRL/STAT.CDBGPWRUPREQ

#1000;

// apacc.read-buffer
shift ir(4, 4'hb);

#1000;

//shift dr(35, 35'h0); // 32b data, 2b A[3:2] (dp addr), 1b RnW
(0:write)

shift dr(35, {ap _data, ap addr[3:2], 1'bl}); // read-buffer

#1000;

// dpacc.reserved

shift ir(4, 4'ha);

#1000;

shift _dr(35, {32'h0 , 2'h0, 1'bO}); // for read ap buffer only, (ret
data 1is in [34:3])

#1000;

end
endtask

2026/02/18 06:38

9/9

ARM DAP

ahb write
ahb_addr
ahb data

ahbap write(8'h4, ahb addr
ahbap write(8'hc, ahb data

ahb read
ahb addr
ahb data

ahbap write(8'h4, ahb addr
ahbap read(8'hc, 32'h0

ahb _data = shift ret
$display("ahb read ret = %8h"

trstn r = 1'bl
tms5

// // idcode
// shift ir(4, 4'he);

// #1000,
// shift dr(32, 32'h0);
// #1000,

ahb write(32'h0680, 32'h3344
ahb read(32'h0680

ahb write(32'h0684, 32'h5566
ahb read(32'h0684

ahb data

	ARM DAP
	1. JTAG DP IR command
	2. DPACC & APACC TDR
	3. DP register summary
	4. AP register summary
	4.1 AHB-AP register summary

	5. verilog example code

